
MLDesigner Documentation

Version 2.8

February 26, 2010

MLDesign Technologies, Inc.
2130 Hanover St
Palo Alto, CA 94306

support : www.mldesigner.com/support
http : www.mldesigner.com

http://www.mldesigner.com/support.php
http://www.mldesigner.com

-1-2 MLDesigner Version 2.8

MLDesign Technologies, Inc.
SOFTWARE LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS OF
THIS SOFTWARE LICENSE AGREEMENT AND ANY PROVIDED SUPPLEMENTAL LI-
CENSE TERMS (COLLECTIVELY ”SOFTWARE LICENSE AGREEMENT’) BEFORE US-
ING THIS LICENSED PROGRAM, THE USE OF WHICH IS LICENSED BY MLDesign Tech-
nologies, Inc. (MLD) TO ITS CUSTOMERS FOR THEIR USE AS SET FORTH BELOW.
OPENING THE SOFTWARE PACKAGE. INDICATES THAT YOU ACCEPT THE TERMS
OF THIS SOFTWARE LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS
AND CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT, RETURN THE ENTIRE
PACKAGE AND ITS CONTENTS TO MLDesign Technologies, Inc. OR TO THE LOCATION
WHERE YOU OBTAINED IT.

DEFINITIONS USED IN THIS SOFTWARE LICENSE AGREEMENT

Licensed Program means each executable software program and any updated, improved or oth-
erwise modified versions thereof, together with documentation and error corrections, furnished by
MLD pursuant to a Product Quotation or an order from Customer solely for Customer’s internal
purposes only; it may include software licensed by MLD from third parties.

Design means the representation of Systems, functions, or architectures, derived from or created
by Customer through the use of the Licensed Program in their various formats, including but not
limited to, equations, associated parameters, schematic diagrams, textual descriptions, system de-
scription languages, and netlists.

Commercial License means a paid annual subscription license to use the Licensed Program
whereby the Licensed Program is activated for use via a license key that will automatically de-
activate the Licensed Program at the end of the subscription period. You acknowledge that the
Licensed Program is enabled with a license key that will automatically deactivate the Licensed
Program at the end of the Subscription Period.

Evaluation License means a short-term free-of-charge license to test and evaluate the Licensed
Program for a period of 28 days. You acknowledge that the Licensed Program is enabled with a
license key that will automatically deactivate the Licensed Program at the end of the Evaluation
Period.

Intellectual Property Rights means all rights protected by patents, patent rights, copyrights, trade
secrets, service marks and trademarks, and all applications of those rights, in all countries in the
world.

Known 3rd Party Confidential Information means any information known by the user of this
Software Product to have been designated as confidential by a party other than the user or the
user’s employer.

Licensed Use means copying, running, or otherwise executing any portion of the Licensed Pro-

-1-3

gram including loading data into or displaying, viewing, or extracting output results therefrom for
the purpose of Design development, analysis, verification and other related activities. Licensed
Use excludes employing or executing any portion of the Licensed Program for the purpose of
violating Intellectual Property Rights or improperly discovering Known 3rd Party Confidential In-
formation.

1. LICENSE TO USE. MLDesign Technologies, Inc. (MLD) grants you a non-exclusive and
non-transferable license for the internal Licensed Use only of the accompanying Licensed Pro-
gram, under the terms of an Evaluation License or by the number of users and the class of com-
puter hardware for which the corresponding Commercial License fee has been paid.

2.RESTRICTIONS. Licensed Program is confidential and copyrighted. Title to Licensed Pro-
gram and all associated intellectual property rights is retained by MLD and/or its licensors. Ex-
cept as specifically authorized in any Supplemental License Terms, you may not make copies of
Licensed Program, other than a single copy of Licensed Program for archive purposes. Unless
enforcement is prohibited by applicable law, you may not modify, decompile, or reverse engi-
neer Licensed Program. You acknowledge that Licensed Program is not licensed or intended for
violating Intellectual Property Rights or improperly discovering Known 3rd Party Confidential In-
formation. You acknowledge that Licensed Program is not designed, licensed or intended for use
in the design, construction, operation or maintenance of any nuclear facility. MLD disclaims any
express or implied warranty of fitness for such uses. No right, title or interest in or to any trade-
mark, service mark, logo or trade name of MLD or its licensors is granted under this Agreement.

3. LIMITED WARRANTY. MLD warrants to you that for a period of ninety (90) days from the
date of purchase, as evidenced by a copy of the receipt, the media on which Licensed Program is
furnished (if any) will be free of defects, in materials and workmanship under normal use and that
Licensed Program will substantially conform to the specifications incorporated in this Software
License Agreement or in the documentation provided as part of the version of Licensed Program
provided to Customer upon purchase of a Commercial License. Except for the foregoing, Licensed
Program is provided ”AS IS”. Your exclusive remedy and MLD’s entire liability under this limited
warranty will be at MLD’s option to replace Licensed Program media or refund the fee paid for
Licensed Program.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT, ALL EX-
PRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUD-
ING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO
EVENT WILL MLD OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED, REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE LICENSED PRO-
GRAM, EVEN IF MLD HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
In no event will MLD’s liability to you, whether in contract, tort (including negligence), or other-

-1-4 MLDesigner Version 2.8

wise, exceed the amount paid by you for Licensed Program under this Agreement. The foregoing
limitations will apply even if the above stated warranty fails of its essential purpose.

MLDesign Technologies’ MLDesigner Licensed Program incorporates software code and docu-
mentation derived from the ”Classic” Ptolemy software which is Copyright (c) 1990-1998 by The
Regents of the University of California. Such derivative use is permitted with the condition that
the following two paragraphs be included with each copy. These paragraphs are hereby incorpo-
rated into this MLD Software License Agreement.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN ”AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

The following paragraphs are included in accordance with the Apache Software license agreement
Copyright c©1999 The Apache Software Foundation. All rights reserved.

This product includes software developed by the Apache Software Foundation
http://www.apache.org/

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6. Termination. This Agreement is effective until terminated. You may terminate this Agreement
at any time by destroying all copies of Licensed Program. This Agreement will terminate immedi-
ately without notice from MLD if you fail to comply with any provision of this Agreement. Upon
Termination, you must destroy all copies of Licensed Program.

7. Export Regulations. All Licensed Program and technical data delivered under this Agreement

-1-5

http://www.apache.org/

are subject to US export control laws and may be subject to export or import regulations in other
countries. You agree to comply strictly with all such laws and regulations and acknowledge that
you have the responsibility to obtain such licenses to export, re-export, or import as may be re-
quired after delivery to you.

8. U.S. Government Restricted Rights. If Licensed Program is being acquired by or on behalf
of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier),
then the Government’s rights in Licensed Program and accompanying documentation will be only
as set forth in this Agreement; this is in accordance with 48 CFR 227.7201 through 227.7202-4
(for U.S. Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for
non-DOD acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by the laws of the
State of California and accompanying regulations. No choice of law rules of any jurisdiction will
apply.

10. Severability.If any provision of this Agreement is held to be unenforceable, this Agreement
will remain in effect with the provision omitted, unless omission would frustrate the intent of the
parties, in which case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and MLD relating to its
subject matter. It supersedes all prior or contemporaneous oral or written communications, pro-
posals, representations and warranties and prevails over any conflicting or additional terms of any
quote, order, acknowledgment, or other communication between the parties relating to its subject
matter during the term of this Agreement. No modification of this Agreement will be binding,
unless in writing and signed by an authorized representative of each party.

Installation of this license file signifies agreement with the MLDesign Technologies Software Li-
cense Agreement provided with this file and with the Licensed Product.

For inquiries please contact:
MLDesign Technologies, Inc.
2130 Hanover St.
Palo Alto, CA 94306

February 2002

-1-6 MLDesigner Version 2.8

Preface

Mission Level Design Concept

What is MLDesigner?

MLDesigner is a software system for the design of missions, systems, products, and chips. Its
multi-domain simulator for the first time permits the seamless integration of the design flow from
mission/operational level to implementation handoff and test of complex designs. The design flow
may include,

• Mission/Operational level design tradeoff

– Modeling and simulation of dynamic Use Cases
– Mission environment (e.g., terrain, channel models)
– Operation modeling (e.g., operational models, human input devices, human output

devices)
– Test of complex designs at mission/operational level

• System level design tradeoff

– System design
– Computer architecture and distributed processing system design
– Communication network design
– Embedded systems design
– Performance tradeoffs of designs

• Functional level design tradeoff

– Algorithm design
– Implementation tradeoff
– Hardware/Software partitioning

You can use MLDesigner for design and analysis of a broad range of applications, from complex
systems like mobile/fixed communication networks, satellite communication/navigation/observa-
tion system design, performance and architecture tradeoff of electronic systems and chips, and
automotive navigation/communication system design to simple logic design.
MLDesigner consists of

• Multi-document graphical Editor, including Parameter Editor to create, edit and store graph-

Preface

ical models of your system

• PTCL command environment to define complex systems that are too large to be defined by
a graphical block diagram editor and for parameter tradeoffs

• Animation and plotting system to analyze simulation results and performance measures

• Integrated multi-domain simulators, including debugging animators

– Discrete Event (DE) simulator
– Finite State Machine (FSM) simulator
– Continuous Time/Discrete Event (CTDE) simulator
– Synchronous Data Flow (SDF) simulator
– Boolean Data Flow (BDF) simulator
– Dynamic Data Flow (DDF) simulator
– High Order Function (HOF) simulator

• more than 1400 core library modules

• more than 260 example systems

The MLDesigner-SatLab interface gives MLDesigner access to SatLab’s mission simulations ca-
pabilities of mobile communication nodes and satellites, SatLab’s terrain data base system and
terrain based channel models and the SatLab Command Language (SCL) (similar to Ctrl-C and
Matlab) and it’s more than 450 functions (You got SatLab with MLDesigner).

You can construct a system model through the graphical editor or the PTcl command language.
You may specify the functionality of your modules by a hierarchical block diagram, a finite state
machine, a module defined in the C/C++ like PL language, or by a PTcl module definition. Multi-
domain simulation modules can be combined and simulated together. The simulation results may
be viewed through an animation view while the simulation is running and/or by the post-processing
graphical plots.

About this Document

The documentation department are continuously adapting this document in an attempt to keep you
up to date with the latest developments in MLDesigner. An updated copy of this document is
distributed with each new release of MLDesigner and a copy is posted to our FTP server.

Note: While every effort has been made to ensure the accuracy of this document, MLDesign
Technologies Inc. does not make any warranties with respect to this document. Any liability
for incidental or consequential damages as a result of availability or use of this document is
disclaimed.

If you have upgraded from an earlier version of MLDesigner please be sure to read the what-
snewx.x.pdf document found on the cd or on our web server at

ftp://mldesigner.com/MLDesigner/documents/.

-1-8 MLDesigner Version 2.8

ftp://mldesigner.com/MLDesigner/documents/

Preface

Structure of Document
The document is divided into three sections

• Modeling guide - Introduces you to the graphical user interface and walks you through
creating primitives, modules, and systems. You are also introduced to the domains available
in MLDesigner .

• Programming guide - For advanced users. A knowledge of C++ and Tcl/Tk is assumed.
• Domains - Detailed look at advanced domain issues.

Sections of this document are taken directly from the Ptolemy User’s manual. These sections
relate to domain issues and Ptolemy language constructs. Please read the Copyright c©information
in the Software License Agreement.
It should also be noted that MLDesign Technologies, Inc. does not necessarily offer support for all
domains described in this document. Refer to ch. 6.3 for information about unsupported domains.

-1-9

Contents

I Modeling Guide -1-3

1 First Steps with MLDesigner 1-1
1.1 Basic Terms . 1-1
1.2 Graphical User Interface . 1-3
1.3 Run a Demo Simulation . 1-6

1.3.1 Choose a System . 1-6
1.3.2 Create a Library . 1-6
1.3.3 Save Demo in the Created Library . 1-8
1.3.4 Explore and Run the Demo . 1-8

1.4 Build a Simple Model . 1-10
1.4.1 Create a Sub-library . 1-10
1.4.2 Build a Module . 1-11
1.4.3 Build a System . 1-15
1.4.4 Multiple Iterations and Parameter Sets 1-18
1.4.5 Xgraph Configuration . 1-19
1.4.6 Build a Primitive . 1-19

2 Modeling with MLDesigner 2-1
2.1 Understanding Environment Variables . 2-1
2.2 Graphical User Interface . 2-2

2.2.1 User Interface Structure . 2-2
2.2.2 Settings . 2-2
2.2.3 Graphical User Interface Filters . 2-11
2.2.4 Workspace . 2-11
2.2.5 Tree View . 2-11
2.2.6 Property Editor . 2-19
2.2.7 Console Window . 2-20
2.2.8 Using Menu Bar . 2-21
2.2.9 Using Toolbars . 2-31

2.3 Handling Models . 2-37
2.3.1 Creating New Models . 2-37
2.3.2 Copying Existing Models . 2-40
2.3.3 Creating Special Primitives . 2-41
2.3.4 Create Model from Source . 2-44

Contents

2.3.5 Open Existing Models . 2-45
2.3.6 Model Update . 2-46
2.3.7 Deleting Models . 2-46
2.3.8 Printing Models . 2-47
2.3.9 Exporting EPS . 2-50

2.4 Shared Libraries . 2-50
2.4.1 Exporting a Top Level Library to Shared Libraries 2-51
2.4.2 Export Libraries . 2-51
2.4.3 Import Libraries . 2-52
2.4.4 Environment Variables and Dynamic Referencing Mechanism 2-53
2.4.5 Set User Environment Variables . 2-54

3 Developing Models 3-1
3.1 Introduction . 3-1
3.2 Steps to Develop Models . 3-2
3.3 Modifying Model Properties . 3-3
3.4 Modeling Input/Output Ports . 3-5

3.4.1 Introduction . 3-6
3.4.2 Creating Ports . 3-8
3.4.3 Changing Port Properties . 3-8

3.5 Definition of Parameters . 3-11
3.5.1 Introduction . 3-11
3.5.2 Creating Parameters . 3-11
3.5.3 Deleting Parameters . 3-13

3.6 Adding Model Component Instances . 3-14
3.6.1 Add Model Instance . 3-14
3.6.2 Setting Text Label . 3-15
3.6.3 Placement of model instances . 3-16

3.7 Setting Parameters . 3-17
3.7.1 Changing Parameter Values . 3-18
3.7.2 Parameter Expressions . 3-18
3.7.3 Complex-valued parameters . 3-19
3.7.4 Fixed-point parameters . 3-19
3.7.5 Linking Parameters . 3-20
3.7.6 Inserting Comments in Parameters . 3-23
3.7.7 Using Tcl Expressions in Parameters 3-23
3.7.8 Using MATLAB and MATHEMATICA to Compute Parameters 3-26
3.7.9 Array parameters . 3-26
3.7.10 String Parameters . 3-27

3.8 Connecting Blocks . 3-28
3.9 Auto-Forking . 3-29

3.9.1 Relations without formal ports . 3-29
3.10 Using Buses and Delays . 3-32

3.10.1 Buses . 3-32
3.10.2 Delays . 3-33

3.11 Using Labels for Annotation . 3-34

ii MLDesigner Version 2.8

Contents

3.12 Color Settings . 3-35
3.13 Using Shared Elements . 3-36

3.13.1 Creating Shared Elements . 3-36
3.13.2 Setting Shared Model Elements . 3-36
3.13.3 Exporting Shared Model Elements . 3-36

3.14 Dynamic Instances . 3-38
3.14.1 Create a Dynamic Instance . 3-38
3.14.2 Example Tutorial . 3-38

3.15 Dynamic Linking . 3-39
3.15.1 Linked Objects and External Simulations 3-42
3.15.2 Permanently Linking Objects to MLDesigner at Startup. 3-42

3.16 Model Documentation . 3-43
3.16.1 Creating Documentation . 3-43
3.16.2 Browsing Documentation . 3-43

3.17 Source Code Editors . 3-45

4 Debugging and Analyzing Systems 4-1
4.1 Breakpoints . 4-1

4.1.1 The Breakpoints Console . 4-1
4.1.2 Unconditional Breakpoints . 4-2
4.1.3 Module Breakpoints . 4-3
4.1.4 Breakpoints in Dynamic Instances . 4-4
4.1.5 FSM Breakpoints . 4-5

4.2 Probes . 4-6
4.2.1 Probe Properties . 4-6
4.2.2 Probe Primitives . 4-8
4.2.3 Port Probes . 4-8
4.2.4 Probes on Memories and Events . 4-8
4.2.5 Creating User Defined Probes . 4-9
4.2.6 The DataNew Flag . 4-9
4.2.7 Probes on Dynamic Instances . 4-10

4.3 Argument Dependency Highlighting . 4-10
4.4 Compile with Debug Option . 4-10
4.5 Debugging With External Debugger . 4-11

5 MLDesigner Kernel 5-1
5.1 Models of Computation . 5-2
5.2 Mixing Models of Computation . 5-2
5.3 Simulation Domains . 5-3
5.4 Code Generation Domains . 5-5

6 Introduction to MLDesigner Domains 6-1
6.1 Foreword to the domain concept . 6-1
6.2 Supported domains . 6-2

6.2.1 Synchronous Data Flow (SDF) . 6-2
6.2.2 Higher-Order Functions (HOF) . 6-2

iii

Contents

6.2.3 Dynamic Data Flow (DDF) . 6-2
6.2.4 Boolean Data Flow (BDF) . 6-3
6.2.5 Discrete Event (DE) . 6-3
6.2.6 FSM Domain . 6-4
6.2.7 CTDE Domain . 6-4

6.3 Unsupported domains . 6-5
6.3.1 Synchronous Reactive (SR) . 6-5
6.3.2 Multidimensional Synchronous Data Flow (MDSDF) 6-5
6.3.3 Code generation (CG) . 6-6
6.3.4 Code generation in C (CGC) . 6-6
6.3.5 Code generation for the Motorola DSP56000 (CG56) 6-6
6.3.6 Code generation in VHDL (VHDL, VHDLB) 6-6

6.4 Summary of various domains . 6-7
6.5 Targets . 6-11

7 Simulation with MLDesigner 7-1
7.1 Generate Extern . 7-2

7.1.1 Generate C++ . 7-3
7.1.2 Generate PTcl Extern . 7-3
7.1.3 Execute on other Platforms . 7-6
7.1.4 Environment Variables . 7-6

7.2 Generate & Run Extern . 7-6
7.2.1 External Parameters . 7-7
7.2.2 Example . 7-7

7.3 Debug Mode . 7-8
7.3.1 Place a Breakpoint . 7-10
7.3.2 Unconditional Breakpoints . 7-10
7.3.3 Module Breakpoints . 7-10

7.4 Simulation with Parameter Sets . 7-11
7.5 Saving Simulation Results . 7-14

7.5.1 Write Simulation Results to the Console 7-14
7.5.2 Write Simulation Results to File . 7-14

7.6 Distributed External Simulations . 7-15
7.7 Simulation Statistics . 7-16

8 Plots, Graphs and Animation 8-1
8.1 Animation Using Tk Primitives . 8-1
8.2 Visualization Using 2D Plotting System . 8-4
8.3 Xgraph Configuration . 8-4

9 Modeling Using PTCL - The Ptolemy TCL Interpreter 9-1
9.1 Introduction . 9-1
9.2 Global information . 9-1
9.3 Commands for Defining Simulation . 9-2

9.3.1 Creating and deleting Systems . 9-6
9.3.2 Setting the domain . 9-7

iv MLDesigner Version 2.8

Contents

9.3.3 Creating instances of primitives and modules 9-7
9.3.4 Connecting primitives and modules 9-7
9.3.5 Connecting internal primitives and modules to the outside 9-8
9.3.6 Setting the value of parameters . 9-9
9.3.7 Setting the number of ports in a primitive 9-10
9.3.8 Defining new modules . 9-10

9.4 Showing the Current Status . 9-11
9.4.1 Displaying the known classes . 9-11
9.4.2 Displaying information on a the current module or other class 9-12

9.5 Running the Simulation . 9-12
9.5.1 Creating a schedule . 9-12
9.5.2 Run Length . 9-13
9.5.3 Continuing a simulation . 9-13

