The MLDesigner Optical Components Library # 1. Introduction The MLDesigner Optical Components Library is a collection of Discrete Event Data Structures and building blocks for the design and performance analysis of optical networking components and systems. The blocks can be combined to create models of optical network components (e.g., switches) and add optical interfaces to computer and server modules. The resulting models can be combined with upper layer protocol modules to do complete end-to-end optical network models. The MLD Optical Components Library includes special optical library data structures, low level building blocks (e.g. laser sources, couplers, switching elements), high level building blocks (e.g., MUXers and DEMUXers, switches, inverters) and some sample optical system models (e.g., switch and switchless TDM and WDM Pixel Bus systems. Physical layer models developed with the Optical Components Library can be extended with components from other MLDesigner libraries to model all layers of the OSI stack. # 2. Modeling Approach This library uses data structures to abstract component features so they are manageable in a network-level simulation while retaining sufficient physical effect detail to maintain accuracy. Data structures are the foundation of the optical components library. All optical signals that pass through components in the optical network library are first and foremost a member of the *Optical Layer (OL)* data structure. This class definition is used to separate optical signals from others that may be used in the simulation (e.g. electrical, wireless, logical). Optical signals are further classified into one of two types in this library version. The *Single_OL* class is used for optical signals that are represented as a single wavelength within optical components (disregarding center frequency spread),. The data members of this class include *Wavelength*, *Opt_Power_Level*, *Data* and *Number_Of_Bits*. Optical signals of different wavelengths that pass through a component at the same time are classified as wave-division multiplexed (WDM) signals and are members of the *Multiple_OL* class. The Multiple_OL class is composed of a vector of *Single_OL* members. Library components current model only simple physical layer effects such as time delay and signal power-level attenuation or amplifications. Future versions of the library will add the capability to distinguish between signal power and noise (so an optical signal-to-noise ratio can be calculated) as well as additional noise sources. Ongoing research is investigating techniques to modeling higher-order physical effects such as amplified spontaneous emissions, crosstalk, dispersion, temperature effects, source chirping and 4-wave mixing. # 3. Sample System Models Here are some top-level block diagrams of systems models created with the Optical Component Library. More detailed descriptions of three systems models are provided in Section 5 at the end of this document. Figure 1: TDM Switchless Pixel Bus with •4 channels @ 2.5Gbps (10Gbps aggregate) Figure 2: A Virtual prototype control panel to operate the TDM system modelassembled from MLDesigner TclTk animation component Figure 3: WDM Switchless Pixel; Bus •4 channels (4 independent wavelengths)@ 10Gbps (40Gbps aggregate) Figures 2 and 4 show how the optical system models shown in Figures 1 & 3 can be adapted to serve as virtual prototypes to demonstrate the effects of changing parameters such as transmitter rate launch power, loss, power threshold on system operation. Read- outs also show power meter readings from probes inserted into the network. The graphic control and monitoring panels were assembled with TclTk animation, dynamic control and dynamic output components from a prototype MLDesigner component library. Figure 4: A virtual prototype control panel to operate the WDM model shown in Figure 3. # 4. Detailed Description of Library Components The complete library includes the data structures, low-level building blocks (internals), high level building blocks (components) and sample system models. Data structures are hierarchical entities containing one or more data fields that can serve as a particle to carry data between blocks. The low level building blocks are building blocks representing either primitives or block diagrams. A primitive is block that contains a coded algorithm with defined inputs and outputs . A block diagram is a graphical representation of a functional model assembled from multiple blocks that are connected by net objects. The high-level building blocks are all modules—blocks that contain block diagrams. They are the building blocks combined to form systems models. Systems models are self-contained executable models/block diagrams. The contain sources to start the model and sinks to collect and display model outputs. Top-level block diagrams are shown for the components and system models. #### 4.1 Data Structures This section provides a brief description of the library data structures. Detailed descriptions are provided in the online documentation. # Root.OpticalLayer ID Number - ID number of the data structure Creation time - Time stamp showing ds creation time # OpticalLayer. Single_ OL ID Number - inherited from Root Creation Time - inherited from Root Data - Data in this packet Number_Of_Bits - Number of bits for data Wavelength - Wavelength of the single optical signal of this ds. Opt_Power_Level - Optical power level of this single wavelength of the ds # OpticalLayer. WDM_OL ID Number - inherited from Root Creation Time - inherited from Root Active_Waves - A vector of Single_OL data structures. (A WDM_OL consists of multiple Single_OL data structures combined into a single ds.) #### Power Selection Index 0 - Used to define power selection in dB. Index 1 - Used to define power selection as a percentage from an input parameter. ### Switch_Control Switch type - Defines the switch dimensions Control_Vector - A vector with N elements where N is the number of input ports on the designated switch. Each vector elements is an integer from 1 to M. M is equal to the number of output ports on the switch. The first vector element (index=0) contains the number of the output port to which input port 1 will be connected. The second vector element (index=1, if present) designates which number output the second input port is connected to. The pattern continues for any other input pots. Note: All input ports must be assigned a unique output port; multicasting is not supported. Data Integer (- inf, inf) 0 Data in this packet on optical layer Number of bits for data Wavelength of single optical signal of this structure Optical power level of single wavelength of this structure #### 4.2 Internals # 1x2 Optical Switch Primitive in DE Domain The function of this primitive is to pass an Input DS to one of the two output ports. The value of the "control" input determines which output is to be enabled. If the value of the "control" input is zero, the input DS is placed on the "falseOut" output port. The input DS is placed on the "trueOut" output port for non-zero values of the "control" input. #### **Inputs** anytype (DS to be placed on one of the two output ports) control ### **Outputs** output1 output2 # 1x4_Logical_Switch primitive in DE domain The function of this primitive is to pass an Input DS to one of the two output ports. The value of the "control" input determines which output is to be enabled. If the value of the "control" input is zero, the input DS is placed on the "falseOut" output port. The input DS is placed on the "trueOut" output port for non-zero values of the "control" input. #### **Inputs** input control #### **Outputs** output1 output2 output3 output Ctrl_error ### 1x4 Splitting Module module in DE domain This module splits optical signal either single or WDM OL from one input port (OL_ In) to four output ports (OL_ Out_ 1: OL_ Out_ 4). The power level of each output channel is defined by individual splitting ratio (CH1_ Ratio: CH4_ Ratio). Figure 5: 1X4 Splitting module OL_In # **Outputs** OL_Out_1 OL_Out_2 OL_Out_3 OL_Out_4 ### **Parameters** CH1_Ratio CH2_Ratio CH3_Ratio CH4_Ratio # 1x8 Splitting Module module in DE domain This module splits optical signal either single or WDM OL from one input port (OL_ In) to eight output ports (OL_ Out_ 1: OL_ Out_ 8). The power level of each output channel is defined by individual splitting ratio (CH1_ Ratio: CH8_ Ratio). # **Inputs** OL_In ### **Outputs** OL_Out_1 OL_Out_2 OL_Out_3 OL_Out_4 OL_Out_5 OL_Out_6 OL_Out_7 OL_Out_8 Figure 6: 1X8 Splitting Module ### **Parameters** CH1_Ratio CH2_Ratio CH3 Ratio CH4_Ratio CH5_Ratio CH6 Ratio CH7Ratio CH8_Ratio # 2x1_Coupler_Module module in DE domain This module couples two input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at in- put port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. Figure 7: 2X1 Coupler ### **Inputs** OL_In_1 OL_In_2 Trigger # Outputs WDM_OL_Out Done ### **Parameters** Coupling_Ratio_CH1 Coupling_Ratio_CH2 # 4x1_Coupling_Module module in DE domain This module