
MLDesign Technologies, Inc. www.mldesigner.com

A High-Fidelity DLX Processor Architecture
Model

The 32-bit DLX processor architecture is a generic RISC processor designed by Hen-
nessy & Patterson for pedagogical purposes. The DLX processor design abstracts many
features of general-purpose commercial processors, and is a well-understood computer ar-
chitecture. A diagram of the DLX architecture is shown below.

The basic DLX is a load/store architecture that features a 5-stage instruction pipeline in-
cluding: instruction fetch (IF), instruction decode (ID), execution (EX), memory access
(MEM) and write back (WB). The IF stage fetches 32-bit instructions from memory and
manages the program counter (PC). The ID stage decodes operands, fetches values from
registers, calculates branch conditionals and target addresses, detects pipeline hazards and
controls the flow of program execution. The EX stage performs instruction executions
for both integer and floating-point instructions and generates exceptions as needed. The
MEM stage accesses data memory for load/store instructions. Finally, the WB stage is
used to commit instructions, handle exceptions and store values to the register file.

The top-level diagram of a fully functional MLDesigner simulation model for the DLX
processor is shown below. In addition to the ISA and pipeline architecture, the system

1

Figure 1: DLX processor architectural schmatic

WBWBMEMMEMEXEXIDIDIFIF WBWBMEMMEMEXEXIDIDIFIF

MLDesign Technologies, Inc. www.mldesigner.com

also includes a high-fidelity model for the memory hierarchy including L1 cache and
main memory. The L1 instruction cache contains 256 64-byte lines (16KB) and is direct-
mapped and read-only. The L1 data cache contains 128 64-byte lines (8KB) and is di-
rect-mapped with a write-through, no-write allocate strategy. The data cache also main-
tains cache coherency between multiple processors using a directory-based, cache-coher-
ence protocol. Both instruction and memory caches were implemented in three different
styles: non-blocking with victim buffer, blocking with victim buffer, and blocking with-
out victim buffer. The victim buffer has 4 64-byte slots that use fully associative address-
ing. The model also allows for the option of running without L1 cache. Latency values
for reads and writes and penalty values for misses are fully programmable. A cache miss
requires that an entire block be fetched from the next lowest level in the memory hierar-
chy.

The processor model executes actual DLX machine code, typically converted from C
code by a DLX compiler, which is loaded directly into memory via a text file. The value
of all registers, memory locations and pipeline units can be displayed during the execu-
tion of the simulator. These values can be used to determine processor utilization,
pipeline latency and throughput, instruction mix, cache miss rate and cache miss penalty.
Verification of the DLX processor has been performed for all possible hazards and excep-
tions. Architecture tradeoffs for symmetric multiprocessor and cluster computer architec-
tures have been simulated using this processor model.

The simplicity of the top-level block diagram conceals a complex underlying hierarchical
structure. Parts of the model have as may as seven layers of hierarchy. The diagram
shows the structure of the CPU Memory controller module (located at the bottom of the
memory section in the diagram above.)

2

Figure 2: DLX architecture in MLDesigner

EXEX MEMMEMIFIF IDID WBWBEXEX MEMMEMIFIF IDID WBWB

MLDesign Technologies, Inc. www.mldesigner.com

3

Figure 3: CPU Memory Controller

I ==
C ?

Select
R/W*

Execute
In Order

1

2

Execute
In Order 1

2

Switch
on DLX
Bus Idle

Create
DLX Bus

Busy

Execute
In Order

1

2

Execute
In Order

1

2

Create
DLX Bus

Busy

Iconst

Iconst
Execute
In Order

1

2

Memory
Switch

DLX Bus
Type Switch

D

B

I

Instruction_Bus_input

Instruction_Bus_output

Data_bus_input Data_bus_output

System_bus_input

System_bus_output

Invalidate cache block?

(c) 2002, HCS Research Lab, University of Florida.
All Rights Reserved.

Figure 4: DLX model in execution wirh dynamic dispmay windows showing
instruction flow.

I ==
C ?

Select
R/W*

Execute
In Order

1

2

Execute
In Order 1

2

Switch
on DLX
Bus Idle

Create
DLX Bus

Busy

Execute
In Order

1

2

Execute
In Order

1

2

Create
DLX Bus

Busy

Iconst

Iconst
Execute
In Order

1

2

Memory
Switch

DLX Bus
Type Switch

D

B

I

Instruction_Bus_input

Instruction_Bus_output

Data_bus_input Data_bus_output

System_bus_input

System_bus_output

Invalidate cache block?

(c) 2002, HCS Research Lab, University of Florida.
All Rights Reserved.

MLDesign Technologies, Inc. www.mldesigner.com

The figure above shows the top-level view of the DLX model in the MLDesigner GUI as
the simulation completes. The four output windows in the upper left display the pipeline
data structure at the end of each processing stage. The parameter editor window (lower
left) shows the parameters used to configure the DLX system model. The “Bus Busy”
data structure for the DLX system model is opened in data structure editor window (upper
right) and the lower right window displays the members of that data structure.

The table below shows a portion of the assembly language instruction set that is executed
by the simulation. (The instruction set is read from a data file.)

00000000 80011f41
00000004 a0011000
00000008 84021f48
0000000c a4021100
00000010 ac021200
00000014 94031f48
00000018 a4031102
0000001c ac031204
00000020 98001f70
00000024 b8001300
00000028 9c021f90
0000002c bc021400
00000030 00222020
00000034 ac041208
00000038 00222821
0000003c ac05120c
00000040 00623022
00000044 ac061210
00000048 00623823

Figure 5 Instruction file for DLX model (partial)

Note: This model was developed by Nang Dilakanont at the HCS Lab, University of
Florida, Gainesville.

4