9.6 Undo Commands . 9-14
9.6.1 Resetting the interpreter . 9-14
9.6.2 Removing a primitive . 9-14
9.6.3 Removing a connection . 9-15
9.6.4 Removing a node . 9-15

9.7 Targets . 9-15
9.7.1 Available targets . 9-15
9.7.2 Changing the target . 9-15
9.7.3 Changing target parameters . 9-15
9.7.4 Pragmas . 9-16

9.8 Miscellaneous Commands . 9-16
9.8.1 Loading commands from a file . 9-16
9.8.2 Changing the seed of random number generation 9-16
9.8.3 Changing the current directory . 9-17
9.8.4 Dynamically linking new primitives 9-17
9.8.5 Top-level blocks . 9-18
9.8.6 Examining parameters . 9-18
9.8.7 Quitting the Interpreter . 9-18
9.8.8 Getting help . 9-18
9.8.9 Registering actions . 9-19

9.9 The Interface to MATLAB and MATHEMATICA 9-19
9.10 Definition of Shared Elements . 9-22

9.10.1 Defining Memories . 9-22
9.10.2 Defining Events . 9-23
9.10.3 Defining Resources . 9-23

9.11 Definition of Data Structure Types . 9-24
9.11.1 Defining Composite Data Structures 9-24
9.11.2 Defining Enumerations . 9-25
9.11.3 Handling Data Structures . 9-26

9.12 A Wormhole Example . 9-26
9.13 PTCL as Simulation Control Language . 9-30

9.13.1 Creation of PTCL Scripts . 9-30
9.13.2 Execute the Simulation . 9-34

v

Contents

10 Shared Model Elements 10-1
10.1 Introduction . 10-1
10.2 Memories . 10-1

10.2.1 Memory Modules . 10-2
10.2.2 Local Memory . 10-2
10.2.3 Shared Memory . 10-2
10.2.4 Global Memory . 10-3

10.3 Events . 10-3
10.4 Resources . 10-4

10.4.1 Introduction . 10-4
10.4.2 Quantity Resources . 10-8
10.4.3 Server Resources . 10-13

11 Import/Conversion of Models 11-1
11.1 Converting OCT Models . 11-1

11.1.1 Supported Oct types . 11-1
11.1.2 How to start conversion . 11-1
11.1.3 Estimated time vs. estimated number of models 11-1
11.1.4 Models that will be converted . 11-1
11.1.5 Converting or not . 11-2
11.1.6 Layout of converted models . 11-2
11.1.7 Changes . 11-2
11.1.8 Parameter list . 11-3
11.1.9 Inconsistencies in Oct . 11-3
11.1.10 Missing interface facets of modules 11-3
11.1.11 New library structure in MLDesigner 11-3

11.2 Converting BONeS Models . 11-5
11.2.1 Conversion Conventions . 11-5
11.2.2 Conversion Conventions For Models 11-5
11.2.3 Conversion Conventions For Data Structures 11-6
11.2.4 BONeS Conversion Assistant . 11-6
11.2.5 Troubleshooting . 11-7
11.2.6 Error Messages . 11-8
11.2.7 BONeS Categories . 11-16
11.2.8 BONeS Primitives . 11-37

11.3 COSSAP Conversion Tool . 11-53
11.3.1 Prerequisites and Limitations . 11-53
11.3.2 How to Convert COSSAP Project Libraries 11-53
11.3.3 The User Mapper File . 11-54
11.3.4 Prefer User Mapper Entries and Overwrite Existing Files 11-54
11.3.5 Reading Process . 11-55
11.3.6 Conversion Process . 11-57
11.3.7 Conversion of Schematics. 11-57
11.3.8 Model Definition File . 11-59
11.3.9 History . 11-61
11.3.10 Declarations . 11-61

vi MLDesigner Version 2.8

Contents

11.3.11 Functional code . 11-61
11.3.12 Dataset Handling Library . 11-61
11.3.13 Dataset Parameters . 11-61
11.3.14 EXIT FLAG . 11-62
11.3.15 Unsupported Features . 11-63
11.3.16 Parsing Model Definition File . 11-63
11.3.17 Conversion of Primitive Models . 11-64
11.3.18 Limitations with COSSAP Project Conversion 11-64
11.3.19 Input Dataset File Formats . 11-65
11.3.20 Troubleshooting Guide for Cossap Model Converter 11-67

12 Data Structure Management 12-1
12.1 Managing Data Structures . 12-1

12.1.1 Creating Data Structures . 12-2
12.1.2 Adding Composite Members . 12-3
12.1.3 Editing Composite Members . 12-4
12.1.4 Deleting Composite Members . 12-4

12.2 Managing Enumeration Elements . 12-5
12.2.1 Adding Enumeration Elements . 12-5
12.2.2 Editing Enumeration Elements . 12-5
12.2.3 Deleting Enumeration Elements . 12-5

12.3 Data Structure Handling Mechanism . 12-5
12.3.1 Overview of Data Structures . 12-6
12.3.2 Creating an Enumeration . 12-7
12.3.3 Creating a Vector . 12-8
12.3.4 Editing Existing Data Structures . 12-8
12.3.5 Import Libraries . 12-9
12.3.6 Data Structure string representation 12-10
12.3.7 Data Structure Types . 12-11

12.4 Data Structure Libraries . 12-13
12.4.1 DSHandling Library . 12-14
12.4.2 EnumOperations Library . 12-15
12.4.3 VectorOperations Library . 12-15

II Programming Guide 12-1

13 Designing Primitives 13-1
13.1 Introduction . 13-1
13.2 Definition of Primitive Interfaces . 13-2

13.2.1 Model Property Definitions . 13-3
13.2.2 Load Mode . 13-3
13.2.3 Input/Output Port Definitions . 13-4
13.2.4 Parameter Definitions . 13-4
13.2.5 Annotations . 13-5

13.3 Primitive Functionality Definition . 13-5

vii

Contents

13.4 Ptolemy Language Description . 13-6
13.4.1 Compiling Primitives . 13-6
13.4.2 Example . 13-7

13.5 Primitive Language Constructs . 13-8
13.5.1 Keywords in detail . 13-9
13.5.2 Writing C++ Code for Primitives . 13-22
13.5.3 Reading Inputs and Writing Outputs 13-22
13.5.4 Parameters . 13-27
13.5.5 Array Parameter . 13-28
13.5.6 Programming Examples . 13-31
13.5.7 Preventing Memory Leaks in C++ Code 13-37

13.6 Infrastructure for Primitive Definition . 13-39
13.6.1 Handling Errors . 13-39
13.6.2 I/O Classes . 13-40
13.6.3 String Functions and Classes . 13-45
13.6.4 List Classes . 13-49
13.6.5 Hash Tables . 13-51
13.6.6 Using Random Numbers . 13-53

14 Using Data Types 14-1
14.1 Scalar Numeric Types . 14-1

14.1.1 Complex Data Type . 14-2
14.1.2 Fixed-point Data Type . 14-4

14.2 Defining New Data Types . 14-15
14.2.1 Defining a New Message Class . 14-16
14.2.2 Use of the Envelope Class . 14-18
14.2.3 Use of the MessageParticle Class . 14-19
14.2.4 Use of Messages in Primitives . 14-20

14.3 Matrix Data Types . 14-23
14.3.1 Design philosophy . 14-23
14.3.2 PtMatrix Class . 14-24
14.3.3 Public Functions and Operators for the PtMatrix Class 14-24
14.3.4 Writing Primitives Using the PtMatrix Class 14-32
14.3.5 Future Extensions . 14-36

14.4 File and String Types . 14-36
14.4.1 File Type . 14-36
14.4.2 String Type . 14-37

14.5 Manipulating Particles of Type anytype . 14-38
14.6 Unsupported Types . 14-40

14.6.1 Sub-Matrices . 14-40
14.6.2 Image Particles . 14-44

15 Programming Using Data Structures 15-1
15.1 Initializing Data Structures . 15-1
15.2 Using Data Structures . 15-3

15.2.1 Generic Type Operations . 15-3

viii MLDesigner Version 2.8

Contents

15.2.2 Type Specific Interfaces . 15-3
15.3 When to Clone/Release Data Structures. 15-8
15.4 When is a data structure released? . 15-9
15.5 Compatibility Problems . 15-10
15.6 Known problems . 15-10

16 Using Tcl/Tk in Primitives 16-1
16.1 Writing Tcl/Tk Scripts for the TclScript Primitive 16-1

16.1.1 Create a New TclScript Special Primitive 16-3
16.1.2 The Tcl Script Explained . 16-5

16.2 Tcl Utilities Available to the Programmer . 16-8
16.3 Creating Primitives Derived from TclScript 16-13
16.4 Writing Tcl Primitives for DE Domain . 16-14

17 Domain Related Issues 17-1
17.1 SDF Domain . 17-1
17.2 DDF Domain . 17-2
17.3 BDF Domain . 17-6
17.4 DE Domain . 17-7

17.4.1 Programming Primitives in the DE Domain 17-7
17.4.2 Programming Examples . 17-18

III Domains 17-21

18 SDF Domain 18-1
18.1 Introduction . 18-1
18.2 Basic Data Flow Terminology . 18-1
18.3 Balancing production and consumption of tokens 18-2
18.4 Iterations in SDF . 18-3
18.5 Inconsistency . 18-3
18.6 Delays . 18-4
18.7 Targets . 18-4

18.7.1 Default SDF target . 18-4
18.7.2 The loop-SDF target . 18-6
18.7.3 SDF to PTCL target . 18-7

18.8 An overview of SDF Primitives . 18-7
18.9 Source primitives . 18-9

18.9.1 Floating Point Sources . 18-9
18.9.2 Fixed-point sources . 18-11
18.9.3 Complex sources . 18-11
18.9.4 Matrix Sources . 18-12

18.10Sink primitives . 18-12
18.10.1 Batch Plotting Facilities . 18-12

18.11Arithmetic primitives . 18-13
18.12Nonlinear primitives . 18-14

ix

Contents

18.12.1 Quantizers . 18-14
18.12.2 Math Functions . 18-15
18.12.3 Other Nonlinear Functions . 18-16

18.13Logic primitives . 18-17
18.14Control primitives . 18-18

18.14.1 Single-Rate Operations . 18-18
18.14.2 Multirate Operations . 18-18
18.14.3 Other Operations . 18-19

18.15Conversion primitives . 18-19
18.15.1 Complex data type formats . 18-20
18.15.2 Other data type formats . 18-20
18.15.3 Matrix Conversion Primitives . 18-21

18.16Matrix primitives . 18-22
18.16.1 Matrix-Vector Conversion . 18-22
18.16.2 Matrix operations . 18-23
18.16.3 Miscellaneous . 18-24

18.17Matlab primitives . 18-24
18.18Signal processing (DSP) primitives . 18-26

18.18.1 Filters . 18-26
18.18.2 Adaptive Filters . 18-28
18.18.3 Block Filters . 18-28
18.18.4 Vector Quantization . 18-29

18.19Spectral analysis . 18-30
18.19.1 Miscellaneous signal processing blocks 18-31

18.20Communication primitives . 18-32
18.20.1 Sources and Pulse Shapers . 18-32
18.20.2 Transmitter Functions . 18-32
18.20.3 Receiver functions . 18-33
18.20.4 Channel Models . 18-33

18.21Telecomm . 18-34
18.21.1 Conversion, Signal Sources, and Signal Tests 18-34
18.21.2 Touch tone Decoders . 18-34
18.21.3 Channel Models . 18-35
18.21.4 PCM and ADPCM . 18-36

18.22Spatial Array Processing . 18-36
18.22.1 Data Models . 18-36
18.22.2 Sensor and Antenna Models . 18-36
18.22.3 Doppler Effects . 18-37
18.22.4 Beamforming Methods . 18-37

18.23Image Processing Primitives . 18-37
18.23.1 Displaying images . 18-37
18.23.2 Reading images . 18-38
18.23.3 Color conversions . 18-39
18.23.4 Image and video coding . 18-39
18.23.5 Miscellaneous image blocks . 18-40

18.24Neural Networks . 18-41

x MLDesigner Version 2.8

Contents

18.25Tcl primitives . 18-42
18.25.1 Interactive Graphics Facilities . 18-42

18.26Overview of SDF Demos . 18-43
18.27Basic demos . 18-43
18.28Multirate demos . 18-44
18.29Communications demos . 18-45

18.29.1 Older communications demos . 18-46
18.30Digital signal processing demos . 18-46
18.31Sound demos . 18-47
18.32Image processing demos . 18-48
18.33Vector Quantization demonstrations . 18-49
18.34Fix demos . 18-49
18.35Tcl/Tk demos . 18-50
18.36Matrix demos . 18-50
18.37MATLAB Demos . 18-51

19 DDF Domain 19-1
19.1 Introduction . 19-1
19.2 The DDF Schedulers . 19-2

19.2.1 DDF Backward Scheduler . 19-3
19.2.2 The default scheduler . 19-3
19.2.3 The clustering scheduler . 19-4
19.2.4 The fast scheduler . 19-5
19.2.5 Lazy evaluation . 19-6

19.3 Inconsistency in DDF . 19-7
19.4 The default-DDF target . 19-7
19.5 An overview of DDF primitives . 19-8
19.6 An overview of DDF demos . 19-9
19.7 Mixing DDF with other domains . 19-10

20 BDF Domain 20-1
20.1 Introduction . 20-1
20.2 The default-BDF target . 20-2
20.3 An overview of BDF primitives . 20-2
20.4 An overview of BDF demos . 20-3

21 HOF Domain 21-1
21.1 Introduction . 21-1
21.2 Using the HOF domain . 21-2
21.3 The Map primitive and its variants . 21-2

21.3.1 Example . 21-3
21.3.2 MapGR and SrcGR primitive . 21-6
21.3.3 Setting parameter values . 21-6
21.3.4 Number of replacement blocks . 21-9
21.3.5 How the inputs and outputs are connected 21-9
21.3.6 A note about data types . 21-9

xi

Contents

21.4 Other higher-order control structures . 21-9
21.5 Statically evaluated recursion . 21-10
21.6 Bus manipulation primitives . 21-11

21.6.1 NOP Primitives . 21-12
21.7 An overview of the HOF primitives . 21-13

21.7.1 Bus manipulation primitives . 21-13
21.7.2 Map-like primitives . 21-14

21.8 An overview of HOF demos . 21-15
21.8.1 HOF demos in the SDF domain . 21-15
21.8.2 HOF demos in the DE domain . 21-16
21.8.3 HOF demos in the CGC domain . 21-17

22 DE Domain 22-1
22.1 Introduction . 22-1
22.2 The DE target and its schedulers . 22-1
22.3 Events and chronology . 22-2
22.4 Event generators . 22-2
22.5 Simultaneous events . 22-3
22.6 Delay-free loops . 22-4
22.7 Wormholes . 22-4

22.7.1 SDF within DE . 22-4
22.7.2 DE within SDF . 22-5
22.7.3 Timed domains within timed domains 22-6

22.8 DE Performance Issues . 22-7
22.9 DE Libraries . 22-8
22.10Source primitives . 22-8
22.11Sink primitives . 22-9
22.12Control primitives . 22-11
22.13Conversion primitives . 22-12
22.14Queues, servers, and delays . 22-13
22.15Timing primitives . 22-14
22.16Logic primitives . 22-15
22.17Networking primitives . 22-15

22.17.1 Cell creation and access . 22-16
22.17.2 Cell routing, control, and service . 22-16
22.17.3 Lost cell recovery . 22-17
22.17.4 Wireless network simulation . 22-17

22.18Miscellaneous primitives . 22-18
22.18.1 Hardware modeling . 22-18
22.18.2 Statistics and monitoring . 22-18

22.19Multi-Valued Logic in DE Domain . 22-19
22.20An overview of DE demos . 22-19
22.21Basic demos . 22-19
22.22Queues, servers, and delays . 22-21
22.23Networking demos . 22-21
22.24Miscellaneous demos . 22-22

xii MLDesigner Version 2.8

Contents

22.25Wormhole demos . 22-22
22.26Tcl/Tk Demos . 22-23

23 CTDE Domain 23-1
23.1 Purpose of the domain . 23-1
23.2 Introduction to the CTDE domain . 23-1
23.3 Continuous-Time Computation Models . 23-1

23.3.1 Computation model . 23-1
23.3.2 Signal Form . 23-1
23.3.3 Example: Spring-Mass system . 23-2
23.3.4 Modeling . 23-3
23.3.5 Simulation . 23-3
23.3.6 Limitations of purely continuous-time models 23-5

23.4 The Combined Continuous Time/Discrete Event Model of Computation 23-5
23.4.1 The CTDE Computational Model . 23-5
23.4.2 Model Structure . 23-7

23.5 Modeling in the CTDE domain . 23-8
23.5.1 Vectorial continuous signals . 23-8
23.5.2 Simulation Algorithm . 23-8

23.6 Example: Bouncing Ball-Model . 23-9
23.7 User-adjustable parameters . 23-10
23.8 The ODE solver . 23-10

23.8.1 Solver parameters . 23-10
23.9 The CTDE domain in mixed-signal simulations 23-11
23.10Current limitations . 23-12

24 FSM Domain 24-1
24.1 What is a Finite State Machine? . 24-1
24.2 The MLDesigner FSM Domain . 24-1
24.3 MLDesigner FSM Semantic . 24-2

24.3.1 Basic FSM Elements . 24-2
24.3.2 FSM Action Language . 24-8

24.4 FSM Execution Semantics . 24-15
24.4.1 Initialization . 24-16
24.4.2 Execution Steps . 24-16

24.5 Elevator Example . 24-17
24.5.1 Interface . 24-17
24.5.2 Execution . 24-17

24.6 The FSM Model . 24-18
24.6.1 FSM Model Interface . 24-18
24.6.2 FSM Model Design . 24-19
24.6.3 Current State Data Structure . 24-19
24.6.4 Current State Memory . 24-19
24.6.5 CurrentStateDS Property . 24-19
24.6.6 Internal Event Property . 24-20
24.6.7 Additional Code Property . 24-20

xiii

Contents

24.7 FSM Model Editor . 24-21
24.8 FSM Design Objects . 24-22

24.8.1 States . 24-22
24.8.2 Transitions . 24-23
24.8.3 Default Entrance Transitions . 24-23
24.8.4 Transition Labels . 24-23
24.8.5 Default Entrances . 24-23
24.8.6 Histories . 24-23

24.9 FSM Dialogs . 24-23
24.9.1 Action Dialog . 24-23
24.9.2 Event Expression Dialog . 24-24
24.9.3 Slave Model Dialog . 24-25

24.10FSM Design Check . 24-25
24.10.1 States . 24-25
24.10.2 Default Entrances . 24-26
24.10.3 Histories . 24-26

24.11FSM and Concurrency Domains . 24-26
24.11.1 FSM and DE . 24-26
24.11.2 FSM inside DE . 24-26
24.11.3 FSM outside DE . 24-27
24.11.4 FSM and SDF . 24-27
24.11.5 FSM inside SDF . 24-27
24.11.6 FSM outside SDF . 24-27
24.11.7 FSM inside FSM . 24-28

24.12Creating an FSM . 24-28
24.12.1 System Description . 24-28
24.12.2 Example . 24-29

24.13Backward Compatibility . 24-35
24.14ANSI C Code Synthesis . 24-36

24.14.1 Overview . 24-36
24.14.2 Generator Input . 24-36
24.14.3 Generator Output . 24-37
24.14.4 Limitations . 24-37
24.14.5 Code Generation Process . 24-41
24.14.6 Run-Time Environment . 24-43
24.14.7 Output Source Files . 24-45
24.14.8 Code Customization . 24-47
24.14.9 Code Debugging . 24-49
24.14.10Example . 24-50

25 NS2 Domain 25-1
25.1 Introduction . 25-1
25.2 MLDesigner and NS2 . 25-1

25.2.1 Modeling Networks with MLDesigner 25-1
25.2.2 About NS2 . 25-2
25.2.3 Linking MLDesigner and NS2 . 25-3

xiv MLDesigner Version 2.8

Contents

25.3 Working with the MLDesigner NS2 Domain 25-5
25.3.1 Getting Started . 25-5
25.3.2 Assembling NS2 Models to Build Simulations 25-6
25.3.3 Writing New NS2 Primitives . 25-14