couples four input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at input port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. Figure 8: 4X1 Coupler OL_In_1 OL_In_2 OL_In_3 OL_In_4 Trigger ### **Outputs** OL Out Done # **Parameters** Coupling_Ratio_CH1 Coupling_Ratio_CH2 Coupling Ratio CH3 Coupling Ratio CH4 # 8x1_Coupling_Module module in DE domain This module couples eight input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at input port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. OL_In_1 OL_In_2 OL_In_3 OL_In_4 OL_In_5 OL_In_6 OL_In_7 OL_In_8 Trigger # **Outputs** OL_Out Done # **Parameters** Coupling_Ratio_CH1 Coupling_Ratio_CH2 Coupling_Ratio_CH3 Coupling_Ratio_CH4 Coupling_Ratio_CH5 Coupling_Ratio_CH6 Coupling_Ratio_CH7 Coupling_Ratio_CH8 Coupling_Ratio_CH4 Coupling_Ratio_CH5 Coupling_Ratio_CH6 Coupling_Ratio_CH7 Coupling_Ratio_CH8 Figure 9: 1X8 Coupling Module # Add Vector module in DE domain This module adds any type of data structure at input data port (Data) into the existing vector (Vector_In). The additional element will be added at the end of vector and the size of vector will increment by one. The vector with new element is given at the output port (Vector_Out). Figure 10: Add Vector # **Inputs** Vector_In (datastruct:Root.Vector) Data (datastruct:Root) #### **Outputs** Vector_Out (datastruct:Root.Vector) ### Blank_Signal__ module in DE domain This module checks the Single OL signal at input port (Single_OL_In) whether or not it contains any wavelength. By checking the wavelength value, if wavelength is less than or equal zero, TRUE (1) is given at output port (Blank). If not, FALSE (0) is given. Figure 11: Blank Signal ### **Inputs** Single_OL_In datastruct:OPN_Version_1_0:Root.OpticalLayer.Single_OL ### **Outputs** Blank ### **Coupling_Channel module in DE domain** This module uses to couple two signals (Input1, Input2) according to channel control parameter. If control data has bit matching with channel parameter, Input2 will be coupled with Input1. Otherwise, Input1 will pass through output port (Output). The expression used to determine channel matching is defined as following: Coupling channel = 2 ([P] Channel - 1). AND. (Control data) **Figure 12: Coupling Channel** Input1 Input2 Control # **Outputs** Output #### **Parameters** Channel # Create Switch Control DS Primitive in DE domain This internal creates a Switch Control Data Structure given the Switch Type and a Switch Control Vector. See documentation on the Switch Control DS for information on setting these inputs. # **Inputs** Switch_Type Ctrl_Vector # **Outputs** Switch_Control_DS ### **CrossWave_Interference Primitive in DE domain** Injects crosswave interference into the data structure. ### **Inputs** OL_In #### **Outputs** OL_Out #### **DelElementVector primitive in DE domain** This primitive deletes the element in vector specified by the "VectorIn" input. The deleting element is specified by "Index" value. The index value must be less than or equal to maximum size of VectorIn. The vector size will be decrement by one after deleting and all following elements behind deleted element will be shifted up replacing the deleted element entry. ### **Inputs** VectorIn datastruct Index int ### **Outputs** VectorOut datastruct #### Discrete Tunable Laser Source module in DE domain This module is used in the Discrete Tunable Optical Transmitter Module. Upon receiving a trigger this internal places values for the Opt_Power and Wavelength on the output ports. The optical power is set by the parameter "Optical_Power_Level" and can be fluctuated by the parameter "Optical_Power_Fluctuation_Vector". Refer to DE/Sources/WaveForm for more details on how to set this parameter. The output wavelength can be changed between a set of discrete values contained within the memory module "Discrete_Wavelength_Vector". The number and value of the wavelengths in the table can be altered by clicking on the memory module and changing the Value field {# of WL: WL 0 WL 1 ...}. The initial output wavelength is the first value in the table. A new wavelength can be selected by placing its index (0, 1, 2 ...) on the Change_Transmit Wavelength port. Indices are stored in memory and remain until replaced. # **Inputs** Trigger Scalar anytype Change_Transmit_Scalar int #### **Outputs** Opt_Power Wavelength ### **Parameters** Switching Time Optical_Power_Level The constant value. Optical_Power_Fluctuation_Vector One period of the output waveform. **Figure 13: Tunable Laser Source Module** #### **Memories** Discrete_Wavelength_Vector Current_Wavelength_Selection # Divide_WDM_by_Wavelength module in DE domain This module divides WDM OL signal (WDM_ OL_ In) into two WDM OL signals (WDM_ OL_ Upper, WDM_ OL_ Lower) by specified threshold wavelength. Any optical wavelengths which are higher than or equal to threshold wavelength are placed at "WDM_OL_Upper" port as WDM signal. The other wavelengths which are less than or equal to threshold wavelength are placed at "WDM_OL_Lower" port as WDM signal. If no wavelength at any of output port, the empty WDM will be placed at that port. Also, if WDM input is empty wavelength, the empty WDM wavelength will be placed at both output ports. Figure 14: Divide WDM by Wavelength Module ### **Inputs** WDM_OL_In (datastruct:OPN_Version_2:Root.OpticalLayer.WDM_OL) Wavelength #### **Outputs** WDM_OL_Upper (datastruct:OPN_Version_2:Root.OpticalLayer.WDM_OL) WDM_OL_Lower (datastruct:OPN_Version_2:Root.OpticalLayer.WDM_OL) # Extract_Fields_Single_OL_DS module in DE domain This internal places the value of each field of an input Single Optical Layer Data Structure on a corresponding output. The data structure is passed through unaltered. #### **Inputs** Single_OL_DS_In # **Outputs** Single_OL_DS_Out ID_Number Creation_Time Data Number_of_Bits Wavelength Opt Power Level Figure 15: Extract Fields, Single OL DS Module # Extract Fields WDM OL DS module in DE domain This internal places the value of each field of an input WDM Optical Layer Data Structure on a corresponding output. The data structure is passed through unaltered. Figure 16: Extract Fields WDM OL DS Module WDM_OL_DS_In ### **Outputs** WDM_OL_DS_Out ID_Number Creation_Time Active_Waves (datastruct:OPN_Version_1_0:Root.Vector.VectorOfWaves) ### FIFOWithPeekReject module in DE domain Module which implements a fixed length FIFO queue with a peek option. Enabling the 'PeakTrigger' input causes a copy of the data structure at the head of the queue to be put on the output port 'PeekedOutput'. If nothing is in the queue when the PeekTrigger is enabled, the output 'NothingToSend' is enabled. Note that the peek option does not remove the data structure from the queue. Data Structures enter the 'QueueInput' port and are queued in a First In First Out (FIFO) order. That is, the oldest data structures in this module leave first. When the 'ClearToSend' port is enabled the data structure at the head of the queue exits the 'Queue-Output' port. If the queue is empty when the 'ClearToSend' port is enabled the next arriving data structure will be allowed to flow through (no queueing delay). Any additional enables of the 'ClearToSend' port when the queue is empty are ignored. If the parameter 'InitialQueueState' is set to 'InitialInputFlowsThrough' then the first data structure arriving to the queue flows through with no delay, else the first data structure waits for a 'ClearToSend' signal. The first queue overflow displays a message and at the end of the simulation the total number of queue overflows for this queue will be displayed. Figure 17: FIFO with Peek Reject Module # **Inputs** ClearToSend PeekTrigger QueueInput # **Outputs** NothingToSend Overflow PeekedOutput QueueOutput #### **Parameters** InitialQueueState MaximumQueueSize QueueRejectMechanism ### Memories QueueMemory # Insert Single OL in WDM module in DE domain This module provides function to add Single OL wavelength (Single_ OL_ In) into WDM OL (WDM_ OL_ In). If frequency of Single OL already exists in WDM OL, both input signals are dropped without insertion to "Single_ Interfere" and "WDM_ Interfere" ports. Otherwise, Single OL is inserted into WDM and new WDM is placed at output port (WDM_ OL_ Out). Figure 18: Insert Single OL in WDM Module #### **Inputs** WDM_OL_In Single_OL_In ### **Outputs** WDM_OL_Out WDM_Interfere Single Interfere #### Laser Source module in DE domain This module creates fixed wavelength and power according to parameters setting. Wavelength can be specified by parameter "Laser_ Wavelength". An associated power level can be set through parameter "Opt_ Power_ Level". The power fluctuation is the ripple of the Opt_ Power_ Level. Fluctuation wave form is set through "Laser_ Power_ Fluctuation_ Vector". Refer to /DE/ Sources/ WaveForm for more details how to set this parameter. **Figure 19: Laser Source Module** Trigger Scalar anytype #### **Outputs** Power Wavelength #### **Parameters** Opt_Power_Level Laser_Power_Fluctuation_Vector Laser Wavelength # **Low_Power_Drop module in DE domain** This module provides capability