26 Unsupported Domains 26-1
26.1 SR Domain . 26-1

26.1.1 Introduction . 26-1
26.1.2 SR concepts . 26-1
26.1.3 SR compared to other domains . 26-1
26.1.4 The semantics of SR . 26-2
26.1.5 Overview of SR primitives . 26-2

27 Code Generation Domains - unsupported 27-1
27.1 VHDL Domain . 27-1

27.1.1 Introduction . 27-1
27.1.2 VHDL Targets . 27-3
27.1.3 An Overview of VHDL Primitives . 27-7
27.1.4 An Overview of VHDL Demos . 27-8

27.2 CG Domain . 27-9
27.2.1 Introduction . 27-9
27.2.2 Targets . 27-10
27.2.3 Schedulers . 27-14
27.2.4 Interfacing Issues . 27-17
27.2.5 Dynamic constructs in CG domain . 27-18
27.2.6 Primitives . 27-21
27.2.7 Demos . 27-23

27.3 CGC Domain . 27-24
27.3.1 Introduction . 27-24
27.3.2 CGC Targets . 27-24
27.3.3 An Overview of CGC Primitives . 27-28
27.3.4 An Overview of CGC Demos . 27-31

27.4 CG56 Domain . 27-35
27.4.1 Introduction . 27-35
27.4.2 An overview of CG56 primitives . 27-35
27.4.3 An overview of CG56 Demos . 27-43
27.4.4 Targets . 27-46

27.5 C50 Domain . 27-48
27.5.1 Introduction . 27-48
27.5.2 An overview of C50 primitives . 27-48
27.5.3 Source primitives . 27-49
27.5.4 An overview of C50 Demos . 27-55
27.5.5 Targets . 27-56

xv

Contents

IV Appendix 27-61

A General A-1
A.1 System Requirements . A-1
A.2 Environment Variables . A-3
A.3 Valid File Names . A-3
A.4 Uninstall MLDesigner . A-4
A.5 Version Update Warning . A-4

B Support B-1
B.1 How to Contact Us . B-1
B.2 Reporting Problems/Bugs . B-1
B.3 Viewing the Online Documentation . B-1

C Frequently Asked Questions C-1
C.1 General Questions . C-1
C.2 Error Messages and Their Most Common Causes C-1
C.3 Segmentation Faults . C-1
C.4 Data Structures . C-1
C.5 Load Mode . C-2
C.6 Plotting Systems . C-2
C.7 Setting Environment Variables . C-2
C.8 ddd debugger and Red Hat . C-2
C.9 Linked Objects . C-2
C.10 Shared Libraries . C-2

D Answers to FAQ’s D-1
D.1 Answers for the General Questions . D-1
D.2 Error Messages and Their Causes . D-1
D.3 Segmentation Faults / System Crashes . D-2
D.4 Data Structures . D-2
D.5 Load Mode . D-2
D.6 Plotting Systems . D-3
D.7 Setting Environment Variables . D-3
D.8 Using ddd Debugger under Red Hat . D-5
D.9 Linked Objects . D-6
D.10 Shared Libraries . D-6

E Troubleshooting E-1
E.1 Closing complex models becomes slower and slower after simulations E-1
E.2 DHCP Client/License problem . E-1
E.3 Waiting for Users Lock . E-1
E.4 Distributed Simulation Timeout . E-2
E.5 ddd Debugger Problems . E-2
E.6 Compile Errors . E-3
E.7 Preserving the Order of Multiple Outputs in Priority Free Scheduler E-3
E.8 MLDesigner Does Not Start After the Splash Screen Disappears E-3

xvi MLDesigner Version 2.8

Contents

E.9 Red Hat Linux 9 . E-4
E.10 Red Hat Enterprise Linux 4 32 bit . E-5
E.11 Security-Enhanced Linux (SELinux) . E-5
E.12 VMWare Player . E-6
E.13 QClipboard::Unknown SelectionNotify . E-6
E.14 Value of MLD USER variable is lost . E-7
E.15 The license manager fails on a system with multiple NICs E-7
E.16 MySQL . E-7

F Abbreviations F-1

G Glossary G-1

H Bibliography H-1

I Index I-1

xvii

List of Figures

1.1 Embedded Model Instance . 1-2
1.2 The MLDesigner Graphical User Interface. 1-4
1.3 testPacket System . 1-7
1.4 The New Model dialog . 1-7
1.5 Comparative Packetized/Non Packetized Output of testPacket 1-9
1.6 New Model - Library Menu Item . 1-11
1.7 Complete Module MyAdderModule . 1-15
1.8 Complete System MyAdderSystem . 1-17
1.9 The Xgraph Plot with Cumulation=Paramsets 1-20
1.10 Simple Adder Primitive . 1-22

2.1 Settings Dialog . 2-2
2.2 Search Dialog . 2-12
2.3 Tree View Tabs . 2-12
2.4 Recognized physical file types . 2-13
2.5 Recognized physical file types . 2-13
2.6 Logical Reference Icons in the Library View 2-14
2.7 Tree View filter toolbar . 2-16
2.8 Tree View Context Menu Examples . 2-16
2.9 Property Editor example . 2-20
2.10 Simulation Properties Window . 2-21
2.11 File menu . 2-22
2.12 Edit menu examples . 2-24
2.13 Edit menu examples . 2-24
2.14 View menu . 2-30
2.15 Window menu . 2-30
2.16 Standard toolbar . 2-31
2.17 Tree View filter toolbar . 2-34
2.18 Editor toolbar . 2-35
2.19 Creation Dialog for the Example . 2-38
2.20 “Save as” Including Specials . 2-43
2.21 Create Special Primitive Dialog . 2-43
2.22 Create Special Primitive - Parameter Logic . 2-44
2.23 Update Model dialog . 2-46
2.24 Printed model example . 2-48
2.25 Print setup dialog . 2-48
2.26 Printer Configuration Dialog . 2-49

List of Figures

2.27 Export Top Level Library Dialog . 2-52
2.28 Import Top Level Library Dialog . 2-53
2.29 Library Structure and System . 2-54

3.1 Model properties of the example . 3-3
3.2 Select Primitive to Derive From . 3-5
3.3 Representation of port types in MLDesigner 3-7
3.4 Port property editor plane . 3-9
3.5 Example models after the creation of the ports. 3-10
3.6 Property editor for defining new parameters 3-11
3.7 Context menus for creating formal parameters 3-12
3.8 Context menu for deleting parameters . 3-13
3.9 Select model dialog . 3-15
3.10 Example models after the creation of the model instances 3-17
3.11 Model instance properties example . 3-18
3.12 Parameter Expression Dialog . 3-19
3.13 Parameter linking in the singen module . 3-20
3.14 Parameter settings for the example . 3-21
3.15 Parameter settings for the example . 3-22
3.16 Parameter settings for the example . 3-24
3.17 Example models after connecting the model instances 3-29
3.18 Single to Multi and Multi to Single Port . 3-30
3.19 Single to Many Multi Port . 3-30
3.20 Many Single to Single/Multi Ports . 3-30
3.21 Forks may Not be used in conjunction with Port Type inmulti 3-31
3.22 Example models after connecting the model instances 3-31
3.23 Example models after connecting the model instances 3-32
3.24 Add Text Label dialog . 3-34
3.25 Color Selection Dialog . 3-35
3.26 Model after colors are changed . 3-35
3.27 Property context menu for shared element . 3-37
3.28 Dynamic Instance of Xgraph in the DE domain 3-39
3.29 Linked Objects Dialog . 3-41
3.30 Example of Dynamic Linking . 3-42
3.31 Generated hypertext documentation . 3-44
3.32 Generated hypertext documentation . 3-44

4.1 Breakpoint Properties Window . 4-2
4.2 Context Menu in Breakpoints Console . 4-2
4.3 The Select Source Module dialog for Breakpoints 4-3
4.4 sinMod with singen#1 Model Instance . 4-4
4.5 Breakpoint Properties window and Select Source Models Dialog 4-5
4.6 Probe Properties Editor . 4-8

5.1 Interface between internal and external domains 5-3
5.2 Hierarchical Model Structure . 5-4
5.3 MLDesigner domains . 5-4

xix

List of Figures

5.4 Hierarchical system model structure. 5-6

7.1 Simulation Icons on the Toolbar . 7-1
7.2 Step Into Example . 7-2
7.3 Step Over Example . 7-2
7.4 Finish Example . 7-3
7.5 Additional controls in TclScript panel . 7-8
7.6 Simulation control window with Tk slider elements 7-9
7.7 Simulation control window with Tk slider elements 7-9
7.8 Breakpoint Properties Window . 7-10
7.9 Data Type Hierarchy . 7-12
7.10 Used Computers Dialog . 7-17

8.1 Sink primitive model components for animation 8-1
8.2 Model . 8-3
8.3 Animation . 8-3
8.4 XMgraph Configuration Syntax . 8-5
8.5 XMGraph example . 8-7

9.1 Model of the the wormhole example worm 9-29
9.2 Simulation result of the wormhole example 9-29
9.3 Model of the example sinMod . 9-30

10.1 CPU Demo Showing Linking of Resource Elements 10-6
10.2 Allocate and Free blocks . 10-9
10.3 Service block . 10-14
10.4 Modify SRM block . 10-19

11.1 Convert BONeS Model Dialog . 11-7
11.2 Convert COSSAP Dialog . 11-54
11.3 Log Entries after Reading a Project . 11-55
11.4 Missing Libraries Dialog . 11-56

12.1 Data Type Editor structure . 12-2
12.2 Add Member dialog . 12-3
12.3 Data structure member context menu . 12-4
12.4 Data Structure Member editor . 12-4
12.5 Data Type Selection for Input/Output Ports 12-6
12.6 Data Structure Selection for Input/Output Ports 12-7
12.7 Data Structure Editor dialog . 12-8
12.8 Data Structure Hierarchy . 12-10
12.9 Select Data Structure dialog . 12-12

13.1 Toolbar for primitive interface models . 13-2
13.2 Property Editor for primitive example . 13-4
13.3 Primitive editor . 13-6
13.4 Example of output of the plotting system using the XGraph class 13-41
13.5 Example of animated bar graph using the BarGraph class 13-43

xx MLDesigner Version 2.8

List of Figures

13.6 Random Number Generator Properties . 13-54

16.1 Examples of TclScript icons . 16-2
16.2 System model of TclScript demo . 16-2
16.3 Full path where TclScript.tcl is saved 16-4
16.4 Additional controls in tclRunControl panel 16-4
16.5 System model of TclScript demo . 16-6
16.6 Simulation control window for the TclScript demo 16-11

18.1 A simple connection of SDF primitives, used to illustrate the use of balance equa-
tions in constructing a schedule. 18-2

18.2 System Illustrating Iterations in the SDF Domain 18-4
18.3 Logic primitives in the SDF library. 18-17

19.1 A simple example used to illustrate the notion of an iteration 19-3
19.2 (a) The EndCase primitive waits on the control port. (b) The primitive fires when

data arrives on the control port (the value of the data is 0). (c) Now the primitive
waits for input to arrive on input port 0. (d) The primitive fires again when data
arrives on input port 0. (e) The data that arrived on input port 0 is transmitted by
the output port of the EndCase primitive. 19-6

21.1 An example of the use of the Map primitive to plot three different cosine pulses 21-4
21.2 The plot that results from running the system 21-5
21.3 A block diagram equivalent to the demo above, but without higher-order functions 21-5
21.4 A block diagram equivalent to the two demos above, except that the number of

instances can be specified by a parameter . 21-5
21.5 A block diagram equivalent to the last demo, except that the replacement blocks

are specified graphically . 21-6
21.6 A more complicated example using higher-order functions with the number of

replacement blocks graphically defined . 21-7
21.7 The plot created by running the system above 21-7
21.8 A recursive system, where the IfElse HOF primitive replaces itself with an instance

of the same system until its condition parameter gets to zero 21-11
21.9 System with BusMerge instances . 21-12
21.10The Nop primitive is used to create busses from individual connections, to break

busses down into individual lines and to break out multiportholes into individual
ports . 21-13

22.1 When DE primitives are enabled by simultaneous events, the choice of which to
fire is determined by priorities based on a topological sort. Thus if B and C both
have events with identical time stamps, B will take priority over C. The delay on
the path from C to A serves to break the topological sort. 22-3

22.2 When an SDF domain appears within a DE domain, events at the input to the SDF
subsystem result in zero-delay events at the output of the SDF subsystem. Thus,
the time stamps at the output are identically to the time stamps at the input . . . 22-5

xxi

List of Figures

22.3 A typical DE subsystem intended for inclusion within an SDF subsystem. When a
DE subsystem appears within an SDF system, the DE subsystem must ensure that
the appropriate number of output events are produced in response to input events.
This is typically accomplished with a “Sampler” primitive 22-6

23.1 A continuous-time signal . 23-2
23.2 Example: Spring-Mass System . 23-2
23.3 Spring-Mass Example: Simulation results . 23-3
23.4 Example: CTDE Model of the Spring-Mass system 23-4
23.5 A Discrete-Event signal . 23-6
23.6 Structure of a combined model . 23-6
23.7 The LimitedIntegrator primitive as example of a general hybrid block 23-7
23.8 Spring-Mass model using vectorial signals and a StateSpace Block 23-8
23.9 Bouncing Ball System Model . 23-9
23.10Bouncing Ball output . 23-9
23.11Plant Process model . 23-11
23.12Control System model . 23-12
23.13Plant process output graph showing the effects of the control system 23-12

24.1 Transition with Label . 24-4
24.2 An FSM Self Transition . 24-4
24.3 Default Entrance . 24-6
24.4 Recursive(*) and Static History symbols . 24-7
24.5 FSM Example, Simple Elevator . 24-17
24.6 Additional Icons for FSM models . 24-22
24.7 FSM Design Objects . 24-22
24.8 FSM Action Dialog with Sub-Dialogs . 24-24
24.9 Event Expression Dialog . 24-24
24.10Slave Model Dialog . 24-25
24.11ReflexGame2 System in the DE domain . 24-29
24.12game2 FSM#1 FSM . 24-31
24.13the GameOn slave module, in DE domain . 24-33
24.14rule1 FSM for GameOn . 24-34
24.15rule2 FSM for GameOn . 24-34
24.16The count module, in SDF domain . 24-35
24.17FSM Module . 24-36
24.18Code Generator Configuration Dialog . 24-42
24.19RTOS Timelines . 24-44
24.20Dynamic Memory Partition . 24-45
24.21Code Generator Output Files . 24-46
24.22Hardware/Software Architecture - Customization Layers 24-47
24.23LEGO Mindstorms Block Sorter Robot 24-51
24.24Block Sorter Modeling: Conveyor Belt FSM 24-52
24.25Block Sorter Modeling: Sorter FSM . 24-52
24.26Block Sorter Modeling: Controller FSM Module 24-53
24.27Block Sorter Simulation: System Model . 24-53

xxii MLDesigner Version 2.8

List of Figures

24.28Block Sorter Simulation: Control Panel . 24-54
24.29Block Sorter Simulation: 3D Visualization . 24-54

25.1 Hello World Example . 25-8
25.2 MLDesigner executing an NS2 Script . 25-10
25.3 Nam analyzing the Script-System . 25-11
25.4 The “Using Nam” system . 25-12
25.5 Nam output for the demo system . 25-12
25.6 DE Wormhole System . 25-13
25.7 NS2 Module inside the DE Wormhole system 25-13
25.8 XGraph results for the DE Wormhole system 25-13
25.9 Architecture of MLDesigner and NS2 . 25-14
25.10The Primitive Class Hierarchy . 25-20
25.11Architecture: sending primitive data to MLDesigner 25-24
25.12System: Port data transfer using Tcl . 25-25
25.13Architecture: sending user-defined data to MLDesigner 25-29
25.14System: GUI warnings, messages and errors 25-32
25.15The commands window ’Log’ tab window after ”GUI warnings, ...” was run . . 25-32

A.1 Version Update Warning . A-5

D.1 Generated hypertext documentation . D-4

xxiii

List of Tables

2.1 Default Settings Options . 2-10

3.1 Common properties for different model types 3-6
3.2 Possible data type combinations . 3-6
3.3 Possible data type combinations . 3-8
3.4 Parameter data types supported by MLDesigner 3-47
3.5 Colors defined for model instances . 3-48
3.6 Domains containing Merge and Fork Primitives 3-48

4.1 Probe Properties Editor . 4-7
4.2 Probe Methods . 4-9

6.1 Summary of various domains . 6-10
6.2 SDF Targets and Target Parameters . 6-13

7.1 generated files . 7-4
7.2 files in extern directory . 7-4
7.3 Permutation of Simulation with Three Step Parameters and Three Start Value . 7-13
7.4 Permutation of Simulation with Two Parameter Sets and Three Start Value . . . 7-14
7.5 Host registry for Distributed Simulations . 7-16

9.1 Summary of PTCL commands . 9-6
9.2 Commands for the MATLAB interface . 9-20
9.3 Commands for the MATHEMATICA interface 9-20

10.1 The chain of the linked resources in CPU Demo 10-5
10.2 Quantity Resource Attributes . 10-7
10.3 Server Resource Attributes . 10-8
10.4 Quantity Resource Attributes . 10-13
10.5 Server Resource Attributes . 10-20

11.1 Common Errors after BONeS Model Conversion 11-15
11.2 Address Mapping . 11-16
11.3 Arithmetic . 11-16
11.4 Arithmetic> Integer . 11-17
11.5 Arithmetic> Real . 11-18
11.6 Bitwise Operations> Integer . 11-18
11.7 Comparison . 11-19

List of Tables

11.8 Conversions . 11-19
11.9 Counters . 11-19
11.10DS Access/Modify . 11-20
11.11DS TYPE Operations . 11-20
11.12Delays . 11-20
11.13Execution Control . 11-21
11.14File Access . 11-22
11.15GotoGroup . 11-23
11.16GotoGroup . 11-23
11.17Logical . 11-24
11.18Loops . 11-24
11.19Memory Access> Global Memory . 11-24
11.20Memory Access> Linked Memory . 11-25
11.21Memory Access> Local Memory . 11-25
11.22Miscellaneous . 11-25
11.23Number Generators . 11-26
11.24Number Generators> Random . 11-27
11.25Quantity-Shared Resource . 11-27
11.26Quantity-Shared Resource> *Internals* . 11-27
11.27Queues . 11-28
11.28Queues> Components . 11-29
11.29Queues & Servers . 11-29
11.30Queues & Servers> *Internals* . 11-29
11.31SET Operations . 11-30
11.32Server Resource . 11-30
11.33Server Resource> *Internals* . 11-30
11.34Statistical> Batch . 11-31
11.35Statistical> General . 11-31
11.36Statistical> Histogram . 11-31
11.37Statistical> Histogram> *Internals* . 11-32
11.38Statistical> Misc . 11-32
11.39String Operations . 11-32
11.40Switches . 11-33
11.41Timers . 11-34
11.42Traffic Generators . 11-34
11.43Vector Operations> General . 11-35
11.44Vector Operations> Int Matrix . 11-35
11.45Vector Operations> Int Vector . 11-36
11.46Vector Operations> Real Matrix . 11-36
11.47Vector Operations> Real Vector . 11-37
11.48Table of BONeS primitives in alphabetical order 11-52
11.49Possible Errors During COSSAP Model Conversion 11-69
11.50Common Errors after COSSAP Model Conversion 11-70

13.1 Definition of models in MLDesigner . 13-2
13.2 Advantages of Modules, FSM models, and Primitives 13-3

xxv

List of Tables

13.3 Summary of most important primitive items 13-9
13.4 Summary of items that have subitems . 13-17
13.5 Summary of methods of class Error . 13-40
13.6 Summary of methods of class XGraph . 13-42
13.7 Summary of methods of class BarGraph . 13-43
13.8 Summary of methods of class Histogram 13-44
13.9 Summary of methods of class XHistogram 13-45
13.10Summary of String functions . 13-46
13.11Summary of Path search functions . 13-46
13.12Summary of methods of class StringList 13-47
13.13Summary of methods of class InfString 13-48
13.14Summary of methods of class StringListIter 13-49
13.15Summary of methods of class SequentialList 13-50
13.16Summary of methods of class Queue . 13-51
13.17Summary of methods of class Stack . 13-51
13.18Summary of methods of class HashTable 13-52
13.19Summary of methods of class TextTable 13-53
13.20Random Number Generation and Seed Value 13-54

15.1 Data structure Class Methods . 15-13

17.1 Summary of methods of class DEStar . 17-8
17.2 Summary of methods of class InDEPort . 17-13
17.3 Summary of methods of class OutDEPort 17-13
17.4 Summary of methods of class DERepeatStar 17-15

18.1 parameters for WaveForm primitive . 18-10

22.1 WaveForm capabilities . 22-9

23.1 ODE solvers . 23-10
23.2 ODE solver parameters . 23-11

24.1 FSM Semantic Limitations . 24-38
24.2 FSM Action Built-In Function Limitations (1) 24-39
24.3 FSM Action Built-In Function Limitations (2) 24-40
24.4 Data Type Limitations . 24-41
24.5 RTOS Porting Functions . 24-48
24.6 General Interface Configuration Functions . 24-49

A.1 General Requirements . A-1
A.2 Platform Dependent Requirements . A-2

E.1 Red Hat 9 Troubleshooting . E-5

-1-1

List of Tables

-1-2 MLDesigner Version 2.8

Part I

Modeling Guide

MLDesigner Modeling Guide

Version 2.8

February 26, 2010

MLDesign Technologies, Inc.
2130 Hanover St
Palo Alto, CA 94306

support : www.mldesigner.com/support
http : www.mldesigner.com

http://www.mldesigner.com/support.php
http://www.mldesigner.com

5

Chapter 1

First Steps with MLDesigner

1.1 Basic Terms
Model - An MLDesigner model describes the structure and behavior of a system or a part of the
system in the real world. A model can be realized either by a hierarchy of other models, see
fig. 1.1, or by programming language code and can consist of:

• Model instances
• Primitive source code
• Ports
• Relations
• Arguments

In MLDesigner the following model types are known:

• Primitive
• Module
• System
• Library

Model instance - A model instance is an instantiation of a model.

Primitive source code - The primitive source code describes the behavior of a model. It is defined
by Ptolemy language source code, a simplified C++.

Port - Input/output ports are used to connect model instances for exchanging data objects. A port
is called formal port, if it is part of a model, and it is known as actual port in case of a model
instance port.

Relation - A relation is the connection between ports.

Argument - An argument is either a parameter or a shared model element.

Parameter - Parameters are used to control the functionality of models. Formal parameters of
modules or primitives define the interface on embedding into other modules or systems. The cor-

1 First Steps with MLDesigner

XXXSystem

XXXPrimitive

XXXPrimitive

XXXPrimitive

XXXPrimitiveModule

XXXPrimitive

XXXPrimitive

Module

Figure 1.1: Embedded Model Instance

responding parameters that appear in instances of the model are called actual parameters.

Shared model element - So-called shared model elements are used to share information without
exchanging data. Shared elements are memories, events and resources. The terms formal and
actual are used accordingly to formal/actual parameters and ports.

Primitive - A primitive is the lowest level model in MLDesigner , with functionality defined using
the Ptolemy language containing C++ code fragments. The model part of a primitive defines its
external interface, whereas the primitive source code written in Ptolemy defines the behavior of the
primitive. Primitives can have input/output ports and arguments for interfacing. FSM primitives
are a special type of primitive model. In contrast to normal primitives, the functional model of an
FSM primitive is described by the FSM model.

Module - A module is a model made up of model instances. Like primitives, modules can have
input/output ports as well as arguments for interfacing. A module can be a simple structure with
one level or a hierarchical structure with more levels of module or primitive instances.

System - A system is the top-level model and consists of a number of primitive or module in-
stances. A system model does not have any input/output ports and cannot be instantiated in other
models. Defined parameters are used to parameterize the system model. The system model defines
the target used for the execution of the system as well as the target parameters. Target parameters
are used to parameterize the target. In MLDesigner systems are models, which are executable.

Library - A library is not really a model, but the MLDesigner model mechanism is used to group
different models. Since the model mechanism is used for the definition of libraries, they can be

1-2 MLDesigner Version 2.8

1.2 Graphical User Interface

handled in the same way as all the other models. A library that is not a sub-library of any other
library is called top-level library and is placed in a model base. An independent library is a
library that does not contain any model that requires resources like models or data structures from
another library.

Model base - A model base is used in MLDesigner as base for a number of dependent and inde-
pendent model libraries stored in a physical directory. In MLDesigner the following model bases
are known:

• MLD Examples
• MLD Experimentals
• MLD Libraries
• MLD Addons
• My Libraries
• Shared Libraries

Simulation - A simulation is the execution of a model containing shared model elements, modules
and primitives within a system. In MLDesigner only sytems are executable models. All elements
of the system must be connected or linked before the simulation can be executed. The simulation
produces results which are useful for analyzing the behavior of the model and all elements con-
tained therein.

Target - A target is an object that manages the execution of a simulation or code generation pro-
cess. Thus, for example, in code generation, the target would be responsible for compiling the
generated code and spawning the process to execute that code, if desired.

Data structure - A data structure in MLDesigner is a container for values of base type, vector,
enumeration, or composite data type.

1.2 Graphical User Interface
When MLDesigner opens you will see the MLDesigner’s graphical user interface (GUI) contain-
ing the following elements, refer fig. 1.2:

1. Menu Bar - with entries for the File, Edit, View, Window, and Settings menu.

2. Toolbars - The lower group of toolbars is extended when a model is opened in the Model
Editor. Active toolbar icons depend on the type of model selected in the Model Editor and
whether MLDesigner is in simulation mode or edit mode. In simulation mode run control
icons are visible on the toolbar. All toolbars are explained in detail in sec. 2.2

3. Tree View History - A combo-box containing a list of models last opened or used as in-
stances in other models. The number of models displayed in the list is determined in the
Settings Dialog under the History item of the Tree View category.

4. Tree View - The window with tabs to select the four views File (physical structure of model
base), Library (logical structure of model base), Model, and Search (use the right mouse
button to activate the context menu).

1-3

1 First Steps with MLDesigner

Figure 1.2: The MLDesigner Graphical User Interface.

1-4 MLDesigner Version 2.8

1.2 Graphical User Interface

The Tree View is used to create, open, and maintain your libraries, primitives, files, etc. (For
detailed information about these views see sec. 2.2).
Throughout this manual, the Library tab is used to navigate the libraries of primitives and
demos unless otherwise indicated. To see the physical location of the respective model, hold
the cursor over the entry in the Library tab and wait a second or so for the tool tip text to
display. The Library tab of the Tree View is also called Library View whereas the file tab
is usually called File View.

5. Parameter Set Window - Here you can create a new parameter set. You can run simulations
using preset values from more than one parameter set.
An example is described in sec. 7.4 in the Modeling Guide of MLDesigner Manual.

6. Property Editor - This is where you change or define the default properties of models
and ports. [P]arameters and [T]argets are given values, and information about the model
or model instance can be entered such as description and short description. The active tab
depends on the type of model instance selected in the Model Editor. When in Simulation
Mode with no system elements selected in the Model Editor, the Simulation Properties tab
is active.

7. Model Editor - That is your main work area where you build primitives, modules and
systems. Model Editor windows are arranged within the so-called modeling workspace
area. You can maximize your Model Editor windows so that the whole modeling workspace
area is occupied by exactly one Model Editor window.

8. Data Structure Editor - Here you can edit user defined data structures. Editable data
structures have a green icon exactly the same shape as the red icon. You must open a system,
module, primitive or library with write access before you can create a new data structure or
edit members of a data structure.

9. Data Structure Member Editor - It is part of the Data Structure Editor for creating, delet-
ing and modifying members of existing data structures.

10. Console Window - The Console Window has two tabs when you are in edit mode:
• The Command Console where Tcl and PTcl commands can be entered.
• The Log Console where a record of your actions is displayed and error messages or

warnings are printed. You can save the contents of the Console to a file or clear the
Console by selecting the appropriate menu option from the context menu.

Further two tabs appear when you are in simulation mode:
• The Breakpoints Console where you see a list of all breakpoints. Breakpoints are

useful for debugging systems and the list of breakpoints makes it easier for you to find
and edit them. You can add and remove breakpoints while in simulation mode. To
do so select Add Breakpoint or Remove Breakpoint from the context menu over the
relevant entry in the Breakpoints Console.

• The Progress Window where you can monitor the compile process and the progress
of the simulation measured as a percentage value.

Another tab, the Animation tab, appears if the Textual Animation icon on the toolbar is
checked. The port and model instance firings are printed to the console in this mode and
simulation is a lot slower.

1-5

1 First Steps with MLDesigner

1.3 Run a Demo Simulation
MLDesigner is shipped with a large selection of demo systems. There are a number of links to
demos in the Library View under MLD Examples. When you expand the + to the left of each
library item, you see an entry for all the modules contained within the system as well as an entry
for the system itself. Observe the different icons for the various elements i.e. Library, System,
Module, and Primitive.

Many more demos can be found in MLD Libraries/Demos sorted into their categories ac-
cording to domain. The following example demonstrates the procedure to follow if you want to
run a simulation. Once you are familiar with the steps needed to open and run simulations from
these libraries, you can explore the Demos.

NOTE: The File View shows the physical structure of MLDesigner‘s libraries where the Library�
View shows the logical structure of these libraries. The logical structure is merely a
structure of links to the physical location where the model element is saved. It is possible
to have a System appear in the Library View in more than one location with the same
logical name or in the same location with a different name. You may however not have
models with the same physical name in the same location.

For demonstration purposes we will choose a system, copy it to a user library, run a simulation,
change some parameters, perform another simulation and compare the results.

1.3.1 Choose a System
Proceed as follows:

1. Select the Library tab in the Tree View window. Expand MLD Libraries/Demos/DE
Demo/ Basic/ by clicking the + to the left of each library in the Tree View window. The
system testPacket shown in fig. 1.3 is an excellent example where we can see some of
the features offered by MLDesigner .

2. Double click the system to open the XML model in the Model Editor Window.

You will notice the values in the System Properties in Property Editor window (bottom left) are
not editable since the model is write-protected. When you click on a model instance in the Model
Editor Window, the Instance Properties tab is activated in the Property Editor window with all pa-
rameter values being grayed out. It is possible to run the simulation here with the default settings.
We want to change some parameters so you need to copy the system to a user library where you
have write permission. The first step is to create a top level user library as a container to hold your
work.

1.3.2 Create a Library
The standard libraries shipped with MLDesigner are write-protected, i.e., they are read-only and
you can only open them, but it is not possible to extend them. You must create a container where

1-6 MLDesigner Version 2.8

1.3 Run a Demo Simulation

Clock#1 Ramp#1 Packetize#1 UnPacketize#1VarServer#1 Packetized signal outputEiO 1

2

UniformFloatConst#1

A simple packet demo

Figure 1.3: testPacket System

you can save copies of existing primitives, modules or systems or alternatively create new models
in a read/write environment.

Figure 1.4: The New Model dialog

To create a new library proceed as follows:

1. Click File item from the main menu bar and choose New or click the corresponding tool
button New Model. A Create New Model dialog is displayed, see fig. 1.4.

2. Choose Library from the Type of Model drop-down menu. If the Create New Model
dialog pops up the first time, library should be selected already as default.

1-7

1 First Steps with MLDesigner

3. Specify the name of your library by setting Logical Name to First Steps. The logical
name can contain any character in contrast to the physical name.

4. Leave the Library field blank to create a top level library.

5. The Physical Name field is set automatically when you click in the next input field. If not
given manually, the physical name is derived from logical name by replacing all characters
different from letter, digit, or ’ ’ with an ’ ’. You can give the library a different physical
name to the logical name. The logical name appears in the Library View window and the
physical name in the File View window.

6. The Physical Location field is set automatically to $MLD USER.

7. Leave the Group Permissions and World Permissions as they are set by default. Using
these check boxes, you can normally control the access to your models for members of your
group and other users.

8. You have the opportunity to type a brief description for your library in the Description
input field. This text appears in the tool tip text when the cursor is placed over the Library
in the Tree View window and as an introduction for the online documentation which is
automatically generated.

9. Click OK button to create the library.

1.3.3 Save Demo in the Created Library
The next step is to save the open demo system in the newly created library. Click on the grey
background of the Model Editor with the open testPacket system. All menu options now
apply to the active Model Editor window. Activate the File menu on the menu bar and proceed as
follows:

1. Choose Save As. A Save As New Model dialog appears.

2. You need not change anything in this dialog. You must only select a library to save the
system in. Click the icon next to the input field Library. Choose the library First Steps
as a location to save the system. If you select a write protected location, an error message is
displayed.

3. Click OK button to save the model in the selected library.

4. The title bar of the Model Editor window changes to show the new location as $MLD USER/
First Steps/testPacket.

1.3.4 Explore and Run the Demo
You will notice that a number of fields in the System Properties in Property Editor window (bot-
tom left) are now editable, i.e., the text is no longer grey and italic. On the model level you can
change a number of settings like common model properties, descriptions, linked objects, target
parameters as well as set the default values for parameters.

Select the model instance Ramp#1 in the Model Editor window with a single mouse-click. No-
tice the Instance Properties tab becomes active in Property Editor window showing the settable

1-8 MLDesigner Version 2.8

1.3 Run a Demo Simulation

parameters value and step of the model instance Ramp#1. A double click on the model instance
opens the primitive at its original location. The title bar of the primitive Model Editor window
shows where the primitive is physically saved.

Notice that it is not possible to edit any property in the Primitive Properties tab of the built-in
primitive. Click on the input port to see the port properties. The type of data consumed by the
primitive is determined by the port type. You cannot change the characteristics of the built-in
primitive, but only the way the primitive behaves when the simulation is run.

Close the primitive Model Editor window and click the background of the testPacket system
in the Model Editor window.Click on the Switch to Simulation Mode button on the toolbar.

To run the simulation using the default settings click the Go button. The system is compiled and
executed and an XMgraph titled “Packetized signal output” displays showing the original signal
compared to the packetized signal, see fig. 1.5. The total Run Length is set to 50 with a Step
Increment of 2. Click on each model instance and look at the parameters that influence the output
of this system.

The model instance Packetize#1 waits until it has 5 events (maxLength) before firing. Notice
that the model instance VarServer#1 with serviceTime set to 1.0, can process 50 samples in
packages of 5 defined by the Packetize#1 model instance parameter maxLength.

original
output

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Packetized signal output

Figure 1.5: Comparative Packetized/Non Packetized Output of testPacket

We now want to change some parameters and run the simulation again.

1. Click on the gray background of the system. Adjust the property Run Length to 100 in the
Simulation Properties tab of the Property Editor (bottom left).

2. Click on the model instance Packetize#1 and set the parameter maxLength to 10 in the
Instance Properties tab of the Property Editor.

3. Click the Go button on the upper toolbar. The demo will start to execute.

Notice the difference in server time as a proportion of the total simulation time of the original
unpacketized output.

1-9

1 First Steps with MLDesigner

There are a few simulation control buttons on the toolbar that are not used because the simulation
is very quick. These icons are useful for longer simulation runs.

1. To interrupt the demo click the Pause button. Restart by clicking Continue. In interactive
mode the option to proceed one Step at a time is available. This is a useful feature, in
conjunction with Graphical Animation, when debugging systems or primitives.

2. To stop a simulation running click the Early End button. This calls the wrapup method
(see sec. 13.5.2) of all primitive models and all post processor results are displayed if enough
information has been generated and is available to generate the graphs or files (sinks) that are
present in the system. The Abort button ends the simulation and resets all default settings
in the Run dialog.

1.4 Build a Simple Model
This section will show you a variety of methods to create a simple model and run a simulation.
You should have created a library called First Steps which contains the copied demo system
testPacket. If not please go to sec. 1.3.2 and create a Library.

The main purpose of this exercise is to familiarize you with the basic functions of the different
elements of MLDesigner’s graphical user interface.

1.4.1 Create a Sub-library
As mentioned above a library in MLDesigner is used to hold all kind of models like systems,
modules, primitives, and sub-libraries. You can create a sub-library called MySubLibrary as
follows:

1. Click File from the main menu bar and choose New or click the corresponding tool button
New Model. A Create New Model dialog is displayed.

2. Choose Library from the Type of Model drop-down menu.

3. Specify the name for your library by setting Logical Name to MySubLibrary. The logi-
cal name can contain any character in contrast to the physical name.

4. Click the icon to the right of the Library field. Select First Steps from the selection
dialog. The new library becomes a sub-library of the one selected.

5. The Physical Name field is set automatically when you click in the next input field. If not
given manually, the physical name is derived from logical name by replacing all characters
different from letter, digit, or ’ ’ with an ’ ’. You can give the sub-library a different physical
name to the logical name. The logical name appears in the Library View window and the
physical name in the File View window.

6. The Physical Location field is set automatically to $MLD USER/First Steps.

NOTE: A sub-library is created by default as a sub-directory in within the directory of the�
library to which it belongs. That is, the physical hierarchy of libraries corresponds

1-10 MLDesigner Version 2.8

1.4 Build a Simple Model

always to directory structure. Even though you can change the physical location,
we do not recommend to change it.

7. You have the opportunity to type a brief description for your library in the Description input
field. This text appears in the tool tip text when the cursor is placed over the Library in the
tree view window and as an introduction for the online documentation which is automati-
cally generated.

8. Click OK button to create the library.

Figure 1.6: New Model - Library Menu Item

Another possibility to create a sub-library is to right-click on a existing library item in the Tree
View either in Library tab or File tab. Select the New Model context menu item. A sub-menu
opens by which you can invoke the creation of a model of given type in the library, see fig. 1.6.
Select the Library menu item to open the Create New Model dialog. The advantage of using the
context menu on an item in the Tree View to create a new model within a library is that all of the
relevant information is filled in the according input fields. You have only to specify the name of
the new model.

1.4.2 Build a Module
In this example we create a module that adds two input signals and scales the result by a constant
factor.

1.4.2.1 Create a New Module

Proceed as follows:

1-11

1 First Steps with MLDesigner

1. Click File from the menu line and choose New or click the tool button New Model (fig. 1.4).

2. Choose Module from the Type of Model drop-down menu.

3. Specify the name for your module by setting Logical Name to MyAdderModule.

4. Click the icon to the right of the Library field. Select MySubLibrary from the selection
dialog.

5. From the drop down menu Modeling Domain select SDF.

6. The Physical Name field is set automatically. You can change it if you want.

7. The Physical Location field is set automatically to $MLD USER/First Steps/MySub
Library.

NOTE: A module is created by default as a sub-directory in within the directory of the�
library to which it belongs. Even though you can change the physical location, we
do not recommend to change it.

8. You have the opportunity to type a brief description for your module in the Description
input field. This text appears in the tool tip text when the cursor is placed over the module
in the Tree View window and as an introduction for the online documentation which is
automatically generated.

9. Click OK to save the module in your library. When creation of the model is finished, the
new module will open automatically in a new Model Editor window as a grey square.

As for creating a new library, you can also create a module quickly by selecting the New Model -
Module context menu item after right-clicking on the library item in the Tree View.

1.4.2.2 Add Ports

You can create an arbitrary number of input and output ports. To create ports either use the appro-
priate tool buttons Add Input Port and Add Output Port, or use the shortcuts I for input port and
O for output port. Alternatively click Edit on the main menu bar and select the appropriate options.

For this example we need two input ports and one output port:

1. Select the Add Input Port button from the toolbar.

NOTE: Your pointer has switched to a different mode. Every time you click in the grey�
rectangle of your module in the Model Editor window which represents the bound-
ing box of your model, a port will be generated.

2. Click on the side of the grey rectangle (bounding box) in the Model Editor window to create
a new input port. It will be put near your cursor location. A second click creates a new input
port. You may have to drag the ports to a suitable position if they are on top of each other
for model instance. The ports Input1 and Input2 have been created.

3. Switch back to the default pointer mode by right mouse click or by clicking the Select Tool
icon.

1-12 MLDesigner Version 2.8

1.4 Build a Simple Model

4. You can drag the newly created port and move it anywhere in your module view using the
left mouse. The grey rectangle resizes automatically.

5. Select the Add Output Port button from the toolbar.

6. Click on the side of the grey rectangle (bounding box) in the Model Editor window to create
a new output port.

Another method to create new ports is to press <Control> and then click on an existing port you
wish to copy. You can now drag and drop the port you wish to duplicate.