to drop any wavelength which has power lower than power threshold value. Input signal at "OL_ In" port can be either Single OL or WDM OL. Any wavelength of input signal that has power less than "Power_ Threshold" value is placed at "Drop_ OL" port and others which are higher than or equal to power threshold are passed through "OL_ Out" port. If there is no wavelength less than power threshold value, "Drop_ OL" port is placed with empty WDM OL signal. In other hand, if no wavelength has power above or equal to threshold value, the empty WDM signal is placed at "OL_ Out" port. Figure 20: Low Power Drop Module OL_In # **Outputs** OL_Out Drop_OL #### **Parameters** Low_Power_Drop module in DE domain. # Optical_Bit_Error_Injection module in DE domain Injects error into the DS. ### **Inputs** OL_In ### **Outputs** OL_Out ### Optical Power Gain module in DE domain This module provides functionality to increment power of each wavelength either Single OL or WDM OL. By using "Power Gain Expression" internal primitive, this module can increase power associated with wavelength individually. If empty WDM is received at input, the empty WDM output is placed at "OL_ Out" port. There are three parameters associated with this module, refer to "Power Gain Expression" for more details how to use these parameters. Figure 21: Optical Power Gain Module OL_In ### **Outputs** OL_Out #### **Parameters** Gain dB Gain Factor Gain_Selection (datastruct:OPN_Version_1_0:Root.ENUM.PowerSelection {dB}) # Optical_Power_Loss module in DE domain This module provides functionality to decrement power of each wavelength either Single OL or WDM OL. By using "Power Loss Expression" internal primitive, this module can decrease power associated with wavelength individually. If empty WDM is received at input, the empty WDM output is placed at "OL_ Out" port. There are three parameters associated with this module, refer to "Power Loss Expression" for more details how to use these parameters. ### **Inputs** OL In ### **Outputs** OL Out #### **Parameters** Loss dB Loss_Factor Loss_Selection (datastruct:OPN_Version_1_0:Root.ENUM.PowerSelection {dB}) Figure 22: Optical Power Loss Module ### Power Gain Expression Single primitive in DE domain This primitive provides capability to change power at "Power_ In" port with associated to "Freq" value. The equations given to "Power_ Out" are derived in primitive code. Refer to primitive code for equations. There are three parameters using in conjunction with primitive code. "Gain_ Selection" defined as enum type is type of calculation. If Gain_ Selection is "dB", the power increment calculation is increased in amount of dB. If Gain_ Selection is "Factor", the power increment calculation is increased in percentage of "Power_ In" value. "Gain_ dB" is amount of dB to be incremented. "Gain_ Factor" is percentage of "Power_ In" to be incremented. Note that "Gain_ Factor" is range between 0 and 1. #### **Inputs** Frea Power_In #### **Outputs** Power_Out #### **Parameters** Gain_dB Gain_Factor Gain Selection (datastruct OPN Version 1 0:Root.ENUM.PowerSelection{dB}) #### Power Loss Expression Single primitive in DE domain This primitive provides capability to change power at "Power_ In" port with associated to "Freq" value. The equations given to "Power_ Out" are derived in primitive code. Refer to primitive code for equations. There are three parameters using in conjunction with primitive code. "Loss_ Selection" defined as enum type is type of calculation. If Loss_ Selection is "dB", the power decrement calculation is decreased in amount of dB. If Loss_ Selection is "Factor", the power decrement calculation is decreased in percentage of "Power_ In" value. "Loss_ dB" is amount of dB to be decremented. "Loss_ Factor" is percentage of "Power_ In" to be decremented. Note that "Loss_ Factor" is range between 0 and 1. ### **Inputs** Freq Power In #### **Outputs** Power Out #### **Parameters** Loss_dB Loss_Factor Loss_Selection (datastruct OPN_Version_1_0:Root.ENUM.PowerSelection{dB}) # Remove_Single_OL_From_WDM module in DE domain This module provides function to remove any wavelength specified at "Wavelength" port from WDM OL (WDM_ OL_ In). If specified wavelength exists in WDM OL, its Single OL is removed from WDM OL and places at "Single_ OL_ Out" port. The remaining wavelengths are passed through "WDM_ OL_ Out" port. If specified wavelength does not exist in WDM OL, WDM OL input is passed through "WDM_ OL_ NotFound" port. If WDM OL is empty, input signal is passed through "WDM_ OL_ Empty" port. Figure 23: Remove Single OL from WDM Module # **Inputs** WDM_OL_In Wavelength #### **Outputs** WDM_OL_Out WDM_OL_NotFound WDM_OL_Empty Single_OL_Out ### Remove Wavelength from Single OL module in DE domain This module removes Single OL wavelength by replacing all fields of Single OL structure with default values. These default values are considered as empty wavelength in Single OL. Figure 24: Remove Wavelength from Single OL Module ### **Inputs** Single_OL_In ### **Outputs** Single_OL_Out # Single_OL_Create module in DE domain This module creates Single OL structure by giving ID, Wavelength and Power. Figure 25: Single OL Create Module # **Inputs** ID Wavelength Power # **Outputs** Single_OL # Single to WDM OL module in DE domain This module converts Single OL structure to WDM OL structure. By inserting Single OL into new WDM OL, the output port (WDM_ OL) is placed WDM OL signal with one single wavelength corresponding to Single OL input. Figure 26: Single to WDM OL MOdule #### **Inputs** Single_OL ### **Outputs** WDM OL #### **Splitting Module module in DE domain** This module splits optical signal either single or WDM OL from one input port (OL_ In) to two output ports (OL_ Out_ 1, OL_ Out_ 2). The power level of each output channel is defined by individual splitting ratio (CH1_ Ratio, CH2_ Ratio). ### **Inputs** OL In #### **Outputs** OL Out 1 OL Out 2 #### **Parameters** CH1_Ratio (Splitting ratio is defined by loss factor of channel 1. Channel 2 is the remain ing of channel 1. The value of loss factor is between [0,1]) CH2_Ratio Figure 27: Splitting Module # String to DS primitive in DE domain Converts the string representation of a data structure into the actual data structure. # **Inputs** String Type #### **Outputs** Data Structure # Tunable_Laser_Source module in DE domain This internal is used in the Discrete Tunable Optical Transmitter Module. Upon receiving a trigger this internal places values for the Opt_ Power and Wavelength on the output ports. The optical power is set by the parameter "Optical_ Power_ Level" and can be fluctuated by the parameter "Optical_ Power_ Fluctuation_ Vector". Refer to DE/ Sources/ WaveForm for more details on how to set this parameter. The output wavelength can be changed between a set of discrete values contained within the memory module "Discrete_ Wavelength_ Vector". The number and value of the wavelengths in the table can be altered by clicking on the memory module and changing the Value field {# of WL: WL 0 WL 1 ...}. The initial output wavelength is the first value in the table.A new wavelength can be selected by placing its index (0, 1, 2 ...) on the Change_ Transmit_ Wavelength port. Indices are stored in memory and remain until replaced. Figure 28: TUnable Laser Source Module Trigger Change_Transmit_Wavelength ### **Outputs** Opt_Power Wavelength ### **Parameters** Switching_Time Initial_Wavelength Laser_Power_Fluctuation_Vector One period of the output waveform. Opt_Power_Level #### Memories Transmit_Wavelength ### Wavelength_Interference module in DE domain This module determines the specified wavelength whether or not it already exists in WDM OL signal. By giving wavelength to test at "Wave_ Test" port, all wavelengths in WDM OL given at "Wave_ Vector" port are tested against Wave_ Test. The results of testing wavelength are given as following: Figure 29: Wavelength Interference Module Waves_Vector Wave_Test ### **Outputs** Interference # WDM OL Create module in DE domain This module creates WDM OL structure with empty wavelength inside. The ID number of WDM is given at input port. ### **Inputs** ID ### **Outputs** WDM_OL Figure 30: WDM OL Create Module # WDM_to_Single_OL module in DE domain This module converts WDM OL signal to Single OL signal. If the given WDM OL at "WDM_ OL" port is empty, the input signal will be discarded and no event at "Single_ OL" output port. If the given WDM OL contains more than one wavelength, the input signal will be ignored and no event at output port 5. Therefore, using this module must make sure that there is only one wavelength carrying in WDM OL. If only one wavelength in WDM OL input signal, the Single OL will be extracted from WDM OL and placed at "Single_OL" output port. Figure 31: WDM to Single OL Module # **Inputs** WDM_OL # **Outputs** Single_OL # 4.3 Components #### 4.3.1 OADM ### 1 Channel OADM Invert Filter module in DE domain This module performs optical add/ drop multiplexer (OADM) with adding and dropping one specified wavelength. This module exploits optical