When using the context menu option Add Input/Output Port your mouse pointer will not change
and one new port will be placed in the Model Editor window. The Edit menu works in the same
way as the context menu.

We now need to change the properties of each port.

1. Click on the first input port Input1. The Property Editor (in the lower left of your MLDe-
signer window) now displays the Port Properties of your port Input1.

2. Next to Data Type click on the anytype entry and change it to float.

3. You can change the name from Input1 if you like.

4. Repeat the procedure for Input2 and Output1 changing the Data Type to float for all
ports.

1.4.2.3 Add Model Instances

The next step is to create the model instances of required primitives of the system by dragging
them from the Tree View into the module. The module MyAdderModule should be open in the
Model Editor window and appears as a grey square with two input ports and one output port.

Continue as follows:

1. Go to the Tree View window.

2. Switch to the Library tab and press the + icon to the left of MLD Libraries. Expand the
library SDF Domain and the sub-library Arithmetic. You should see now the primitive
item Add.

NOTE: If you do not see any primitive item under the library Arithmetic, please check �
whether the Show Primitives toggle button is activated in the Tree Filter toolbar
directly above the Tree View.

3. Click on the Add primitive item with the left mouse and drag the primitive into the grey
square of the module MyAdderModule.

4. A Select Special Primitive dialog appears. Here you can select how many input ports
you want the Add primitive has. This is possible because the Add primitive in the SDF
domain can have an arbitrary number of input ports represented by a so-called multi-port.
Such a primitive can be specialized by specifying a certain number of input ports. Such

1-13

1 First Steps with MLDesigner

specializations are called special primitives. Please refer sec. 2.3.3 for detailed information
about special primitives and how to create them.
The Add primitive has a number of such specializations, select the entry Add.input=2
and click OK.

5. You now see the model instance Add with two input ports and one output port in the Model
Editor Window. The label reads Add.input=2#1 indicating this is model instance #1 of
Add.input=2.

The next step is to add the primitive Gain to your system. Proceed as follows:

1. Click the + icon of the library SDF/Arithmetic library and select the Gain primitive
in the list.

2. Drag and drop this primitive into the system Model Editor Window so that its input port is
near the output port of the model instance Add.input=2#1.

You now have all the elements needed for the module. The next phase is to connect the model
instances.

1.4.2.4 Connect Model Instances

You have two options when connecting ports. The first option is to double click the formal input
port Input1 of the module. The pointer changes to connection mode. Move the cursor towards the
first actual input port of the model instance Add.input=2#1. A line is traced behind the cursor.
You can go straight to the input port and complete the connection by a single mouse-click on the
port or you can draw a line with 90 degree corners. Move the cursor in connection mode till a
straight line appears and you are in the correct position where you would like to insert a 90 degree
turn. Click the left mouse once and move the cursor in the direction you want the line to move.
A single left click places an anchor or node where you can turn the corner. A single right click
reverts the connection back by one node. A single click on a port completes the connection and
the cursor returns to normal selection mode. If you want to revert back to normal selection mode
before a connection is complete, right click the mouse until all nodes are deleted and the cursor
image changes back to normal. Connect the formal input port Input2 with the second input of the
model instance Add.input=2#1, the output port of Add.input=2#1 with the input port of
model instance Gain#1, and the output of Gain#1 with the formal output port Output1.

You can also click once on the Connect icon and proceed exactly as described with the first
method. A single click of the mouse creates a node where you can draw a 90 degree corner and a
single click on a port completes the connection. In this case however, the cursor is still in connec-
tion mode. To change back to the normal selection tool click the Select Tool icon in the toolbar or
click on the model background with the right mouse button.

Your result should be similar to the one shown in fig. 1.7.

NOTE: Notice the drag corners shown if a model instance like Gain#1 is selected. You can�
grab a corner to resize the graphical representation of the model instance in the Model
Editor window.

1-14 MLDesigner Version 2.8

1.4 Build a Simple Model

Module: [file:$MLD_USER/FirstSteps/MySubLibrary/MyAdderModule/MyAdderModule.mml]

Sebastian Pohl - Fri Jun 25 2004 14:11:58

Add.input=2#1 Gain#1

Input1

Input2

Output1

Figure 1.7: Complete Module MyAdderModule

1.4.2.5 Add Parameter

We now need to add a parameter to the module. A parameter is used as a fixed value to change the
behavior of the model without recompiling it.

1. Make sure no port or model instance is selected in the module window. If needed, click
somewhere in the module window, without selecting any elements, to switch the property
editor back to the Module Properties. The Property Editor should have the first entry named
Logical Name with the name of your module MyAdderModule.

2. Right-click with the mouse somewhere in the Property Editor. Use the New Parameter
context menu item. The new parameter (indicated with a P icon) is now listed on the
bottom of the list. Click on the + icon to extend the parameter.

3. Click on the Name row and change the name of the parameter to ScaleFactor.

4. Change the Data Type row to float.

5. Change Value to 1.0

6. All other fields need not be changed.

1.4.2.6 Link Parameter

The next step is to link the actual parameter gain of the model instance Gain#1 to the formal
module parameter ScaleFactor. Click once on the model instance Gain#1 to activate the Instance
Properties tab in the Property Editor window. Activate the context menu in the gain field at the
bottom of the Instance Properties and choose Link to.. context menu item to open a list of
all parameters labeled with an P icon and global parameters labeled with a G icon. Choose
ScaleFactor from this list. A green arrow is inserted in this field indicating you have successfully
linked the actual parameter of a model instance to a formal parameter on the module (or system)
level.
Before closing the Model Editor Window , save the module by clicking on the Save button in the
toolbar.

1.4.3 Build a System
In this example we create a system with two sources, the module MyAdderModule to add the
two inputs from these sources, and a sink to plot the results of the addition.

1-15

1 First Steps with MLDesigner

1.4.3.1 Create a New System

Proceed as follows:

1. Click File from the menu line and choose New or click the tool button New Model (fig. 1.4).

2. Choose System from the Type of Model drop-down menu.

3. Specify the name for your system by setting Logical Name to MyAdderSystem.

4. Click the icon to the right of the Library field. Select MySubLibrary from the selection
dialog.

5. From the drop down menu Modeling Domain select SDF.

6. The Physical Name field is set automatically. You can change it if you want.

7. The Physical Location field is set automatically to $MLD USER/First Steps/MySub
Library.

NOTE: A system is created by default as a sub-directory in within the directory of the�
library to which it belongs. Even though you can change the physical location, we
do not recommend to change it.

8. You have the opportunity to type a brief description for your system in the Description
input field. This text appears in the tool tip text when the cursor is placed over the system
in the Tree View window and as an introduction for the online documentation which is
automatically generated.

9. Click OK to save the system in your library. When creation of the model is finished, the
new system model will open automaticallyas a grey square in a new Model Editor window.

As for creating a new library, you can also create a system quickly by selecting the New Model -
System context menu item after right-clicking on the library item in the Tree View.

1.4.3.2 Add Model Instances

The next step is to create the model instances of required primitives and modules of the system by
dragging them from the Tree View into the system. The empty system MyAdderSystem should
be open in the Model Editor window and appears as a grey square.

Continue as follows:

1. Go to the Tree View window.

2. Switch to the Library tab and press the + icon to the left of My Libraries. Expand the
library First Steps/MySubLibrary and select the module MyAdderModule that
we have built in sec. 1.4.2.

3. Drag and drop this module into the system Model Editor Window.

The next step is to add sources to your system. Sources are models that do not have input ports,
but one or more output ports at which they generate signals or events. Proceed as follows:

1-16 MLDesigner Version 2.8

1.4 Build a Simple Model

1. Click the + icon of the library SDF/Sources library and select the SawGen primitive in
the list.

2. Drag and drop this primitive into the system Model Editor Window. You need two sources,
so drag the SawGen primitive into the window again or use the Control key with left mouse-
click combination while dragging the first model instance Add.input=2#1 in the Model
Editor Window. Place the two primitives so that their output port is near the input ports of
the model instance MyAdderModule.

It is not possible to run a simulation unless the output of the system is processed by a sink primitive.
The Sinks library contains a collection of primitives that do exactly that. There are a number of
ways to deal with output data resulting from a simulation. The data can be:

• printed to a console or to a file,
• displayed in a graph of type Xgraph, XMgraph, XYgraph or TkBargraph or
• consumed by a BlackHole if the data is not useful.

Click the + of the library SDF/Sinks to see the graph primitives. Search for a primitive called
Xgraph and drag and drop it into the system Model Editor Window.
You now have all the elements needed for the system. The next phase is to connect the model
instances.

1.4.3.3 Connect Model Instances

Double click the output port of the first model instance SawGen#1. The pointer changes to con-
nection mode. Move the cursor towards the input port of the model instance MyAdderModule#1.
A line is traced behind the cursor. You can go straight to the input port and complete the con-
nection by a single mouse-click on the port or you can draw a line with 90 degree corners as de-
scribed in sec. 1.4.2.4. Connect the second model instance SawGen#2 and the second input of the
MyAdderModule#1 and the output of MyAdderModule#1 with the input of the Xgraph#1.

Your result should be similar to the system shown in fig. 1.8.

SawGen#1

SawGen#2

Xgraph#1MyAdderModule#1

Figure 1.8: Complete System MyAdderSystem

1-17

1 First Steps with MLDesigner

1.4.3.4 Export Parameters

In sec. 1.4.2.5 and sec. 1.4.2.6 we created a new formal parameter and afterwards we linked the
actual parameter of a model instance to it. Instead of this we can do it in only one step by using
the export mechanism.
We want to link parameter ScaleFactor of model instance MyAdderModule#1 to a new created
system parameter with the same name. Proceed as follows:

1. Click once on the model instance MyAdderModule#1 to activate the Instance Properties
tab in the Property Editor window.

2. Activate the context menu in the ScaleFactor field and choose Export.

The next step is to export parameter Increment of model instance SawGen#1 as system parameter
with a different name:

1. Click once on the model instance SawGen#1 to activate the Instance Properties tab in the
Property Editor window.

2. Activate the context menu in the Increment field and choose Export as...

3. Change the value of the field to SawIncrement and click the OK button.

Last we want to link parameter Increment of model instance SawGen#2 to the new created system
parameter SawIncrement:

1. Click once on the model instance SawGen#2 to activate the Instance Properties tab in the
Property Editor window.

2. Activate the context menu in the Increment field and choose Link to.. context menu item to
open a list of all parameters labeled with an P icon, global parameters labeled with a G
icon, and target parameters labeled with a T icon in the system.

3. Choose SawIncrement from this list.

Now, you can run the simulation. Click on the Simulate button in the toolbar. You can use the
default run settings seen in the Simulation Properties window (bottom left), or change the Run
Length entry to increase or decrease the run time. Press the Go button to run the simulation.

1.4.4 Multiple Iterations and Parameter Sets
It is possible to run simulation permutations using a combination of multiple iterations and a num-
ber of parameter sets.

We now want to run a simulation with two iterations. Click the Switch to Edit Mode button in
the toolbar before proceeding. Make sure no port or model instance is selected in the system win-
dow. If needed, click somewhere in the system window, without selecting any elements, to switch
the property editor back to the System Properties. Click on the ScaleFactor row at the bottom of
the System Propertiesand enter 1.0; 2.0. Start the simulation by clicking the Go button after
switching back to Simulation Mode. Two graphs display after the simulation is complete. You
can add more values separated by a semicolon and run the simulation again. Every entry indicates

1-18 MLDesigner Version 2.8

1.4 Build a Simple Model

a new iteration or the whole simulation run.

The next step is to add a new parameter set. If you are still in the simulation mode, click the Switch
to Edit Model button in the toolbar to leave to the edit mode. Click the left mouse button while the
cursor is positioned in the grey bounding box of the system in the Model Editor Window to ensure
no model instances are selected. A small window between Tree View window and the Property
Editor Window is visible. Place the cursor in the window titled Parameter Set 1 and activate the
context menu. Choose New Parameter Set. The title of this window changes to Parameter Set 2.
All the settings in the System Properties tab remain the same as in Parameter Set 1. Change the
value field of parameters ScaleFactor to 3.0 and SawIncrement to 0.5; 0.25. Save the system
and run the simulation again. You now see four graphs. The result of this simulation should be
self explanatory.

1.4.5 Xgraph Configuration

We now want to take a brief look at a few features regarding Xgraph configuration. The full range
of options are covered in sec. 8.3. It would be useful to have x and y axis labels.
Click on the Xgraph#1 block in the Model Editor Window. In the Instance Properties click the
options field and click the icon right to this input field to open the Value Editor.
Append -x Step -y Value to the existing value in the Value Editor. It could also be use-
ful having some output datasets plotted in one Xgraph. The parameter Cumulation defines how
datasets are stored in Xgraph displays.

None Each output is plotted in a new Xgraph.
Iterations All iterations of a parameter set are collected and plotted in a single Xgraph.
Paramsets Outputs from iterations and paramsets are collected and plotted in a single

Xgraph.

Set the Cumulation parameter to Paramsets. You may also want to have a grid pattern as
background of the plot. Remove the -tk entry from the options dialog. Save the model and run
the simulation. The result should be similar to fig. 1.9.
In the SDF/DDF domain the Xgraph has an additional parameter called EndCondition. If this
parameter is set to YES, the Xgraph can tell the simulation scheduler to stop the simulation as
soon as it has received the defined number of data given by parameter NumberOfItems. If more
than one Xgraph block has set this parameter EndCondition to YES, the simulation stops once
all Xgraph blocks have the required number of data.

1.4.6 Build a Primitive

This exercise takes you through the steps required to create a new primitive. The primitive inter-
face can be defined using MLDesigner with no programming experience. To define the function-
ality of the primitive you need experience in programming with C++.
In this example we create a primitive with the same functionality as the module MyAdderModule
we built in the previous example.

1-19

1 First Steps with MLDesigner

2x10

Set(1,1)
Set(1,2)
Set(2,1)
Set(2,2)

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AddAndGainSystem.Xgraph#1

Step

V
a
l
u
e

Figure 1.9: The Xgraph Plot with Cumulation=Paramsets

1.4.6.1 Create a New Primitive

Proceed as follows:

1. Click File from the main menu bar and choose New or click the tool button New Model.

2. Choose Primitive from the Type of Model drop-down menu.

3. Specify the name for your system by setting Logical Name to MyAdderPrimitive.

4. Click the button next to the Library field to browse available libraries. Select MySubLibrary
in the selection dialog and press OK. If you choose a library that is Read only, an error mes-
sage will be displayed.

5. Choose SDF from the Modeling Domain drop-down menu.

6. Enter a description for your primitive in the Description field. The description appears in
the online documentation.

7. It is possible to derive a primitive from another primitive to inherit its interface including
ports, parameters, a.s.o as well as its function to extend the derived primitives with addi-
tional interface elements and functions. For this example we will not derive from any other
primitives.

8. The Physical Name field is set automatically when you click in the next input field. If not
given manually, the physical name is derived from logical name by replacing all characters
different from letter, digit, or ’ ’ with an ’ ’.

9. The Load Mode option Dynamic means the primitive is compiled and reloaded before
every simulation. That is, changes made to the primitive will take effect immediately when
the system is recompiled for the next simulation run. Load Mode Permanent on the other
hand means that once a primitive is compiled and loaded, e.g., for the first simulation run,
changes will not take effect before MLDesigner is restarted.

NOTE: If you want to derive another primitive from this one, it is necessary to load it�

1-20 MLDesigner Version 2.8

1.4 Build a Simple Model

permanent.

10. Click the OK button to create the primitive. When creation of the primitive is finished, the
new primitive model will open automatically as grey square in a new Model Editor window.

A primitive model has been created and you now need to define its functionality.

1.4.6.2 Create Ports and Parameters

You can create an arbitrary number of input and output ports. To create ports either use the appro-
priate tool buttons Add Input Port and Add Output Port, or use the shortcuts I for input port and
O for output port. Alternatively click Edit on the main menu bar and select the appropriate options.

For this example we need two input ports and one output port:

1. Select the Add Input Port button from the toolbar.

NOTE: Your pointer has switched to a different mode. Every time you click in the grey �
rectangle of your primitive in the Model Editor window which represents the
bounding box of your model, a port will be generated.

2. Click on the side of the grey rectangle (bounding box) in the Model Editor window to create
a new input port. It will be put near your cursor location. A second click creates a new input
port. You may have to drag the ports to a suitable position if they are on top of each other
for model instance. The ports Input1 and Input2 have been created.

3. Switch back to the default pointer mode by right mouse click or by clicking the Select Tool
icon.

4. You can drag the newly created port and move it anywhere in your primitive view using the
left mouse. The grey rectangle resizes automatically.

5. Select the Add Output Port button from the toolbar.

6. Click on the side of the grey rectangle (bounding box) in the Model Editor window to create
a new output port.

Another method to create new ports is to press <Control> and then click on an existing port you
wish to copy. You can now drag and drop the port you wish to duplicate.

When using the context menu option Add Input/Output Port your mouse pointer will not change
and one new port will be placed in the Model Editor window. The Edit menu works in the same
way as the context menu.

Your primitive should now look like the one in fig. 1.10. We now need to change the properties of
each port.

1. Click on the first input port Input1. The Property Editor (in the lower left of your MLDe-
signer window) now displays the Port Properties of your port Input1.

2. Next to Data Type click on the anytype entry and change it to float.

1-21

1 First Steps with MLDesigner

3. You can change the name from Input1 if you like.

4. Repeat the procedure for Input2 and Output1 changing the Data Type to float for all
ports.

Figure 1.10: Simple Adder Primitive

We now need to add a parameter to the primitive. A parameter is used as a fixed value to change
the behavior of the primitive without recompiling it.

1. Make sure no port is selected in the primitive window. If needed, click somewhere in the
primitive window, without selecting any elements, to switch the property editor back to the
Primitive Properties. The Property Editor should have the first entry named Logical Name
with the name of your primitive MySimpleAdder.

2. Right-click with the mouse somewhere in the Property Editor. Use the New Parameter
context menu item. The new parameter (indicated with a P icon) is now listed on the
bottom of the list. Click on the + icon to extend the parameter.

3. Click on the Name row and change the name of the parameter to ScaleFactor.

4. Change the Data Type row to float.

5. Change Value to 1.0

6. All other fields need not be changed.

Before adding functionality to the primitive, save it by clicking on the Save button in the toolbar.

1.4.6.3 Change the Source

The new primitive is open in the Model Editor Window. Model elements that are created in the
Model Editor define the interface of the primitive. The function of a primitive is defined in a
separate file, the so-called primitive source. To edit the source, click on the Open Source button
in the toolbar, select menu option from context menu or use the shortcut S. This will open a new
window, the Primitive Source Editor, where you can edit the primitive source code.

NOTE: The source that is created automatically when you create a new primitive already con-�
tains templates for the most important primitive source items.

NOTE: Some of these items are generated directly from the interface definition developed in�
the Model Editor window. Changes to these items are lost when you save the primitive
model next time.

1-22 MLDesigner Version 2.8

1.4 Build a Simple Model

For this example only the go entry must be changed. Scroll down the source or use the search
function to find the go entry. Edit the entry to read as follows:

go
{
Output1%0 << ScaleFactor * (double(Input1%0) + double(Input2%0));

}

This implements the adding functionality and makes the primitive work. Click on the Save button
to save the source and then on the Compile button (the rightmost icon on the toolbar) or select
Compile Source from the context menu.

If everything was typed in correctly, the compile will be done without error messages. If the
compiler shows errors, they will appear in the console window at the bottom of the screen. Read
them carefully to analyze what has gone wrong. Check your source code and make sure the
names and properties of the ports and the parameters have been set correctly. Clicking on an error
message will position the cursor at the beginning of the line where the error happened.

1-23

Chapter 2

Modeling with MLDesigner

For a description of the terms used throughout this manual, please refer to sec. 1.1.

2.1 Understanding Environment Variables
The model bases MLDExamples, MLD Experimentals, MLD Libraries, and MLD Addons
are linked to fixed sub-directories in the installation directory of MLDesigner which are write-
protected. However, the model bases My Libraries and Shared Libraries can be linked
to any physical directory by setting the environment variables MLD USER and MLD SHARED.
$MLD USER normally points to a directory that serves as working directory for your modeling
work. Normally, you have write permission to this directory and save all your own model libraries
in this directory. $MLD SHARED points to a directory where you share models with other users.
There are two different possibilities to set these environment variables:

1. You can define them outside MLDesigner by defining eponymous environment variables
before starting MLDesigner using an according system command.

2. You can set them inside MLDesigner using the Environment item of the MLD category in
the Settings Dialog.

NOTE: These settings are temporary for the active MLDesigner session and are lost when �
you start MLDesigner next time.

Setting these environment variables can be used to organize a large number of model libraries
into a number of independent working directories or to access to a completely different directory
temporarily, e.g., the working directory of another user.

If $MLD USER is not defined, $HOME/MLD is used as default. $MLD SHARED is not available in
MLDesigner if it is not set or points to the same directory as $MLD USER.

There are two further environment variables $MLD and $MLDARCH that specify the directory
where MLDesigner is installed and the architecture of the system on which MLDesigner is run-
ning, respectively. Both variables can neither be set outside nor inside MLDesigner .

All used environment variables are printed to the command shell when you start MLDesigner ,
e.g.:

2 Modeling with MLDesigner

Environment Variables
MLD /opt/mld25r00
MLD_USER /home/gs/MLD
MLD_SHARED /home/gs/MLD
MLDARCH i386-linux-gcc296

2.2 Graphical User Interface

2.2.1 User Interface Structure
MLDesigner’s graphical user interface (GUI) provides an environment for developing and simu-
lating hierarchical system models on varying levels of abstraction. This can be done graphically
or textually. The built-in PTcl interpreter is integrated into the MLDesigner GUI (Command Con-
sole) and accepts PTCL commands for text-based modeling. See ch. 9 in the MLDesigner manual.

The main MLDesigner’s GUI elements are described in sec. 1.2.

2.2.2 Settings
User preferences vary a lot. As a result it is possible to change the defaults for a variety of
Graphical User Interface settings. Click the main menu option Settings to open the dialog in
fig. 2.1.
The following table contains a brief description of all options.

Figure 2.1: Settings Dialog

The items are listed in the order they appear in the dialog from top to bottom.

2-2 MLDesigner Version 2.8

2.2 Graphical User Interface

Dialog Option

MLD General

• Start as MDI application - The graphical user interface
is a Multi-Document Interface (MDI) when this option
is checked. In non-MDI modus each window is opened
as a separate entity and can be handled separately making
window management a lot more flexible.

• Reopen models at startup - All open models will be re-
opened when MLDesigner is shut down and restarted.

• Tooltips - Turns all tooltip texts off when the tick is re-
moved from this check box.

• Tab size - The tab size for all text editors.
• Working directory at startup - The default path of the

command console is set with this variable. This setting be-
comes effective after shutting down and restarting MLDe-
signer .

• GUI font at startup - The font for all graphical user in-
terface elements. You must shut down and restart MLDe-
signer before the setting takes effect.

• Number of last opened models - Sets the number of mod-
els shown in the history menu under the File main menu
option.

• Default HTML browser - The browser you want to use
when contacting support via the Report Problems option
under the Help button in the top right corner of the GUI.

Environment

• $MLD USER - The model base My Libraries points
to the physical directory registered in this field. Changes to
this setting are only valid for the current modeling session.
view.

• $MLD SHARED- The model base Shared
Libraries points to the physical directory regis-
tered in this field. Changes to this setting are only valid for
the current modeling session.

• $MLD TEMP - Specifies the folder where the temporary
files produced by MLDesigner are stored.

Tree View Confirmations

2-3

2 Modeling with MLDesigner

Dialog Option

Every action in the following list can be performed with or with-
out a confirmation screen. By default all options are active. When
one of these actions are performed a confirmation window dis-
plays. You are asked if you really want to remove, delete, restore,
move, or copy the model. The option Do not show this message
again does exactly that. One click in the check box and the con-
firmation screen is not displayed again for the action you were
performing. It is possible to reactivate this option in the Settings
dialog.
The following options can be set:

• Remove - Specifies whether a warning message box is
shown before a reference to a model is deleted in the li-
brary tree view.

• Delete - Specifies whether a warning message box is shown
before a model or file is deleted from the Trashcan.

• Restore - Specifies whether a warning message box is
shown before a model or file is restored from Trashcan.

• Move - Specifies whether a warning message box is shown
before a selected model or file is moved to the Trashcan or
to another directory.

• Copy - Specifies whether a warning message box is shown
before a selected model or file is copied to another direc-
tory.

• Add server - Specifies whether a warning message box is
shown when an URL is specified for addition to a model
server list that does not exist.

History

• History shown - Check box option to activate the History
mechanism for the Tree View. An option combo box stores
information about your modeling sessions. A click on the
down arrow expands the History list. A click on an item in
the list expands the Tree View and highlights the item.

• Clear the history on exit - Specifies whether the history is
cleared when MLDesigner is closed.

• Maximum number of entries - The number of items
shown in the History combo box.

• Maximum age of entries in days - Specifies when History
items should be removed from the list. forever means
the items are never deleted unless the maximum number of
items has been reached.

2-4 MLDesigner Version 2.8

2.2 Graphical User Interface

Dialog Option

Model Editor General

• Autosave model interval [s] - Specifies the time interval at
which all models are saved automatically. Set the value to
0 to disable the autosave function.

• Base cursor - You can select a new graphic for the cursor.
• Zoom to Fit on open - The complete model is visible in the

model window on opening. With large systems it is some-
times difficult to see the details of the system and some ad-
justments in the zoom level may be necessary. The default
zoom when the check box is deselected is set to 100%.

• Show grid - Show or hide the grid pattern in the Model
Editor Window.

• Highlight related objects on selection - When selecting a
model element in the Model Editor Window or an item in
the tree view, the corresponding element or related item is
highlighted.

• Set logical name as label for new instances - the model
instances added to a model will be labeled with the logical
name of the model they reference to; if this option is dis-
abled, the label is composed of the physical name, followed
by ’#’ and an instance counter.

• Show consistency warnings during save - Specifies
whether a message box arises to report model structure er-
rors while saving the model.

• Show warning when memory is added - Specifies
whether a message box arises when you add a memory to a
model of a domain in which memories are not compatible
with the model of computation and might lead to problems.

• Show properties sorted by name - Specifies whether
properties for parameters, memories, events, and resources
are shown sorted by their name.

2-5

2 Modeling with MLDesigner

Dialog Option

Colors

• Background - The model background color.
• Replace - The color of the model instance that is to be re-

placed. You can drag a replacement model instance into the
Model Editor Window and drop it onto an existing model
instance thereby replacing it.

• Inconsistent - Model instances that are not compatible
with the domain of the module or system or have construc-
tion errors.

• Animation - The color of the model instance or port that is
firing during simulation when graphical animation is active.

• State - Default color for FSM states.
• History - Default color for FSM histories.
• Default Entrance - Default color for FSM default en-

trances.
• Transition - Default color for FSM transitions.
• * Port - The last 9 entries are used for changing the default

color of the different port types.

Defaults

• Domain - The default domain for new systems, modules
and primitives in the Create New Model dialog.

• Copyright - The default copyright notice for user defined
model elements. Appears in the tooltip text for primitives,
in the online documentation and in primitive source code
for primitives, modules and systems.

Primitive Source
Editor

General

• Use external editors with xterm - If you have chosen
an external editor that uses a xterminal console, you can
choose to not see the xterminal as this often gets in the way
and is not needed for editing source code files.

• Internal - The standard editor with built in error highlight-
ing in cases of compile error.

• $EDITOR - The editor defined if you have set your envi-
ronment variables for another editor.

• User-defined - You can replace the entry vi with the name
of your favorite editor. The line should look like this when
finished emacs @$ if you prefer emacs.

2-6 MLDesigner Version 2.8

2.2 Graphical User Interface

Dialog Option

Colors

• Enable highlighting - Colors and highlighting only apply
to built-in editor.

Fonts

• Font - Sets type, style, and size of font used in built-in
editor.

FSM Action Edi-
tor

Action Editor Colors

• Enable highlighting - Colors and highlighting apply to
FSM Action Editor.

• Use primitive editor colors - Define a different set of col-
ors for the FSM Editor or use the same colors set for the
Primitive Source Editor.

Action Editor Fonts

• Font - Sets type, style, and size of font used in FSM Action
Editor.

Warnings

• Show unverified warning in Action Editor - Specifies
whether a warning message box should be shown when the
content of the Action Editor has not been verified.

• Show unverified warning in event Expression Editor -
Specifies whether a warning message box should be shown
when the content of the Event Expression Editor has not
been verified.

2-7

2 Modeling with MLDesigner

Dialog Option

Run Control General

• Preferred external simulation method - Specifies which
external simulation method is preferred:

- C++ code - The file type generated when running a
simulation extern. The files are written to the target
directory.

- PTcl code - The file type generated when running
a simulation extern. The destination directory must
be selected from a file creation dialog.

• Simulation start output - The message written to standard
output when an iteration of a simulation is started.

• Simulation stop output - The message written to stan-
dard output when an iteration of a simulation is finished
/ aborted.

Warnings

The following warnings are generated after changes are made to
a model while in simulation mode:

• Show recompile warning - Specifies whether a warning
message box should be shown when the model has to be re-
compiled before next simulation run due to some changes.

• Show compile warning - Specifies whether a warning
message box should be shown when the model has to be
compiled before continue with an action.

The following warnings are generated when switching to simula-
tion mode in a system that contains probes or breakpoints:

• Show reinit breakpoint warning - If a breakpoint param-
eter is changed during a simulation, a warning dialog dis-
plays when the simulation is continued.

• Show reinit probe warning - If a probe parameter is
changed during a simulation, a warning dialog displays
when the simulation is continued.

Distributed

• Start timeout for iterations [sec] - The scheduler which
distributes the iterations of an external simulation will wait
this time in seconds until the simulation is ready to start.

2-8 MLDesigner Version 2.8

2.2 Graphical User Interface

Dialog Option

Debugging

• Breakpoints active - If breakpoint exist in a system it is
possible to make them active/inactive when switching to
simulation mode. The breakpoint can also be activated/de-
activated using the Breakpoints on/off icon on the toolbar.

• Open models automatically - Hierarchical models are
opened automatically on step actions. This option is only
used for graphical simulations.

• Graphical animation - Activating this check box means
that graphical animation will be active for every simula-
tion. You must then deselect the Graphical Animation
icon on the toolbar if you do not want graphical animation
during a simulation. Simulations are a lot slower with these
options and should only be used when needed. With graph-
ical animation active the ports, modules and primitives are
highlighted when they fire or accept particles during simu-
lation.

• Textual animation - Activating this check box means that
textual animation will be active for every simulation. You
must then deselect the Textual Animation icon on the tool-
bar if you do not want textual animation during a simula-
tion. Simulations are a lot slower with these options and
should only be used when needed. With textual animation
active, a log of all firings of ports, modules and primitives
are printed to the Command console.

• Number of Textual Outputs - Limits the number of lines
of textual output to the Animation tab of Console Win-
dow during a simulation. Setting this too high could lead
to memory overload and system crash especially with ex-
tremely large systems.

• Used Source Code Debugger - Provides a list to select
the debugger used for starting a simulation process within
a debugger for source code debugging. You have to leave
simulation mode before the changes to this option become
effective.

Console View Command Window

• Font - Sets type, font, and size of font used in the Com-
mand Console.

2-9

2 Modeling with MLDesigner

Dialog Option

Log Window

• Number of log entries (1-1000) - Limits the number of
log entries. Oldest log entries are deleted once the limit is
reached. Remember you can save or clear the Log Window
via the context menu!

• Show information - Reduce the number of warnings or
errors displayed in the Log Console by degree of severity.
Many includes all trivial warnings that usually do not affect
the simulation of the module or system.

• Show warnings - Display warnings that often do not affect
the functionality of the model or model instance.

• Show errors - Display errors that are likely to affect the
functionality of a model or model instance.

• Show log window on error - Activates the Log Window
when an error occurs.

Conversion COSSAP Model Converter

• Error level - There are a number of warnings and error
messages when converting COSSAP user defined project
libraries to MLDesigner compatible format. This area is
untested but if you are seeing too many error messages that
you do not wish to see because they are perhaps unimpor-
tant, you can gradually filter them out by selecting the ap-
propriate option from the drop-down menu.

- All - Shows all error messages.
- Important - Filters out warnings that are not im-

portant.
- Very Important - Only important messages

are displayed.
- None - All error messages are filtered out.

PTcl Converter

• Default save path - The default path that appears in the
Save As dialog when you convert an MLDesigner system
to a PTcl file.

Table 2.1: Default Settings Options

2-10 MLDesigner Version 2.8

2.2 Graphical User Interface

2.2.3 Graphical User Interface Filters
Certain user interface windows, with exception of the workspace, can be hidden using these but-
tons situated on the toolbar. This is useful when working with large models. Hold the mouse
pointer over each icon to see which window they hide or show.

2.2.4 Workspace
MLDesigner’s workspace is a multiple document interface, i.e., all opened models appear within
Model Editor Windows inside the workspace area.
Each Model Editor Window consists of a headline, a model editing area, and scrollbars for vertical
and horizontal navigation within the model. Clicking and holding the left mouse on the hand icon
in the bottom right corner of the Model Editor Window enables you to quickly navigate to elements
within large models. Open any system in MLD Libraries/Demos library and select the Model
View tab in the Tree View Window to see the hierarchical structure of the system.
The headline of each window shows the type, the physical location, and the logical name of the
open model. The active Model Editor Window information is also shown in the MLDesigner title
bar.
To minimize, maximize, or go to full screen mode, use the arrow icons situated in the top right
corner of the Model Editor Window.
The workspace can function in three different modes:

• Cascade mode - In cascade mode, all the Model Editor Windows have an arbitrary size and
are placed in arbitrary positions inside the workspace. The size and position of each window
can be set by clicking on the border of the window and dragging the window to the desired
size.

• Tile mode - In tile mode, the workspace is divided in equally sized segments and all models
are visible. This mode only applies to open workspace windows. Additional windows will
be opened in cascade mode.

• Full mode - In full mode, all Model Editor Windows are sized to fit the workspace window
size. Only the active Model Editor Window is shown in this mode.

If there is more than one window open, you can switch between the previous and next Model
Editor Window by using the change window buttons.

NOTE: Menu items and icons on the toolbar are connected to operations of the active Model �
Editor Window only.

2.2.5 Tree View
There are four different views for navigating the Tree View Window:

• File View - Access models by their physical location.
• Library View - Access models by their logical hierarchy.
• Model View - This view is used for easy navigation of large systems or modules which are

open in the Model Editor Window. Here you see all hierarchical modules and primitives
contained within a module or system.

2-11

2 Modeling with MLDesigner

• Search View - This tab is used to find primitives, modules, systems or documentation if you
are not sure about where they are stored. Searches using the Documentation or Description
categories, can be time consuming in large libraries as all files must be opened before the end
results are produced. The search criteria, All refers to all domains. Used in conjunction
with the asterisk as wildcard a list of all primitives, systems and modules is produced in
alphabetical order. To search for models click the Search tab in the Tree View window and
activate the context menu with the right mouse-click. Choose Model Search and try a few
searches using combinations with wild cards. You can search specific domains and limit the
search using the options in the Search in drop-down menu (see fig. 2.2).

Figure 2.2: Search Dialog

a) b) c)

Figure 2.3: Tree View Tabs

2.2.5.1 File View

The File View of existing models is constructed using the physical file structure. For the creation
of the physical view, MLDesigner scans all files of a given directory and determines the type of
each file. It does not analyze information about logical relations between models. If a directory
contains recognized models, MLDesigner creates an item with the corresponding icon within the
physical view. An item in the File View consists of the model directory name, the model type and
an icon that represents the model type. MLDesigner recognizes all types of MLDesigner models
including text based files that are related to models, like primitive source files, FSM models, and
HTML documentation sources (see fig. 2.4). Unrecognized files are not visible in the physical
view of the model hierarchy.

2-12 MLDesigner Version 2.8

2.2 Graphical User Interface

Directory Library System Module Primitive
model model model model

Figure 2.4: Recognized physical file types

FSM Primitive FSM STD Probe HTML
model source model primitive document

Figure 2.5: Recognized physical file types

To view models within a directory, click the + sign next to the directory or library, or double
click the directory. This expands the directory and MLDesigner repeats the procedure of scanning
all files in the directory to determine the model type and create an icon for recognized models. To
open a library item in your work area, double-click the entry.
The File View is also called Physical View.

The File View contains, by default, a number of top-level items, see Figure 2.3 (a). These are:

• Favorites - This item is convenient for creating a collection of links to systems, modules
or primitives that are visited regularly. The easiest way to add models to the Favorites
folder is via the Add to Favorites context menu option with the cursor placed over an item
in the Tree View. Another method of adding links to the Favorites folder is to drag the
item. In the Favorites directory it is possible to create new categories making it easy to
organize your frequently used links in a logical hierarchy.

• MLD Addons - This model base points to the directory $MLD/MLD Addons containing
domain independent models which can be ordered by customers as special plug-in’s.

• MLD Examples - This model base points to the directory $MLD/Examples containing
domain independent examples.

• MLD Experimentals - This model base points to the directory $MLD/MLD Experimentals
containing models shipped with MLDesigner (no support available).

• MLD Libraries - This model base points to the directory $MLD/MLD Libraries con-
taining models shipped with MLDesigner (supported by MLDesigner).

• My Libraries - By default this model base points to users MLDesigner model directory
˜/MLD containing all models developed by you. To change the default directory the envi-
ronment variable $MLD USERmust be set. This can be done via the Settings menu described
in sec. 2.2.2. To change the variable permanently enter the following:

export MLD_USER=˜/Directory/..

for bash or shell command lines and

setenv MLD_USER=˜/Directory/..

2-13

2 Modeling with MLDesigner

for tcsh and csh command lines.

• Shared Libraries - This model base points to a directory where project work can be saved.
This should be a directory where read/write rights have been set for a workgroup. To change
the default directory the environment variable $MLD SHAREDmust be set. This can be done
via the Settings menu described in sec. 2.2.2. To change the variable permanently enter the
following:

export MLD_SHARED=˜/Directory/..

for bash or shell command lines and

setenv MLD_SHARED=˜/Directory/..

for tcsh and csh command lines.

• Home - This item points to the user’s home directory.

• Root - This item points to systems root directory / and allows traversing through the entire
directory tree.

• Trashcan - This item points to the directory ˜/.mld/Trashcan. MLDesigner uses the
Trashcan directory for removing and restoring models and directories.

2.2.5.2 Library View

In contrast to the File View, based on physical structure, the Library View is based on logical
relations between libraries and other models. A logical relation between a library and other models
is established by referencing the other models in the library model. MLDesigner analyzes all the
referenced models in a given library. For all referenced models MLDesigner determines the model
type and creates an item showing the logical name (if there is one) with a corresponding symbol in
the logical view. Recognized model types are shown in fig. 2.6. Since it is not possible to reference
text based models within an MLDesigner model, libraries can only contain models of these types.

Library System Module Primitive FSM Probe
model model model model primitive

Figure 2.6: Logical Reference Icons in the Library View

As mentioned earlier, libraries in the Library View are collections of references to systems, mod-
ules, primitives and FSMs. By using the + to the left of the item, the view of the library is
expanded. On expanding a reference, MLDesigner repeats the process of analyzing the type of
referenced models, and creates relevant items in the logical view. By double-clicking on a library
item, the model is opened in a Model Editor Window. The Library View is also called the Logical
View.

The logical view contains a number of top-level items, see fig. 2.3 (b).

• Favorites - This item is convenient for creating a collection of links to systems, modules or

2-14 MLDesigner Version 2.8

2.2 Graphical User Interface

primitives that are visited regularly. The easiest way to add models to the Favorites folder
is via the Add to Favorites context menu option with the cursor placed over an item in the
Tree View. Another method of adding links to the Favorites folder is to drag the item. In
the Favorites directory it is possible to create new categories making it easy to organize
your frequently used links in a logical hierarchy.

• MLD Addons - This model base points to the directory $MLD/MLD Addons containing
domain independent models which can be ordered by customers as special plug-in’s.