filters and invert filters to add and drop a specified wavelength. Adding and dropping frequency may or may not be the same frequency. If there are different, the adding wavelength is checked against input wavelengths whether it already exists. If adding wavelength already exists, the existing wavelength will be dropped by optical invert filter and the new wavelength signal will be replaced. In case of dropping wavelength, if the specified wavelength to be dropped does not exists in input signal, the empty WDM OL is created at "Drop_ OL". Refer to internal elements section for more details of each module. Figure 32: Channel OADM Invert Filter Module ### **Inputs** OL_In Add_OL Wavelength_Out Wavelength_In # **Outputs** Drop_OL OL Out ### 2 Channel OADM Invert Filter module in DE domain This module performs optical add/ drop multiplexer (OADM) with adding and dropping two specified wavelengths. This module exploits 1- Channel OADM module to add and drop specified wavelengths. Adding and dropping frequency may or may not be the same frequency. If there are different, the adding wavelength is checked against input wavelengths whether it already exists. If adding wavelength already exists, the existing wavelength will be dropped and the new wavelength signal will be replaced. In case of dropping wavelength, if the specified wavelength to be dropped does not exists in input. signal, the empty WDM OL is created at "Drop_ OL". Refer to "1 Channel OADM" module for more details. Figure 33: 2 Channel OADM Invert Filter Module #### **Inputs** OL_In Add_OL_1 Wavelength_Out_1 Wavelength_In_1 Add_OL_2 Wavelength_Out_2 Wavelength_In_2 #### **Outputs** Drop_OL_1 OL_Out Drop_OL_2 # 4 Channel OADM Invert Filter module in DE domain This module performs optical add/ drop multiplexer (OADM) with adding and dropping two specified wavelengths. This module exploits 2 Channel OADM module to add and drop specified wavelengths. Adding and dropping frequency may or may not be the same frequency. If there are different, the adding wavelength is checked against input wavelengths whether it already exists. If adding wavelength already exists, the existing wavelength will be dropped and the new wavelength signal will be replaced. In case of drop- ping wavelength, if the specified wavelength to be dropped does not exists in input signal, the empty WDM OL is created at "Drop_ OL". Refer to "2 Channel OADM" module for more details. Figure 34: 4 Channel OADM Invert Filter Module ### **Inputs** Add OL 1 Add_OL_2 Add_OL_3 Add_OL_4 OL_In Wavelength_In_1 Wavelength_In_2 Wavelength_In_3 Wavelength In 4 Wavelength Out 1 Wavelength Out 2 Wavelength Out 3 Wavelength_Out_4 ### **Outputs** Drop_OL_1 OL Out Drop_OL_2 Drop_OL_3 Drop_OL_4 ### 4.3.2 Couplers #### 2x1_Coupler module in DE domain This module couples two input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at input port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "2x1 Coupler Module" for more details. ## **Inputs** OL_In_1 OL_In_2 Figure 35: 2X1 Coupler Module ## **Outputs** WDM OL Out Parameters: Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Output Coupling Loss Coupling Ratio CH1 Coupling_Ratio_CH2 InitTime StopTime InterPulseTime #### 2x4 Coupler module in DE domain This module couples two input optical signals and splits coupled signal into four outputs corresponding to coupling and splitting ratio of each input port and output port. Input signal can be either single or WDM OL but output ports are always WDM OL. If only one signal at input port is received at particular time, this signal can pass through and split to outputs without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "2x1 Coupler Module" for more details. The splitting module is exploited from internal library; refer to "1x4 Splitting Module" for more details. Figure 36: 2X4 Coupler Module OL_In_1 OL_In_2 # **Outputs** OL Out 1 OL_Out_2 OL_Out_3 OL_Out_4 #### **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Coupling_Ratio_CH1 Coupling_Ratio_CH2 Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH4 Splitting_Ratio_CH2 Splitting_Ratio_CH3 Splitting_Ratio_CH4 InitTime StopTime InterPulseTime ## 2x8 Coupler module in DE domain This module couples two input optical signals and splits coupled signal into eight outputs corresponding to coupling and splitting ratio of each input port and output port. Input signal can be either single or WDM OL but output ports are always WDM OL. If only one signal at input port is received at particular time, this signal can pass through and split to outputs without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "2x1 Coupler Module" for more details. The splitting module is exploited from internal library; refer to "1x8 Splitting Module" for more details. Figure 37: 2X8 Coupler Module # **Inputs** OL_In_1 OL_In_2 # **Outputs** OL_Out_1 OL Out 2 OL_Out_3 OL Out 4 OL Out 5 OL_Out_6 OL_Out_7 OL_Out_8 ## **Parameters** Input_Coupling_Loss_CH1 Input Coupling Loss CH2 Coupling_Ratio_CH1 Coupling_Ratio_CH2 Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH4 Splitting_Ratio_CH2 Splitting_Ratio_CH3 Splitting Ratio CH4 Splitting Ratio CH5 Splitting_Ratio_CH6 Splitting_Ratio_CH7 Splitting_Ratio_CH8 Output Coupling Loss CH5 Output_Coupling_Loss_CH6 Output_Coupling_Loss_CH7 Output_Coupling_Loss_CH8 InitTime StopTime InterPulseTime float # 4x1 Coupler module in DE domain This module couples four input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at input port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "4x1 Coupler Module" for more details. Figure 38: 1X4 Coupler Module OL_In_1 OL_In_2 OL_In_3 OL_In_4 # **Outputs** WDM_OL_Out ## **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Output_Coupling_Loss Coupling_Ratio_CH1 Coupling_Ratio_CH2 Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 Coupling_Ratio_CH3 Coupling_Ratio_CH4 InitTime StopTime InterPulseTime # 4x4 Coupler module in DE domain This module couples four input optical signals and splits coupled signal into four outputs corresponding to coupling and splitting ratio of each input port and output port. Input signal can be either single or WDM OL but output ports are always WDM OL. If only one signal at input port is received at particular time, this signal can pass through and split to outputs without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "4x1 Coupler Module" for more details. The splitting module is exploited from internal library; refer to "1x4 Splitting Module" for more details. Figure 39: 4X4 Coupler Module ## **Inputs** OL_In_1 OL_In_2 OL In 3 OL_In_4 # **Outputs** OL Out 1 OL Out 2 OL_Out_3 OL Out 4 #### **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Coupling_Ratio_CH1 Coupling_Ratio_CH2 Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH4 Splitting_Ratio_CH2 Splitting_Ratio_CH3 Splitting_Ratio_CH4 Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 Coupling_Ratio_CH3 Coupling_Ratio_CH4 InitTime **StopTime** InterPulseTime # 8x1_Coupler module in DE domain This module couples eight input optical signals to WDM output signal. Input signal can be either single or WDM OL but output signal is always WDM OL. If only one signal at input port is received at particular time, this signal can pass through output without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "8x1 Coupler Module" for more details. ## **Inputs** OL In 1 OL_In_2 OL_In_3 OL_In_4 OL In 5 OL_In_6 OL_In_7 OL_In_8 #### **Outputs** OL_Out #### **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Output_Coupling_Loss Coupling_Ratio_CH1 Coupling_Ratio_CH2 Figure 40: 1X8 Coupler Module Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 Coupling_Ratio_CH3 Coupling_Ratio_CH4 Input_Coupling_Loss_CH5 Input_Coupling_Loss_CH6 Input_Coupling_Loss_CH7 Input_Coupling_Loss_CH7 Coupling_Ratio_CH5 Coupling_Ratio_CH6 Coupling_Ratio_CH7 Coupling_Ratio_CH8 InitTime StopTime InterPulseTime # 8x8 Coupler module in DE domain This module couples eight input optical signals and splits coupled signal into four outputs corresponding to coupling and splitting ratio of each input port and output port. Input signal can be either single or WDM OL but output ports are always WDM OL. If only one signal at input port is received at particular time, this signal can pass through and split to outputs without coupling. Each channel has coupling ratio which can be defined individually. Each input port has input coupling loss which can be defined in dB as well as output coupling loss. The coupling module is exploited from internal library; refer to "8x1 Coupler Module" for more details. The splitting module is exploited from internal library; refer to "1x8 Splitting Module" for more details. #### **Inputs** OL_In_1 OL_In_2 OL_In_3 OL_In_4 OL_In_5 OL_In_6 OL_In_7 OL_In_8 # **Outputs** OL Out 1 OL Out 2 OL_Out_3 OL_Out_4 OL_Out_5 OL_Out_6 OL_Out_7 OL_Out_8 Figure 41: 8X8 Coupler Module ## **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Coupling_Ratio_CH1 Coupling_Ratio_CH2 Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 Coupling_Ratio_CH3 Coupling_Ratio_CH4 Input_Coupling_Loss_CH5 Input_Coupling_Loss_CH6 Input_Coupling_Loss_CH7 Input_Coupling_Loss_CH8 Coupling Ratio CH5 Coupling_Ratio_CH6 Coupling_Ratio_CH7 Coupling_Ratio_CH8 Splitting_Ratio_CH1 Splitting Ratio CH2t Splitting_Ratio_CH3 Splitting_Ratio_CH4 Splitting_Ratio_CH5 Splitting Ratio CH6 Splitting_Ratio_CH7 Splitting_Ratio_CH8 Output_Coupling_Loss_CH1 Output Coupling Loss CH2 Output_Coupling_Loss_CH3 Output Coupling Loss CH4 Output_Coupling_Loss_CH5 Output_Coupling_Loss_CH6 Output Coupling Loss CH7 Output_Coupling_Loss_CH8 InitTime StopTime InterPulseTime #### 4.3.3 DEMUX # 1x2_DEMUX module in DE domain This module performs optical DEMUX by specified wavelengths to be demultiplexed. Optical input signal is split to number of output ports of DEMUX. Each split signal is passed through optical filter to select desired wavelength. By giving tuning wavelength, each output signal can be demultiplexed corresponding to those wavelengths. Refer to "Optical Filter" for more details how to use this module. Filtered signals from optical filter are WDM OL structure with only one wavelength. "WDM to Single_ OL" converts WDM OL to Single OL structure for outputs. Figure 42: 1X2 DEMUX Module WDM_OL_In Wavelength_1 Wavelength 2 #### **Outputs** Single_OL_Out1 Single_OL_Out2 #### **Parameters** Input_Coupling_Loss Tune_Delay Amount of time delay. Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 # 1x4 DEMUX module in DE domain This module performs optical DEMUX by specified wavelengths to be demultiplexed. Optical input signal is split to number of output ports of DEMUX. Each split signal is passed through optical filter to select desired wavelength. By giving tuning wavelength, each output signal can be demultiplexed corresponding to those wavelengths. Refer to "Optical Filter" for more details how to use this module. Filtered signals from optical filter are WDM OL structure with only one wavelength. "WDM to Single_ OL" converts WDM OL to Single OL structure for outputs. Figure 43: 1X4 DEMUX Module WDM_OL_In Wavelength_1 Wavelength_2 Wavelength 3 Wavelength_4 # **Outputs** Single_OL_Out1 Single_OL_Out2 Single_OL_Out3 Single_OL_Out4 #### **Parameters** Input_Coupling_Loss Tune_Delay # 1x8_DEMUX module in DE domain This module performs optical DEMUX by specified wavelengths to be demultiplexed. Optical input signal is split to number of output ports of DEMUX. Each split signal is passed through optical filter to select desired wavelength. By giving tuning wavelength, each output signal can be demultiplexed corresponding to those wavelengths. Refer to "Optical Filter" for more details how to use this module. Filtered signals from optical filter are WDM OL structure with only one wavelength. "WDM to Single_ OL" converts WDM OL to Single OL structure for outputs. #### **Inputs** WDM OL In Wavelength_1 Wavelength_2 Wavelength_3 Wavelength 4 Wavelength 5 Wavelength_6 Wavelength_7 ··· avelengui_/ Wavelength_8 #### **Outputs** Single OL Out1 Single_OL_Out2 Single_OL_Out3 Single_OL_Out4 Single_OL_Out5 Single OL Out6 Single_OL_Out7 Single_OL_Out8 Figure 441X8 DEMUX Module ## **Parameters** Input_Coupling_Loss Tune_Delay Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH4 Output_Coupling_Loss_CH5 Output_Coupling_Loss_CH6 Output_Coupling_Loss_CH7 Output_Coupling_Loss_CH8 #### 4.3.4 MUX ## 2x1_MUX module in DE domain This module performs optical MUX by specified wavelengths to be multiplexed. Each optical signal at input port (OL_ In1: OL_ In2) passes through optical filter to select wavelength to be multiplexed. Refer to "Optical Filter" for more details how to use this module. The filtered signals are multiplexed by using "2x1 Coupler" and place coupled signal at output port (WDM_OL_Out). Figure 45: 2X1 MUX Module ## **Inputs** OL_In1 OL_In2 Wavelength_1 Wavelength_2 #### **Outputs** WDM_OL_Out (datastruct:SystemDS:Root.Packet) #### **Parameters** Input_Coupling_Loss_CH2 Input_Coupling_Loss_CH1 Output_Coupling_Loss Tune_Delay Amount of time delay. ## 4x1_MUX module in DE domain This module performs optical MUX by specified wavelengths to be multiplexed. Each optical signal at input port (OL_ In1: OL_ In4) passes through optical filter to select wavelength to be multiplexed. Refer to "Optical Filter" for more details how to use this module. The filtered signals are multiplexed by using "4x1 Coupler" and place coupled signal at output port (WDM_ OL_ Out). Figure 46: 4X1 MUX Module OL_In1 OL_In2 Wavelength_1 Wavelength_2 OL_In3 OL_In4 Wavelength_3 Wavelength_4 ## **Outputs** WDM_OL_Out (datastruct:SystemDS:Root.Packet) #### **Parameters** Input_Coupling_Loss_CH2 Input_Coupling_Loss_CH1 Output_Coupling_Loss Tune_Delay Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 ## 8x1 MUX module in DE domain This module performs optical MUX by specified wavelengths to be multiplexed. Each optical signal at input port (OL_ In1: OL_ In8) passes through optical filter to select wavelength to be multiplexed. Refer to "Optical Filter" for more details how to use this module. The filtered signals are multiplexed by using "8x1 Coupler" and place coupled signal at output port (WDM_ OL_ Out). ## **Inputs** OL In1 OL_In2 OL In3 OL In4 OL_In5 OL In6 OL_In7 OL In8 OL_IIIO Wavelength_1 Wavelength_2 $Wavelength_3$ Wavelength_4 Wavelength_5 Wavelength 6 Wavelength_7 # Wavelength_8 Figure 47: 1X8 MUX Module #### **Outputs** WDM_OL_Out (datastruct:SystemDS:Root.Packet) #### **Parameters** Input_Coupling_Loss_CH1 Input_Coupling_Loss_CH2 Input_Coupling_Loss_CH3 Input_Coupling_Loss_CH4 Input_Coupling_Loss_CH5 Input_Coupling_Loss_CH6 Input_Coupling_Loss_CH6 Input_Coupling_Loss_CH7 Input_Coupling_Loss_CH8 Tune_Delay Output_Coupling_Loss # 4.3.5 Optical Switch # 1x2 Optical Switch module in DE domain This module routes incoming Optical Layer Data Structures (Single OL DS or WDM OL DS) to one of the two output ports. Routing decisions are made by an external control device and transmitted to the switch using Switch Control Data Structures. When a Switch Control DS is received it is checked to ensure that it is the correct type, if not intended for a 1x2 switch it is placed on the Incorrect Ctrl port and no action is taken. If the switch type is correct, the Control Vector is written into memory and used to configure the 1x2 Logical Switch primitive to route the Optical Layer Data Structures as desired. The routing configuration of a switch will remain the same until a Switch Control DS is received. The initial setup of the switch routes the input to the output 1 port. The switch does not support multicasting (the input can be switched to only one output). Figure 48: 1X2 Optical Switch Module OL_DS_In Switch_Ctrl_In (datastruct:OPN_Version_1_0:Root.Switch_Control) # **Outputs** OL DS Out1 OL DS Out2 Incorrect_Ctrl datastruct:OPN_Version_1_0:Root.Switch_Control ## **Parameters** Insertion_Loss_dB Switch_Delay #### Memories Switch_Setup_Vector # 1x4_Optical_Switch module in DE domain This module routes incoming Optical Layer Data Structures (Single OL DS or WDM OL DS) to one of the four output ports. Routing decisions are made by an external control device and transmitted to the switch using Switch Control Data Structures. When a Switch Control DS is received it is checked to ensure that it is the correct type, if not intended for a 1x4 switch it is placed on the Incorrect Ctrl port and no action is taken. If the switch type is correct, the Control Vector is written into memory and used to configure the 1x2 Logical Switch primitive to route the Optical Layer Data Structures as desired. The routing configuration of a switch will remain the same until a Switch Control DS is received. The initial setup of the switch routes the input to the output 1 port. The switch does not support multicasting (the input can be switched to only one output). Figure 49: 1X4 Optical Switch Module #### **Inputs** OL DS In Switch_Ctrl_In (datastruct:OPN_Version_1_0:Root.Switch_Control) #### **Outputs** OL DS Out1 OL_DS_Out2 OL_DS_Out3 OL DS Out4 Incorrect_Ctrl (datastruct:OPN_Version_1_0:Root.Switch_Control) #### **Parameters** Switch_Delay Insertion Loss dB #### Memories Switch_Setup_Vector ## 2x2_Optical_Switch module in DE domain This module routes Optical Layer Data Structures on the input ports (Single OL DS or WDM OL DS) to one of the two output ports. Routing decisions are made by an external control device and transmitted to the switch using Switch Control Data Structures. When a Switch Control DS is received it is checked to ensure that it is the correct type, if not intended for a 2x2 switch it is placed on the Incorrect Ctrl port and no action is taken. If the switch type is correct, the Control Vector is written into memory and used to configure the two 1x2 Logical Switch primitives to route the Optical Layer Data Structures as desired. The routing configuration of a switch will remain the same until a Switch Control DS is received. The initial setup of the switch routes input 1 to the output 1 port and input 2 to the output 2 port. The switch does not support multicasting (each input must be switched