• MLD Examples - This library is a reference to the model base MLD Examples and is a
collection of libraries containing complex systems and modules. Expand the libraries by
clicking the + to the left of the item. Note that some of the demos need SatLab installed
and running in Access mode before they can be executed. The library Tutorials contains
simple examples which are referred to in sections of the First Steps documentation. To
access this document click the Help button in the top right corner of the GUI and choose
the menu point First Steps.

• MLD Experimentals - This library is a reference to the model base MLD Experimentals
and contains libraries of models and demos for unsupported domains shipped with MLDe-
signer . These libraries are sorted by domain. At the moment we cannot guarantee that these
demos will work as described. The sub-library CTDE Domain is the only library in this
collection that is supported at present but there may still be some bugs here.

• MLD Libraries - This item is a reference to the model base MLD Libraries and is the
top-level library of the model hierarchy for supported domains shipped with MLDesigner .

• All other top-level items are references to libraries stored in the model bases My Libraries
and Shared Libraries. Note that each library created within MLDesigner directo-
ries $MLD USER and $MLD SHARED are shown as sub-directories of My Libraries or
Shared Libraries in the File View and as top-level libraries in the Library View.

2.2.5.3 Differences Between File View and Library View

It is important to understand the differences between the physical (File View) and logical (Library
View) in the model hierarchy.

• The Library View is dependant on logical relations between models. A model can be refer-
enced by a number of different libraries and can appear in numerous models. The Library
View contains references to MLDesigner models. It is not possible to show primitive source
files or other text based models within the logical Tree View.

• Deleting a model in the File View results in all redundant references to it becoming wrong.
This is indicated in the Library View by a broken model icon.

2.2.5.4 Find in Tree View Context Menu Option

It is possible to expand the Tree View to find a selected item by activating the context menu over
a model instance in the Model Editor Window and choosing Find in Tree.

2-15

2 Modeling with MLDesigner

2.2.5.5 Tree View Filter

Above the Tree View lies a toolbar that contains a number of buttons with icons for each model
(see fig. 2.7). These buttons are used to select which types of models are shown in the File
(physical) and the Library (logical) views. In the File View it is possible to filter out all types
of models including text based files such as primitive source and FSM model files. The Library
View contains items that refer to models of type library, system, module and primitive. Only items
of this type (excluding libraries) can be filtered out in the Library View.
For an explanation of each icon place the mouse pointer over the buttons of the Tree View filter
toolbar.

Figure 2.7: Tree View filter toolbar

2.2.5.6 Context Menu

The context menu in Tree View can be used to deal with models and other model related files. To
open the context menu click the right mouse button over the item in the Tree View. The available
options differ between File View and Library View and vary according to the type of item selected
within each view. Some options depend on whether the item is write protected or not. The typical
context menus for the Library view are shown in fig. 2.8 where:

• a) is the System context menu,
• b) is the Library context menu, and
• c) is the Primitive context menu.

a) b) c)

Figure 2.8: Tree View Context Menu Examples

The various context menu items are explained in detail here:

Online Documentation Used to open the document browser showing hypertext documen-

2-16 MLDesigner Version 2.8

2.2 Graphical User Interface

tation for the model. This context menu item is available for all
MLDesigner models.

Open Model Used to open the model in Model Editor. This context menu item is
available for all MLDesigner models.

New Model Used to create a new model. This item is available over library and
model base (excluding My Libraries and Shared Libraries)
items in the File and Library View. The following options are avail-
able:

1. Library
2. System
3. Module
4. Primitive
5. Fsm
6. Probe

Add to Favorites Add a model to the Favorites folder. Only available for systems,
modules, and primitives.

Save As Using this context menu item you can create a full copy of the model
and save the model in a writable library. Available for Tree View
items that refer to MLDesigner models.

Duplicate Using this context menu item you can create a full copy of the model
in the same library. For differentiation the number of the copy is
added to the model name, e.g., the first copy of a model with name
Example is called Example 01. Available for Tree View items
that refer to MLDesigner models.

Rename Using this context menu item you can change the physical and log-
ical name of a model. Available for Tree View items that refer to
MLDesigner models.

Remove Reference Used to delete the reference to a model but not the model itself.
Available for systems, modules, and primitives for Library View
only.

Move to Trash Used to move the model to Trashcan and deletes the reference in the
same library. All other references are wrong and appear as a broken
icon in the Library View which can be removed using the Remove
Reference option.

Open Source Used to open and edit the primitive source code with the primi-
tive editor. The primitive editor is a text editor that provides you
with editing capabilities like syntax highlighting and primitive spe-
cific functions. Primitive source editors are not opened within the
workspace, but as new top-level windows. This option is only avail-
able for primitives.

Compile Source This option is used to start the compilation of the primitive source
file. The following options are available:

2-17

2 Modeling with MLDesigner

1. Compile Optimized
2. Compile With Debug

Only available over primitives. To compile all primitives contained
in a library use Compile Library over a library.

Open FSM Opens the FSM model within an FSM Model Editor Window. The
FSM Model Editor Window provides you with graphical editing ca-
pabilities for the development of FSM models. This context item
is only available for Tree View items that refer to FSM models and
FSM primitive components.

Open Special Using this context menu item, you can open a pre-configured special
primitive model for an existing generic primitive. Only available for
primitives.

Create Special Using this context menu item, you can create a pre-configured spe-
cial primitive model for an existing generic primitive. For further
information on how to create special models refer to sec. 2.3.3. This
context menu item is only available for primitives where write per-
missions are set.

Delete Special Using this context menu item, you can delete a pre-configured spe-
cial primitive model for an existing generic primitive. Only avail-
able for primitives where write permissions are set.

Browse File This item opens a hypertext browser showing online hypertext doc-
umentation of the selected model. Available for Tree View items
that refer to hypertext files only.

Empty Trash This option deletes all files stored in the Trashcan. To delete single
models, select the model in the Trashcan view and select Delete
from the context menu. Only available within the Trashcan di-
rectory in File View.

Restore This context menu item restores the selected files stored in the Trash-
can to their original directory. Only available in Trashcan direc-
tory in File View.

Export Library This context menu item exports a library to a mar archive. Only
available over top-level libraries.

Import Library This context menu item imports a mar archive containing a top-
level library to directory $MLD USER or $MLD SHARED. Only avail-
able over model bases My Library or Shared Libraries in
File View.

Update Version If the Library needs a version update and the library is writable
this option is visible and active over libraries in $MLD USER or
$MLD SHARED. All imported models are also updated.

Refresh MLDesigner starts to update the Tree View for a selected Tree View
item and the whole model hierarchy below this item. Available for

2-18 MLDesigner Version 2.8

2.2 Graphical User Interface

all Tree View items including the background if there are no Tree
View items selected.

Expand All items of a directory are expanded. Items filtered out using the
Tree View filter will not be visible. To expand also all sub-items use
Expand Subtree. The items have a + to indicate they are expand-
able items. Available for all Tree View items with a hierarchical
structure.

Collapse All items of a directory are collapsed. To collapse also all sub-items
use Collapse Subtree. The items have a - to indicate they are
collapsible items. Available for all Tree View items with a hierar-
chical structure. Available for all expanded Tree View items with a
hierarchical structure.

The Tree View allows the selection of multiple items and has tool tip functionality. To select
multiple items in the Tree View press Ctrl and click the items you want to select using the left
mouse button. To select all items in the Tree View click the first and last item while holding the
SHIFT key pressed. To deselect items, hold the Ctrl key pressed while clicking the appropriate
items. If the mouse pointer is held above a Tree View item, you will see:

• the physical filename of the model or the file
• the owner, the group and the access rights to the file
• the logical name of the model (if there is one)

2.2.5.7 Copying, Moving, and Referencing Models

In addition to the usage of context menu items Save As, Duplicate, Move to Trash, and Add to
Favorites for copying/moving models or creating model references, you can use items from the
pop-up menu appearing after drag & drop a model over any directory in Tree View. The various
items are:

• Copy - Creates a full copy of the model and saves the model in a writable directory. This
item is only available in File View.

NOTE: In contrast to context menu item Save As all sub-directories of the model directory �
are copied too. In this way you can copy the library with all included models to
another folder.

• Move - Creates a full copy of the model, saves the model in a writable directory, and deletes
the model in the origin folder. This item is only available in File View.

• Reference - Creates a reference to a model that is visible only in Library View.

2.2.6 Property Editor

The Property Editor is used to modify the common properties of models as well as the properties
of model instances and other model elements such as ports, memories, events and resources. The
Property Editor is also used to define parameters and target parameters of models. Additionally,

2-19

2 Modeling with MLDesigner

model elements such as delays, buses and labels are configured using the Property Editor. Fig-
ure 2.9 shows an example of the Property Editor for a module and the instance of the module
Ramp.

(a) Model properties (b) Instance properties

Figure 2.9: Property Editor example

To edit the properties select the field you wish to edit by clicking the relevant item in the Value
column. The text in non-editable fields is grey and italic. The data input method differs depend-
ing on the type of value. Certain types of values have a button which opens a dialog where the
value can be defined. Other types of properties such as parameters, ports, memories, and events
are expandable cells where a property must be selected from a drop-down menu. For parameters
of model instances, only the value of the parameter can be set. The Property Editor is also used
to link model instance properties like parameters, memories, events and resources to other model
elements.

The simulation properties window is only visible when MLDesigner is in simulation mode. To
see the simulation properties window click the Switch to Simulation Mode icon on the toolbar.
All system parameters defined with external scope in the Model Property Editor, are visible in the
Simulation Properties window. These parameters can be changed without modifying the system.

2.2.7 Console Window
The console window is used to interact with MLDesigner using the built-in interpreter and to
inform you about the status of MLDesigner and has two panels when in Edit Mode:

• Command - The command window is the user interface with the built-in PTCL interpreter.
The results of these commands are printed to this window. For detailed information about
the built-in PTCL interpreter, refer to the MLDesigner manual ch. 9. The prompt shows you
the current working directory.

• Log - The log window is the console where a record of your actions is displayed and error
messages or warnings are printed. You can save the contents of the console to a file or
clear the console by selecting the appropriate menu option from the context menu. The
error messages are displayed as an expandable entry with the top level entry displaying the

2-20 MLDesigner Version 2.8

2.2 Graphical User Interface

Figure 2.10: Simulation Properties Window

name of the system containing the error. To see more details about the error or warning you
must expand the entry by clicking the + next to the top level entry. To see the primitive or
module responsible for the error you must click on the appropriate entry. The model instance
is then highlighted in the Model Editor Window and the model instance editor displays all
parameters of the model instance.

Further tabs appear when you are in Simulation Mode:

• Breakpoints - The breakpoints window is the Console where you see a list of all break-
points. Breakpoints are useful for debugging systems and the list of breakpoints makes it
easier for you to find and edit them. You can add and remove breakpoints while in simula-
tion mode. To do so select Add Breakpoint or Remove Breakpoint from the context menu
over the relevant entry in the breakpoints console.

• Progress - The progress window is the console where you can monitor the compile process
and the progress of the simulation measured as a percentage value.

• Animation - Another tab, the animation tab, appears if the Textual Animation icon on the
toolbar is checked. The port and instance firings are printed to the console in this mode and
simulation is a lot slower.

2.2.8 Using Menu Bar
In the following sections the submenus of the menu bar are explained in brief. For more detailed
information about operations triggered by the menu items, refer to the relevant section indexed
next to the description.

2.2.8.1 File Menu

Figure 2.11 shows the MLDesigner file menu. To open the File menu, a shortcut key Alt-F can be
used. The items in the file menu have the following functions:

2-21

2 Modeling with MLDesigner

Figure 2.11: File menu

New Ctrl-N Invokes MLDesigner to start the creation of a new
model of type library, system, module, primitive,
or FSM primitive.

Open Ctrl-O Opens a model within the active Model Edi-
tor Window or in a new Model Editor Window.
MLDesigner opens a new Model Editor Window
if no Model Editor Window is open, or the ac-
tive Model Editor Window is not compatible with
the model or the file to be opened. MLDesigner
opens a dialog for selecting the model to open.

Reload Ctrl-R Reloads the model in the active Model Editor
Window. This menu item is only active if a Model
Editor Window is opened and contains a model.

Close Ctrl-W Closes the active Model Editor Window. If the
model in the active Model Editor Window has
been modified, you will be prompted to save your
changes.

Save Ctrl-S Saves modifications of a model in the active
Model Editor Window. This menu item is only
active if the model has been modified.

2-22 MLDesigner Version 2.8

2.2 Graphical User Interface

Save As Creates and opens a copy of the model in the ac-
tive Model Editor Window. The whole model, in-
cluding the model, the icon, and all related files
are copied.

Save All Save the modifications of all models opened in the
work area. This menu item is only active if there
are models with modifications.

Print Ctrl-P Prints the model in the active Model Editor Win-
dow directly to a printer or to a file as EPS.

Export EPS Start the export of the model in the active window
as EPS.

Convert BONeS Starts the conversion of model libraries from
BONeS Designer to an MLDesigner compatible
format.

Convert COSSAP Starts the conversion of COSSAP designs and
models to MLDesigner compatible format.

Quit Ctrl-Q Commands MLDesigner to exit. If there are un-
saved modifications in any model, you will be
prompted to save them.

The file menu shows, in addition to the file menu items listed above, a history menu containing
models or models that were last opened. They can be opened directly using the corresponding
entry.

2.2.8.2 Edit Menu

The edit menu can be opened by using the shortcut key Alt-E or by right mouse click in the active
Model Editor Window. It is a dynamic menu. The configuration of the edit menu depends on
the type of model opened within the active Model Editor Window as well as the type of object or
objects selected.

The Edit menu on the menu bar is exactly the same as the context menu in the Model Editor
Window. If you select a model instance or any other model element, the context menu shows
items for all operations available for the selected model element.
In contrast, by clicking on the model background, the context menu shows items for all operations
that are available for the model itself. Figure 2.12 shows three examples of edit menus. Fig-
ure 2.12 a) shows the simplest edit menu, which is available regardless of what has been selected.
The edit menu shown in fig. 2.12 b) appears for a selected model instance. A number of edit menu
items are only active if you have write access to the model. The last example in fig. 2.12 c) shows
the edit menu for a model if it belongs to a model of type system.

Edit menu example in fig. 2.13 d) is activated when you select a relation between two model in-
stances in a system and then activate the Edit menu or the context menu. You can change the color
of relations (the lines connecting input and output ports) between model instances. You are also

2-23

2 Modeling with MLDesigner

a) b) c)

Figure 2.12: Edit menu examples

d) e)

Figure 2.13: Edit menu examples

2-24 MLDesigner Version 2.8

2.2 Graphical User Interface

able to add a Bus to a relation if the ports are of type multi-port. The option Orthogonal changes
the way the relation lines react when you click on nodes to arrange the layout of the connections.

Edit menu fig. 2.13 e) is activated in cases when you select a port in the Model Editor Window and
the open model is of type System. Here you have the additional options of adding Initializable or
Non-initializable delays as well as disconnecting or terminating ports. Selecting Terminate while
a port is selected, will disconnect and terminate the port simultaneously.

The following edit menu items are available in all model Model Editor Windows.

Undo Ctrl-Z Useful for reversing the last changes made to your
model or model and reverting back to the last
saved state.

Redo Ctrl-Y Useful for reverting back to last changed state of
a model or model.

Add Breakpoint This option is only available when MLDesigner is
in Simulation Mode and a model instance, primi-
tive, or port is selected in the Model Editor Win-
dow. Breakpoints are useful for debugging sys-
tems.

Edit Breakpoint The breakpoint settings can be changed while
in simulation mode. It is possible to deactivate
breakpoints or set the ignore count property of the
breakpoint.

Remove Breakpoint Deletes the highlighted breakpoints in the break-
point editor window.

Delete Del Deletes all selected objects in the active Model
Editor Window. This item is only active if you
have write access to the model and at least one
model element is selected.

Cut Ctrl-X Moves all selected objects in the active Model Ed-
itor Window to the clipboard. The contents of
clipboard can be used to paste the objects into any
other model. This item is only active if you have
write access to the model and at least one model
element is selected.

Copy Ctrl-C Copy all selected objects in the active Model Edi-
tor Window to the clipboard. The contents of clip-
board can be used to paste the object into another
compatible model. This item is active if at least
one model element is selected.

2-25

2 Modeling with MLDesigner

Paste Ctrl-V Copies the contents of the clipboard to the model
in the active Model Editor Window provided that
the content of the clipboard is compatible with the
model. This item is only active if you have write
access to the model.

Select All Ctrl-A Marks all model elements in the active Model
Editor Window including text labels and connec-
tions. You can then delete, copy or cut all items.

The following edit menu items are used to deal with models. The availability of menu options
depends on the type of model or model selected.

Online Documentation Alt-D Opens hypertext documentation for the model in
the active Model Editor Window or the model ref-
erenced by the selected model instance. If the
documentation does not exist, it is automatically
generated from the model.

Open Model M Opens the model of the model. This menu item is
available if a model instance is selected.

Open FSM F Opens an FSM model. This menu item is only
available if either the model opened in the active
Model Editor Window belongs to an FSM prim-
itive or the selected model instance refers to an
FSM primitive.

Open Source S Opens the primitive source file. MLDesigner
opens the primitive source code using a primitive
editor. This editor is a text editor that provides
you with editing capabilities like syntax high-
lighting and primitive specific functions. This
menu item is only available if the model opened
in the active Model Editor Window belongs to a
primitive model or the selected model instance
refers to a primitive model.

Open Base Primitive Opens the base primitive (built-in primitive). This
menu item is only available if the model instance
selected in the active Model Editor Window is a
primitive model component and is a special prim-
itive.

Compile Source Compiles the primitive source file. This menu
item is only available if the model opened in the
active Model Editor Window is a primitive or the
selected model instance is a reference to a primi-
tive model component.

2-26 MLDesigner Version 2.8

2.2 Graphical User Interface

Replace Instance Replaces the model instance selected in the active
Model Editor Window. A Select Model dialog is
displayed where you can choose he type of model
to replace the existing one with. Connections are
only maintained for ports with exactly the same
name as the existing model instance.

Select Tool Switches the cursor back to normal select modes.
This is the same as right mouse-click if the cursor
is in any other mode.

Dynamic Instance Creates a Dynamic Instance of the selected model
instance. See ch. 3.14 for more details.

Hide Port Labels This option is only active if port labels are vis-
ible and a model instance is selected. The port
labels can be turned off if the Model Editor Win-
dow gets too busy or as soon as you have con-
nected all model instances. The port label is set
by clicking the Formal Port of the Primitive or
Module to activate the Port Properties Editor in
the bottom left corner of the gui. The label can
only be changed if the module is saved in a write
environment.

Show Port Labels Makes the port label visible in the system or mod-
ule Model Editor Window. This can be use-
ful when connecting modules with multiple in-
put/output ports where the order of connection is
important. Once connections are made you can
turn the labels off again. The model appears much
neater with labels turned off. See Hide Port La-
bels.

Rotate Ports This option opens a sub-menu with the choice
of rotating the ports clockwise, anticlockwise or
180 degrees. This can be useful with imported
BONeS models if the port alignment is not satis-
factory (usually a problem if ports were rotated in
BONeS Designer).

Mirror Ports You can choose to mirror the ports on the X axis
or Y axis of the model instances. This option has
not been thoroughly tested on converted models.

Swap Ports Swaps port positions horizontally or vertically
without the connections crossing over.

Disconnect Connected Disconnects all connected ports of selected model
instances.

2-27

2 Modeling with MLDesigner

Terminate Uncon-
nected

Terminates the unconnected ports of selected
model instances in a system or module

Unterminate Termi-
nated

Unterminates all terminated ports of selected
model instances.

Background Color C Using this menu item opens a color dialog for se-
lecting background colors for models and models.

The following edit menu items are used to create new model elements within the model in the
active Model Editor Window. These menu items are only available if the model belongs to a
model of type library, system, module, or primitive. The configuration of the edit menu can differ
for models of different types. If you do not have write access to the model these items are disabled.

Add Model Instance B Creates a new instance of a model at the current
cursor position within the model. The model to
be embedded is selected using the Select Model
dialog.