to one and only one output). Figure 50: 2X2 Optical Switch Module OL_DS_In1 OL_DS_In2 Switch Ctrl DS In (datastruct:OPN Version 1 0:Root.Switch Control) ## **Outputs** OL_DS_Out1 OL_DS_Out2 Incorrect_Ctrl (datastruct:OPN_Version_1_0:Root.Switch_Control) ## **Parameters** Switch_Delay $Insertion_Loss_dB$ #### Memories Switch_Setup_Vector (Root.IntVector) # 2x4_Optical_Switch module in DE domain This module routes Optical Layer Data Structures on the input ports (Single OL DS or WDM OL DS) to one of the four output ports. Routing decisions are made by an external control device and transmitted to the switch using Switch Control Data Structures. When a Switch Control DS is received it is checked to ensure that it is the correct type, if not intended for a 2x4 switch it is placed on the Incorrect Ctrl port and no action is taken. If the switch type is correct, the Control Vector is written into memory and used to configure the two 1x4 Logical Switch primitives to route the Optical Layer Data Structures as desired. The routing configuration of a switch will remain the same until a Switch Control DS is received. The initial setup of the switch routes input 1 to the output 1 port and input 2 to the output 2 port. The switch does not support multicasting (each input must be switched to one and only one output). #### **Inputs** OL DS In1 OL DS In2 Switch_Ctrl_In (datastruct:OPN_Version_1_0:Root.Switch_Control) #### **Outputs** OL DS Out1 OL_DS_Out2 OL DS Out3 OL DS Out4 Incorrect_Ctrl (datastruct:OPN_Version_1_0:Root.Switch_Control) Figure 51: 2X4 Optical Switch Module ## **Parameters** Switch_Delay Amount of time delay. Insertion_Loss Value in dB #### **Memories** Switch_Setup_Vector ## 4x4 Optical Switch module in DE domain This module routes Optical Layer Data Structures on the input ports (Single OL DS or WDM OL DS) to one of the four output ports. Routing decisions are made by an external control device and transmitted to the switch using Switch Control Data Structures. When a Switch Control DS is received it is checked to ensure that it is the correct type, if not intended for a 4x4 switch it is placed on the Incorrect Ctrl port and no action is taken. If the switch type is correct, the Control Vector is written into memory and used to configure the four 1x4 Logical Switch primitives to route the Optical Layer Data Structures as desired. The routing configuration of a switch will remain the same until a Switch Control DS is received. The initial setup of the switch routes input 1 to the output 1 port, input 2 to the output 2 port, input 3 to the output 3 port and input 4 to the output 4 port. The switch does not support multicasting (each input must be switched to one and only one output). ## **Inputs** OL_DS_In1 OL DS In2 OL_DS_In3 OL_DS_In4 Switch_Ctrl_In (datastruct:OPN_Version_1_0:Root.Switch_Control) # **Outputs** OL DS Out1 OL_DS_Out2 OL_DS_Out3 OL DS Out4 Incorrect_Ctrl (datastruct:OPN_Version_1_0:Root.Switch_Control) Figure 52: 4X4 Optical Switch Module ## **Parameters** Switch_Delay Insertion Loss dB #### Memories Switch_Setup_Vector # 4.3.6 Splitters ## 1x2_Splitter module in DE domain This module splits optical input signal to two output signals. Input coupling loss and output coupling loss are included with splitter. These losses are specified in dB of each port. The splitting ratio can be defined individually for each channel. The effects of splitting can be included by adding function blocks between input and output. For this version, "CrossWaveInterference", "OpticalBitErrorInjection" and "SplittingDelay" present the effects of splitting. Figure 53: 1X2 Splitter Module OL In datastruct:OPN_Version_1_0:Root.OpticalLayer # **Outputs** OL Out 1 datastruct:OPN_Version_1_0:Root.OpticalLayer OL_Out_2 datastruct:OPN_Version_1_0:Root.OpticalLayer #### **Parameters** Input_Coupling_Loss Output_Coupling_Loss_1 Output_Coupling_Loss_2 CH1_Ratio Splitter_Delay CH2_Ratio ## 1x4_Splitter module in DE domain This module splits optical input signal to four output signals. Input coupling loss and output coupling loss are included with splitter. These losses are specified in dB of each port. The splitting ratio can be defined individually for each channel. The effects of splitting can be included by adding function blocks between input and output. For this version, "CrossWaveInterference", "OpticalBitErrorInjection" and "SplittingDelay" 9 present the effects of splitting. Figure 54: 1X4 Splitter Module OL_In # **Outputs** OL_Out_1 OL_Out_2 OL Out 3 OL_Out_4 ## **Parameters** Input_Coupling_Loss CH1 Ratio CH2 Ratio CH3_Ratio CH4_Ratio Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH1 Output_Coupling_Loss_CH2 Output_Coupling_Loss_CH4 Splitter_Delay Amount of time delay Output_Coupling_Loss_CH1 Output Coupling Loss CH2 Output_Coupling_Loss_CH3 Output_Coupling_Loss_CH4 # 1x8_Splitter_Module module in DE domain This module splits optical signal either single or WDM OL from one input port (OL_ In) to eight output ports (OL_ Out_ 1: OL_ Out_ 8). The power level of each output channel is defined by individual splitting ratio (CH1_ Ratio: CH8_ Ratio). Figure 55: 1X8 Splitter Module # **Inputs** OL_In # **Outputs** OL Out 1 OL_Out_2 OL_Out_3 OL_Out_4 OL Out 5 OL_Out_6 OL_Out_7 OL_Out_8 # **Parameters** CH1_Ratio CH2_Ratio CH3_Ratio CH4_Ratio CH5_Ratio CH6 Ratio CH7Ratio CH8 Ratio #### 4.3.7 Other Modules ## Discrete_Tunable_Opt_Transmitter module in DE domain This module emulates the functionality of many real- world tunable optical transmitters in that it has a set number of discrete wavelengths to choose from. In its default configuration this module has four wavelengths to choose from (1528.77nm, 1529.55nm, 1530.33nm, 1531.12nm). The output wavelength is selected by placing a 0, 1, 2 or 3 (corresponding to the index of the wavelength in the vector of values) on the Change_ Transmit_ Wavelength port. The initial output wavelength is in the 0 position (1528.77nm). The number and value of available wavelengths can be altered (See Discrete Tunable Laser Source). All other aspects of this modules operation are identical to the Optical Transmitter. Data and Number of Bits are input and a Single Optical Layer Data Structure is created. # **Inputs** Data_In Change_Transmit_Wavelength Number of Bits # **Outputs** Single_OL_DS_Out datastruct:OPN_Version_1_0:Root.OpticalLayer.Single_OL #### **Parameters** DS_ID_Num_Start Switching_Time Opt_Power_Level Opt_Coupling_Loss Laser_Power_Fluctuation_Vector (Array of dB values which will be subtracted from Opt_Power_Level. The values represent one period of the waveform) Figure 56: Discrete Tunable Optical Transmitter Module # Optical Connector module in DE domain This module implements simple optical connector. Only one characteristic is included in this module 18; optical power loss or insertion loss which is defined in dB. Input port can be either Single OL or WDM OL structure. # **Inputs** In # **Outputs** Out ## **Parameters** Insertion_Loss **Figure 57: Optical Connector Module** # Optical Fiber module in DE domain This module performs an optical fiber link with specified length of fiber. This fiber includes some characteristics; power loss, propagation delay, cross wave interference. There is a case that propagation delay is greater than transmission delay so that more than one packet is traveling in the link. FIFO block is used to store packets which are traveling on the link. Refer to parameters setting for details. FIFO will overflow if number of packet on the link is greater than desired packets. The error message is displayed and simulation is aborted in case of FIFO overflow. ## **Inputs** OL_In # **Outputs** OL_Out #### **Parameters** Power_Loss_Per_Length Length Delay_Per_Length Maximum_Flits_in_Fiber Figure 58: Optical Fiber Module # Optical Filter module in DE domain This module performs optical filter by specified low and high boundary of filter. This filter is band- pass filter. Input signal can be either Single OL or WDM OL. The boundaries are tunable and there is a delay associated with wavelength tuning. Any wavelength which falls in boundaries or equal to boundaries is passed through output port. If any wavelength has power lower than power threshold, it will be dropped by "Low Power Drop" module. Figure 59: Optical Filter Module # **Inputs** OL_In Wavelength_L Wavelength_H ## **Outputs** OL_Out Low_Power #### **Parameters** Input_Coupling_Loss Tune_Delay Init_Tune_Low Init_Tune_High Power_Threshold Output_Coupling_Loss ## Optical_Invert_Filter module in DE domain This module performs optical invert filter by specified low and high boundary of filter. This filter is band-reject filter. Input signal can be either Single OL or WDM OL. The boundaries are tunable and there is a delay associated with wavelength tuning. Any wavelength which locates outside boundaries is passed through output port. If any wavelength has power lower than power threshold, it will be dropped by "Low Power Drop" module. Figure 60: Optical Invert Filter Module # **Inputs** OL_In Wavelengt h_L Wavelength_H #### **Outputs** OL_Out Low_Power #### **Parameters** Input_Coupling_Loss Tune_Delay Init_Tune_Low Init_Tune_High Power_Threshold Output_Coupling_Loss # Optical Power Amplifier module in DE domain This module performs optical power amplifier. Input signal can be either Single OL or WDM OL. Input coupling loss or insertion loss and output coupling loss are included in this module. Power gain is given in unit of dB. The effects of amplifier can be represented by adding functional blocks between input and output port. For this version, "Cross-WaveInterference" and "OpticalBitErrorInjection" are included for example. Figure 61: Optical Power Amplifier Module # **Inputs** OL_In ## **Outputs** OL Out #### **Parameters** Input_Coupling_Loss Output_Coupling_Loss Power_Gain ## Optical Transmitter module in DE domain This module creates a single optical wavelength with specified wavelength. Single OL is created corresponding to "Data" and "Bits" at input ports. Wavelength of signal is given by module parameter at "Laser Source". Refer to "Laser Source" for more details of each parameter. Figure 62: Optical Transmitter Module ## **Inputs** Data Bits # **Outputs** Single_OL #### **Parameters** Starting_ID_Number Laser_Wavelength Output_Coupling_Loss Laser_Power_Fluctuation_Vector Opt_Power_Level ## Optical Tunable Receiver module in DE domain This module performs optical receiver with tunable wavelength. Either Single OL or WDM OL can place at input port. To make receiver tunable, optical filter is exploited at front end. If selected wavelength has power less than power threshold in "Optical Filter" module, the warning message is given at console and this wavelength will be dropped. If input signal is Single OL structure, it will by pass through and extract field for data. Oth- erwise, only first index of WDM vector is extracted for data. If selected wavelength is undefined value of wavelength (default), it will be dropped before extracting data. Figure 63: Optical Tunable Receiver Module ## **Inputs** OL_In Tuning ## **Outputs** Data #### **Parameters** Input_Couping_Loss Tune_Delay Init_Tune_Wavelength Power_Threshold ## **Tunable Optical Transmitter module in DE domain** This module has the same basic functionality as the Optical Transmitter. It inputs Data and the Number of Bits and produces a Single Optical Layer Data Structure. The added functionality of this module is the ability to change the transmitting wavelength during simulation run time. An initial wavelength is set and remains until a new wavelength value in nanometers is placed on the Change_ Transmit_ Wavelength port. The actual wavelength switch over is delayed by the amount of time specified by the "Switching_ Time" parameter. ## **Inputs** Data_In Change_Transmit_Wavelength Number_of_Bits ## **Outputs** Single_OL_DS_Out #### **Parameters** Switching_Time Output_Coupling_Loss Initial_Wavelength Laser_Power_Fluctuation_Vector Opt_Power_Level Figure 64: Tunable Optical Transmitter Module # 4.3.8 TDM Components # TDM_DEMUX emux module in DE domain This module receives TDM data structures and places the data payload on the output which corresponds to the TDM data structures time slot (Time Slot 1 placed on Data1 output port,...) ## **Inputs** TDM_DS # **Outputs** Data1 Data2 Data3 Data4 Figure 65: TDM DEMUX Module # TDM MUX module in DE domain This module represents a Synchronous Time-Division Multiplexer. A single input port is sampled each time the Clock input is triggered. The module samples the ports in order (1,2,3,4,1...) and places the sampled input in a TDM data structure with a time slot identifier equal to the input port number (Data1->Slot 1). If a port does not have data to be sampled during its time slot no data structure is produced (the slot remains empty). Data can arrive at the ports asynchronously, but must wait for its slot to come around before being transmitted. Data can arrive no faster than 1/4 of the clock frequency. Faster data frequencies will experience loss (data will be overwritten before it can be transmitted). #### **Inputs** Clock Data1 Data2 Data3 Data4 #### **Outputs** Bits_Per_Slot ## **Parameters** Bits_per_Slot Figure 66: TDM MUX Module # TDM_Receiver module in DE domain This module searches for a TDM DS with a given time slot. The data payload is extracted and placed on the Data output port. The module is tunable, the received time slot can be changed from the Initial_Slot_ID by placing the integer of the new time slot on the Change_Slot_ID port. This device accepts Integer type Control Data Structures. ## **Inputs** Change_Slot_ID TDM_DS ## **Outputs** Data #### **Parameters** Elec_Power_Use Initial_Slot_ID Unit_Cost Figure 67: TDM Receiver Module #### Memories Current_Slot_ID # 4.3.9 Simulation Components ## **Control interface float** This module will check the ID field of a Control DS to see if it is intended for its component. If it is it will pass the float value to the component port. If not it will allow the Control DS to pass through. See the online documentation for individual components to see if they accept Control DS with float values. Figure 68: Control Interface Float Module #### **Inputs** Control_DS_In #### **Outputs** Control_DS_Out Float_value #### **Parameters** Component_ID # **Control Interface Integer** This module will check the ID field of a Control DS to see if it is intended for its component. If it is it will pass the integer value to the component port. If not it will allow the Control DS to pass through. See the online documentation for individual components to see if they accept Control DS with integer values. Figure 69: Control Interface Integer Module ### **Inputs** Control_DS_In ### **Outputs** Control_DS_Out Integer_Value ### **Parameters** Component_ID ### **Control Interface Vector** This module will check the ID field of a Control DS to see if it is intended for its component. If it is it will pass the vector value to the component port. If not it will allow the Control DS to pass through. See the online documentation for individual components to see if they accept Control DS with vector values. **Figure 70: Control Interface Vector Module** #### **Inputs** Control_DS_In ### **Outputs** Control_DS_Out Vector #### **Parameters** Component_ID #### **Control Unit** The Control Unit allows tunable components such as tunable receivers and optical switches to change there settings during a simulation. This is accomplished through the use of the Control Data Structure and a user defined ASCII file. The Control Unit works in conjunction with Control Interface Modules (see online documentation) which are connected to the component which is to be controlled and are given a unique ID that will allow them to search for Control Data Structures intended for their component. The type of Control Interface used (float, integer, or vector) must be compatible with the control data type of the device it is to control. For example an optical switch requires vector control information while an OADM requires float type. See the online documentation for individual components to see if they can accept control information and of what type. The ASCII file contains string representations of the Control Data Structures (See MLD manual for explanation of string representation). The first field of the DS contains the ID of the Control Interface Module that the control is intended for. The following three fields can contain vector, float and integer data respectively. (see Control Data Structure online documentation. It is essential that the proper type of control information is passed to the proper ID or errors will occur. The format of the ASCII file is as follows: LION_ver_1_0_r01:Root.Control{ID,vector,float,int} #### Sample File: LION_ver_1_0_r01:Root.Control{1,2:2 1,0.0,0} LION_ver_1_0_r01:Root.Control{5,0:0,1555.2,0} LION_ver_1_0_r01:Root.Control{9,0:0,0.0,4} The Control Unit will read one line each time it is triggered and produce a Control Data Structure which can be output into the system. In the above example the first trigger will read the first line and produce a DS intended for Control Interface Module #1 and will deliver a two element vector with elements 2 and 1. The second trigger will read the second line and produce a DS intended for Control Interface Module ID#5. It will pass the float value 1555.2. The third line will pass the integer value 4 to ID number 9. The number of total lines is limited only by simulation time. When the end of the file is reached DS will not be produced even if the Control Unit Module is triggered. Figure 71: Control Unit Module Note: Some ASCII editors add hidden characters which can disrupt the translation from string representation to actual data structure. The author suggests using the vi editor in the Linux environment or a similar editor. ### **Inputs** Trigger #### **Outputs** Ctrl_DS #### **Parameters** File_Path #### Memories Control_File_Pointer # Cost Display Module displays the total cost of the system which was tallied in the Cost global memory. This block must be present in all systems or an error will be generated during simulation. Figure 72: Cost Display Module ### Memories Cost ### **Electric Power Use Displayed** Module displays the total electrical power use (W) of the system which was tallied in the Power global memory. This block must be present in all systems or an error will be generated during simulation. ### Memories **Power Description** Figure 73: Electric Power Use Display Module # **Graph Single OL** Graphs all Fields of Single OL DS with respect to the time they arrive. Figure 74: Graph Single OL Module ### **Inputs** Single_OL_DS_In ## **Outputs** Single_OL_DS_Out (Graphed) # **Graph WDM OL** Graphs the Fields of a WDM OL DS. Figure 75: Graph WDM OL Module ### **Inputs** WDM_OL_DS_In #### **Outputs** WDM_OL_DS_Out (Graph) ### **Optical Power Probe** By placing instances of this module along a network path the attenuation experienced by a signal (Single_OL DS) moving along that path can be measured. The measurements are written to a user defined text file and can be imported into a spreadsheet program to produce a graph that represents the Power Budget of the link. Figure 76: Optical Power Probe Module The module scans incoming Data Structures for a certain Single Optical ID number. Upon finding the intended DS its optical power level is appended into a specified file. The power level is also placed on the Optical Power output port. Once the desired ID has been found all future data structures will be allowed to flow through the device without being processed. If the expected ID does not arrive by the end of the simulation a warning is given. Probes searching for different ID numbers can coexist in the same system as long as they write to different text files. To ensure that each probe produces an output the choice of ID number and the system configuration should be set to ensure that the data structure with that ID travels along the path to be studied. If successive simulations are run, the new data will be appended at the end of the old data in the text file. ## **Inputs** OL_In ### **Outputs** OL_Out #### **Parameters** File_Path Probe_Number ## Memories **Bypass** Power_Budget_Pointer # Triggered Waveform Waveform element output after n triggers used for Module testing. **Figure 77: Triggered Waveform Module** # Input Trigger ### Output Waveform_Element_out ### **Parameters** n_triggers # **WDM DS Text 4channel** This module can be used to view the text representation of up to four Single_OL data structure channels within a WDM data structure . Figure 78: WDM DS Text 4 Channel Module # **Inputs** WDM_OL # **Outputs** Text for data structures ### **Parameters** WL_1 WL_2 WL_3 WL_4 # 5. Sample System Models ## Pixel_Bus_Broadcast_and_Select system in DE domain This system represents a four channel broadcast and select network operating at 2.5Gbps. Each of the four channels is transmitted on a separate DWDM wavelength and then coupled onto a single fiber. The WDM signal is split, and the receivers can be tuned to receive any of the four channels. The data input into the system is a stream of integers indicating the channel. For instance, Transmitter 1 (channel 1) is given a stream of integer 1's as data, Transmitter 2 is given a stream if 2's, and so on. This is for demonstration purposes to make channel switching evident on the output graphs. In future the integer data will be replaced with more realistic data streams. The Control Unit determines which wavelength will be received by each optical receiver. It represents a centralized electrical control of the optical network. The Control Unit will read from a file named LION_ver_1_0_r01/wdm_broadcast_control_file which was imported along with the library. A new instruction will be sent to the system every 5 clocks. Please see the Control_Unit online documentation for more information on its use. The Power Probe modules will read the optical power level of the Single_OL data structure with ID#2 as it travels through the system. Its optical power values will be written into a text file called LION_ver_1_0_r01/wdm_broadcast_power_budget which was imported along with the library. After a simulation this text file can be imported into a spreadsheet program to produce a graphical representation of the optical power loss through a link. Please see the Optical_Power_Probe online documentation for more information. Figure 79: Pixel Bus Broadcast and Selection System Model System Outputs #### **Receiver Information:** Received Data (graph) Latency for each Single_OL received (text) Average Latency (text) Power Margin for each Single_OL received (graph) Average Power Margin (text) # **System Information:** Electrical Power Use (text) System Cost (text) Text File with Power Probe Values (file) Note: The Control Unit and Power Probe modules require the full pathnames of the LION_ver_1_0_r01/wdm_broadcast_control_file and LION_ver_1_0_r01/wdm_broadcast_power_budget respectively. A simulation error will be produced if the pathnames are not correct. # Pixel_Bus_WDM_Switched system in DE domain This system is similar to the WDM Broadcast and Select Pixel Bus. In place of the tunable optical receivers are fixed wavelength receivers. The channels are selected by the bank of demultiplexers and optical switches. This setup while requiring more equipment may be more economical due to the high cost of tunable optical receivers. The system operates at 2.5Gbps. The data input into the system is a stream of integers indicating the channel. For instance, Transmitter 1 (channel 1) is given a stream of integer 1's as data, Transmitter 2 is given a stream if 2's, and so on. This is for demonstration purposes to make channel switching evident on the output graphs. In future the integer data will be replaced with more realistic data streams. The Control Unit determines which channel will be received by each optical receiver by controlling to routing characteristics of the optical switches. It represents a centralized electrical control of the optical network. The Control Unit will read from a file named LION_ver_1_0_r01/single_wl_control_file which was imported along with the library. A new instruction will be sent to the system every 5 clocks. Please see the Control_Unit online documentation for more information on its use. Figure 80: Pixel Bus WDM Switched System Model System Outputs ### **Receiver Information:** Received Data (graph) Latency for each Single_OL received (text) Average Latency (text) Power Margin for each Single_OL received (graph) Average Power Margin (text) ### **System Information:** Electrical Power Use (text) System Cost (text) Note: The Control Unit module requires the full pathname of the LION_ver_1_0_r01/single_wl_control_file. A simulation error will be produced if the pathname is not correct. To correct the pathname simply highlight the Control unit block and alter the File_Path parameter with the location of the LION library in your system. #### **Pixel Bus Switched Network** In this system, a four channel pixel bus is created using a separate fiber for each channel (no WDM). This is done to explore the possibility of using lower cost multimode components. The signaling rate of the system is limited to 1.0 Gbps. A bank of splitters and optical switches are used to provide each receiver access to all of the channels. The data input into the system is a stream of integers indicating the channel. For instance, Transmitter 1 (channel 1) is given a stream of integer 1's as data, Transmitter 2 is given a strewn if 2's, and so on. This is for demonstration purposes to make channel switching evident on the output graphs. In future the integer data will be replaced with more realistic data streams. The Control Unit determines which channel will be received by each optical receiver by controlling the routing characteristics of the optical switches. It represents a centralized electrical control of the optical network. The Control Unit will read from a file named LION_ver_1_0_r01/single_wl_control_file which was imported along with the library. A new instruction will be sent to the system every 5 clocks. Please see the Control_Unit online documentation for more information on its use. System Outputs: Receiver Information: Received Data (graph) Latency for each Single_OL received (text) Average Latency (text) Power Margin for each Single_OL received (graph) Average Power Margin (text) System Information: Electrical Power Use (text) System Cost (text) Note: The Control Unit module requires the full pathname of the LION_ver_1_0_r01/single_wl_control_file. A simulation error will be produced if the pathname is not correct. Figure 81: Pixel Bus Switched System Model # The Development Team This library was developed by members of the OPN Group at the High Performance Computing and Simu; lation Lab (HCS) at the University of Florida, Gainesville. Members of the team included Ian Troxel, group leader, Vikas Aggarwal, Ramesh Balasubramanian, Chris Catoe, Nang Dilakanont, Mythili Muruganathan, John Wemicke and Jeremy Wills. Dr. Alan George was principal investigator for the project.