Add Input Port I Creates a new input port at the current cursor po-
sition within the model in the active Model Editor
Window. The properties of the new input port are
set to default values and are changed using the
Property Editor.

Add Output Port O Creates a new output port at the current cursor po-
sition within the model in the active Model Editor
Window. The properties of the new output port
are set to default values and are changed using the
Property Editor.

Add Event E Creates a new event element at the current cur-
sor position within the model in the active Model
Editor Window. The properties of the new out-
put port are set to default values and are changed
using the Property Editor.

Add Memory M Creates a new memory element at the current cur-
sor position within the model opened in the ac-
tive Model Editor Window. The properties of the
new output port are set to default values and are
changed using the Property Editor.

Add Resource R Creates a new resource element at the current cur-
sor position within the model in the active Model
Editor Window. The properties of the new out-
put port are set to default values and are changed
using the Property Editor.

2-28 MLDesigner Version 2.8

2.2 Graphical User Interface

Add Text Label L Creates a new text label at the current cursor po-
sition within the model in the the active Model
Editor Window. The properties of the new label
are defined using the Property Editor.

The following edit menu items are only available for FSM models. If you do not have write access
to the FSM model these edit menu items are disabled.

Add State S Creates a new state in the FSM model in the active
Model Editor Window. The properties of the new
state can be changed using the Property Editor.

Create Transition A Starts the creation of state transition arcs. MLDe-
signer switches to the arc creation mode indicated
by a special cursor. In this mode, every click on
a state will create or complete an arc. To switch
back to selection mode click the right mouse but-
ton or the Select tool button . After creation you
can change the arc properties using the Property
Editor.

Add History A Starts the creation of History model elements.
MLDesigner switches to the History creation
mode indicated by a special cursor. In this mode,
every click on a state will create a History model
element. To switch back to selection mode click
the right mouse button or the Select tool button
After creation you can change the History prop-
erty to Recursive using the Property Editor.

Add Default Entrance A Starts the creation of Default Entrances. MLDe-
signer switches to the Default Entrance creation
mode indicated by a special cursor. In this mode,
every click on a state will create a Default en-
trance. To switch back to selection mode click
the right mouse button or the Select tool button
. After creation you can set the Default Entrance
action using the Property Editor.

2.2.8.3 View Menu

The zoom can be set between 12 % and 400 % of the original size. The default zoom value is
such that the whole model is visible in the active Model Editor Window. Figure 2.14 shows the
MLDesigner view menu. The view menu is only active if at least one Model Editor Window is
opened within the MLDesigner workspace.

Zoom In + Selects the next higher zoom level for the active
Model Editor Window.

2-29

2 Modeling with MLDesigner

Figure 2.14: View menu

Zoom Out - Selects the next lower zoom level for the active
Model Editor Window.

Zoom To Fit * Selects a zoom level for the active Model Editor
Window so the whole model is visible in the ac-
tive Model Editor Window.

Refresh F5 Redraws the model in the active Model Editor
Window.

2.2.8.4 Window Menu

The items of the window menu are used to control which window within the MLDesigner workspace
is the active Model Editor Window. Figure 2.15 shows the window menu. It is only functional if
there are at least two Model Editor Windows opened within the MLDesigner workspace.

Figure 2.15: Window menu

Close Ctrl-W Closes the active Model Editor Window. If the
model opened in the active Model Editor Window
has been modified, you will be prompted to save
your changes.

Close All Closes all Model Editor Windows. If there are
modified models open in the Model Editor Win-
dow you will be prompted to save your changes.

Next Ctrl-
Right

Switches to the next Model Editor Window, i.e.,
the next Model Editor Window within MLDe-
signer workspace becomes the active Model Edi-
tor Window.

2-30 MLDesigner Version 2.8

2.2 Graphical User Interface

Previous Ctrl-
Left

Switches to the previously active Model Editor
Window, i.e., the previous Model Editor Window
within MLDesigner workspace becomes the ac-
tive Model Editor Window.

Switches to cascade mode, i.e., all Model Editor
Windows have an arbitrary size and are placed at
arbitrary positions inside the workspace. Each
Model Editor Window can overlap the other in
this mode.

Tile Ctrl-T Switches to tile mode, i.e., the workspace is di-
vided into equally sized parts and all Model Edi-
tor Windows are visible.

Full Ctrl-F Switches to the full mode, i.e., all Model Ed-
itor Windows are sized to fit the whole of the
workspace area. Only the active Model Editor
Window is visible in this mode.

The window menu is a dynamic menu. In addition to the static items explained above, the window
menu contains a reference to the last four models or models opened. The active Model Editor
Window is marked with a grey box.

2.2.9 Using Toolbars
For faster access to operations, the MLDesigner graphical user interface has a number of toolbars.
The appearance of tools bars and and their configuration depend on the type of model or model
selected in the active Model Editor Window.You can hide the toolbars or shift them to any border
of the MLDesigner user interface.
MLDesigner uses three toolbars

• standard toolbar,
• Tree View toolbar,
• editor toolbar.

2.2.9.1 Standard Toolbar

The standard toolbar is always visible. Some options are only active if at least one Model Editor
Window is open and you have write access for the model or model selected in the active Model
Editor Window. Figure 2.16 shows the standard toolbar. In the following section the function of
each tool button is explained briefly. For more detail see sec. 2.2.8

Figure 2.16: Standard toolbar

New Model Invokes MLDesigner to create a new model of type library, sys-

2-31

2 Modeling with MLDesigner

tem, module, primitive, or FSM primitive. This tool button is
always active.

Open Model Opens a model in the active Model Editor Window or in a new
Model Editor Window. MLDesigner opens a new Model Ed-
itor Window if there is no Model Editor Window open or the
model is not compatible with the active Model Editor Window.
MLDesigner opens a dialog for selecting the model or file to
open. This tool button is always active.

Reload Model Reloads the model in the active Model Editor Window. This
tool button is only active if a Model Editor Window is open.

Save Model Saves the modifications to the model in the active Model Editor
Window. This tool button is only active if the model has been
modified.

Save All Models Save the modifications of all models in open Model Editor
Windows. This tool button is only active if the models have
been modified.

Print Model Prints the model in the active Model Editor Window. Models
can be sent directly to a printer or saved as a PostScript file.
This tool button is active if at least one Model Editor Window
is open.

Online Documentation Opens the document browser showing the hypertext documen-
tation for the model. The document browser is described in
more detail in This tool button is only active if at least one
Model Editor Window is open.

Delete Deletes all selected objects of the model in the active Model
Editor Window. This tool button is only active if you have
write access to the model and at least one model element is
selected.

Cut Moves all selected objects of the model in the active Model
Editor Window to the clipboard. The contents of the clipboard
can be used to paste the objects into another model. This tool
button is only active if you have write access to the model and
at least one model element is selected.

Copy Copies all selected objects of the model in the active Model
Editor Window to the clipboard. The contents of clipboard can
be used to paste the objects in another model. This tool button
is only active if at least one model element is selected.

Paste Inserts the contents of the clipboard in the model in the active

2-32 MLDesigner Version 2.8

2.2 Graphical User Interface

Model Editor Window provided that the content of the clip-
board is compatible with the model. This tool button is only
active if you have write access to the model and the clipboard
contains model elements that are compatible with the model.

Undo This tool button is only active if at least one Model Editor Win-
dow exists within the workspace and at least one change has
been made to the model.

Redo This tool button is only active if at least one Model Editor Win-
dow exists within the workspace and at least on undo step has
been performed.

Zoom In Selects the next higher zoom level for the active Model Editor
Window. This tool button is only active,if at least one Model
Editor Window is open in your workspace.

Zoom Out Selects the next lower zoom level for the active Model Editor
Window. This tool button is only active if at least one Model
Editor Window is open in your workspace.

Zoom To Fit Selects a zoom level for the active Model Editor Window where
the entire model is visible in the Model Editor Window. This
tool button is only active if at least one Model Editor Window
is open in your workspace.

Tree View Opens and closes the Tree View window. This tool button op-
erates as a check button. If the button is checked, the Tree View
window is visible. If the button is not checked, the Tree View
window is hidden. This tool button is always active.

Property Editor Opens and closes the Property Editor window. This tool button
operates as a check button. If the button is checked, the Prop-
erty Editor window is visible. If the button is not checked, the
Property Editor window is hidden. This tool button is always
active.

Console Window Opens and closes the console window. This tool button oper-
ates as a check button. If the button is checked, the console
window is visible. If the button is not checked, the console
window is hidden. This tool button is always active.

Data Type Editor Opens and closes the data type window. This tool button oper-
ates as a check button. If the button is checked, the data type
window is visible. If the button is not checked, the data type
window is hidden. This tool button is always active.

Previous Switches to the previously active Model Editor Window, i.e.,

2-33

2 Modeling with MLDesigner

the previous Model Editor Window within MLDesigner workspace
becomes the active Model Editor Window. This tool button is
only active if at least two Model Editor Windows are opened
within your workspace.

Next Switches to the next Model Editor Window, i.e., the next Model
Editor Window within MLDesigner workspace becomes the
active Model Editor Window. This tool button is only active
if at least two Model Editor Windows are open within your
workspace.

Cascade Switches to cascade mode, i.e., all Model Editor Windows have
an arbitrary size and are placed at arbitrary positions inside the
workspace. Each Model Editor Window overlaps the other in
this mode. This tool button is only active if at least two Model
Editor Windows are opened within the workspace.

Tile Switches to tile mode, i.e., the workspace is divided in equally
sized parts. The size of all Model Editor Windows is such that
each window is visible and regularly spaced. This tool button
is only active if at least two Model Editor Windows are opened
within the workspace.

Full Switches to full mode, i.e., all Model Editor Windows are sized
to fit the entire workspace. Only the active Model Editor Win-
dow is visible in this mode. This tool button is only active if at
least one Model Editor Windows is open within the workspace.

2.2.9.2 Tree View Toolbar

Above the Tree View lies a toolbar containing a number of buttons with icons for each model
(see fig. 2.17). These buttons are used to select which types of models are shown in the File
(physical) and the Library (logical) views. In the File View it is possible to filter out all types of
models including text based files such as primitive source and FSM model files. The Library View
contains items that refer to models of type library, system, module and primitive. Only items of
this type (excluding libraries) can be filtered out in the Library View.

Figure 2.17: Tree View filter toolbar

Show Libraries If the tool button is checked, library items are visible, in the
Tree View. This tool button is only active in the File View.

Show Systems If the tool button is checked, system model items are visible in
the Tree View. This tool button is always active.

2-34 MLDesigner Version 2.8

2.2 Graphical User Interface

Show Modules If the tool button is checked, module items are visible in the
Tree View. This tool button is always active.

Show Primitives If the tool button is checked, primitive items are visible in the
Tree View. This tool button is always active.

Show Probes Show Probes in the Probes Libraries.

Show Primitive Source Files If the tool button is checked, primitive source files are visible in
the Tree View. This tool button is only active in the File View.

Show FSM Models If the tool button is checked, FSM model items are visible in
the Tree View. This tool button is only active in the File View.

Show HTML Files If the tool button is checked, HTML file items are visible in the
Tree View. This tool button is only active in the File View.

2.2.9.3 Editor Toolbar

The editor toolbar is only visible if a Model Editor Window is open in the workspace. This tool bar
is dynamic; the availability of tool buttons depends on the type of model open in the active Model
Editor Window or the type of model selected in the active Model Editor Window. Figure 2.18
shows a typical editor toolbar. On clicking a tool button the cursor changes mode. To switch the
cursor back to normal mode, click the Select Tool button or the right mouse button.

Figure 2.18: Editor toolbar

Select Tool Switches the cursor back to normal selection mode. This tool
button is active if at least one Model Editor Window is opened
in the workspace.

Zoom Tool Switches the cursor to zoom mode. You can zoom in on a
section of the model by left clicking the mouse or by selecting
a zoom level from the context menu while the cursor is in zoom
mode. This tool button is always active if at least one Model
Editor Window is opened.

Pan Tool Switch to the pan mode. In pan mode, you can grab the model
background to move the the model in all directions. This tool
button is always active if at least one Model Editor Window is
opened.

The following tool buttons are only available in the editor toolbar if the model in the active Model
Editor Window is of type library, system, module or primitive. A different set of tool buttons is
used for Model Editor Windows that deal with FSM models. Most tool buttons are only active if

2-35

2 Modeling with MLDesigner

you have write access to the model.

Add Model Instance Switches the cursor to instance creation mode. In instance cre-
ation mode, you can create new model instances at the current
cursor position with a mouse-click.

Add Input Port Switches to input port creation mode. In input port creation
mode, you can create new input ports at the current cursor po-
sition.

Add Output Port Switches to output port creation mode. In output port creation
mode, you can create new output ports at the current cursor
position.

Add Event Switches to event creation mode. In event creation mode, you
can create new event objects at the current cursor position.

Add Memory Switches to memory creation mode. In memory creation mode,
you can create new memory objects at the current cursor posi-
tion.

Add Resource Switches to resource creation mode. In resource creation mode,
you can create new resource objects at the current cursor posi-
tion.

Add Non-Initializable Delay Switches to delay property creation mode. In delay property
creation mode, you can create delay properties at the current
cursor position.

Add Initializable Delay Switches to delay property creation mode. In delay property
creation mode, you can create initializable delay properties at
the current cursor position.

Add Bus Switches to bus property creation mode. In bus property cre-
ation mode, you can create bus properties at the current cursor
position.

Add Text Label Switches to text label creation mode. In text label creation
mode, you can create new text labels at the current cursor po-
sition.

The following tool buttons are available for FSM models. These tool buttons are specialized for
dealing with FSM models and are only active if you have write access to the FSM model.

Add State Switch to FSM state creation mode. In state creation mode,
you can create new FSM states. The properties of the new
states can be changed using the Property Editor.

Add Arc Switches to FSM arc creation mode. In FSM arc creation mode,

2-36 MLDesigner Version 2.8

2.3 Handling Models

every time you click on a state, an arc is created or completed.
After the creation of an FSM arc, the arc properties must be set
using the Property Editor

The availability of the following tool buttons depends on the type of model open in the active
Model Editor Window.

Open Model Opens a schematic of the model selected in a model or system.

Open FSM Opens the FSM model of the model. This tool button is only
available if the model in the active Model Editor Window be-
longs to an FSM primitive.

Open Source Opens the primitive source file. MLDesigner opens the primi-
tive source code within a primitive editor. This editor is a text
editor that provides you with editing capabilities such as syntax
highlighting and primitive specific functions. This tool button
is only available if the model in the active Model Editor Win-
dow belongs to a primitive model.

Compile Source Compile the primitive source file. This tool button is only
available if the model in the active Model Editor Window is
a primitive model.

Switch to Simulation Mode Activates the simulation run control toolbar, the Breakpoints
and Progress consoles, and the Simulation Properties win-
dow.

2.3 Handling Models
The following section explains the handling of models regardless of type. Themes explained in
this section are:

• Creating new models
• Copying existing models
• Opening, saving and closing models
• Deleting models
• Printing models
• Export/import of models

2.3.1 Creating New Models
To create a new model select New from the File menu or click the tool button New Model on the
standard toolbar. A Create New Model dialog where you define the properties of the new model
appears. See fig. 2.19.

2-37

2 Modeling with MLDesigner

(a) Create New Library (b) Create New Primitive

Figure 2.19: Creation Dialog for the Example

• Type of Model - From the drop-down menu select the type of model you wish to create.
This can be of type Primitive, Module, System, Library, FSM, or Probe.

NOTE: It is not possible to change the type of model after its creation.�

• Logical Name - In this field you must define a logical name for the model. The logical
name is used to identify the model in the Library View. The logical name is also visible in
the title bar of the Model Editor Window and in the tool tip text if you hold the mouse over
an instance of the model.

• Library - Here you can select the library to which the new model will belong. This deter-
mines the location of the new model both in the physical and the logical model hierarchy.
The new model becomes a sub-directory of the chosen library and is identified in the File
View of the tree window by its physical name. The same item in the Library View is iden-
tified by its logical name. Click the icon on the right of the library text field. A pop-up
window is displayed where you can select a location to save the model. Here you have the
option of selecting a directory in the File View or a Library in the Library View.
If you want to create a new library leave this field empty. The new library will be located in
$MLD USER (normally ˜/MLD.) as a top-level directory identifiable by its physical name
in the File View and by its logical name in the Library View.

• Modeling Domain - If the new model is of type system, module, or primitive select the
domain that defines the model of computation for the model from the drop-down menu. If
you select an experimental, unsupported domain, you will see a warning message.

2-38 MLDesigner Version 2.8

2.3 Handling Models

• Derive - If the new model is of type primitive, this field is used to define from which existing
primitive models the new one will derive, i.e., from which primitive the new one inherits
model parameters, ports, memories, events and resources.

• Physical Name - In this field you can define the physical name of the new model component.
If no physical name is entered, it is generated from the logical name and all characters which
are not letters or digits are replaced with an underscore (). Either the physical or the logical
name must be defined.

• Physical Location - This field is only active for top-level libraries and is used to specify the
model base (My Library or Shared Libraries) where the library and all models
such as primitives, modules or systems contained in the library are stored.

• Group Permissions - While creating a new library, you can set access rights for members
of your user group. By default the group members have read and write access to the models.
If you create any other type of model, i.e., system, module, or primitive permissions are
determined by the library to which the new model will belong.

• World Permission - While creating a new library, you can set the access rights for users
that do not belong to your UNIX user group. By default, other users have only read access
to your models. If you create any other type of model, i.e., system module, or primitive, the
permissions are determined by the library to which the new model will belong.

• Description - This description is used for tool tip texts generated for instances of the new
model as well as for short descriptions in automatically generated online model documen-
tation.

• Load Mode - Defines the load mode. This property is only available for primitives and
probes. FSM primitives do not use this option. You can select the load mode as Dynamic or
Permanent. If you select load mode Dynamic , a shared object containing the primitive
code is created on loading. This shared object is linked dynamically to MLDesigner so the
primitive can be reloaded after changes are made to it. In contrast, by selecting load mode
Permanent, the primitive is linked to MLDesigner on startup as is the case with built-in
primitives (MLDesigner Libraries). Changes to permanently loaded primitives or probes
only take effect after shutting down and restarting MLDesigner.

NOTE: It only makes sense to set the load mode to Permanent if you are going to create �
new primitives derived from the permanently loaded primitive. In such cases the
permanently loaded primitive is known as the base primitive.

MLDesigner checks whether there is already a directory or a model with the same physical name
in the directory of the selected library. If there is either a directory or a model with the same
physical name, a warning message displays. In that case, you must change the physical name of
the new model or select another library to save the model in.

It is possible to give the new model the same logical name as an existing model in the same
location.

NOTE: It is NOT possible to create a primitive with the same physical name in the same domain �
regardless of the location. Primitives must be given unique names.

The new directory contains all files necessary to describe the model.

2-39

2 Modeling with MLDesigner

Dependent on its type these are:

• An XML (eXtensible Markup Language) model file with extension .mml and filename that
corresponds to the Physical Name, e.g. SDFMy Primitive.mml.

• A file containing the hypertext documentation of the model in HTML format, e.g. SDFMy
Primitive.htm,

• In case of a primitive, the primitive source file that serves as a template defining the func-
tionality, e.g. SDFMy Primitive.pl.

• In case of a primitive, a makefile needed for its compilation.

MLDesigner creates a reference to the new model within the selected library thereby integrating
the new model in the logical model hierarchy (Library View). You can create further model ref-
erences for the new model within other libraries to realize a logical model hierarchy that differs
from the physical model hierarchy.
On clicking the OK button of the Create New Model dialog the new model is opened in your
work area if it is of type system, module, or primitive.

2.3.2 Copying Existing Models

When copying models it is not necessary to define all the model properties. Most of the properties
are defined by the original model and are not modified for the copy. There are two ways to copy
existing models.

The first way is similar to the creation of new models. Either select the component in the Tree
View window and select Save As from the context menu or open the module or primitive to be
copied and select File - Save As. A Save As New Model dialog is displayed where the logical
and the physical name of the copied model can be defined and the library to which the copied
component will belong can be selected. All other properties are taken from the original model and
cannot be changed.
The editable fields in the Create New Model dialog are:

• Logical Name - Define a logical name for the copied model. For detailed information on
the logical name, see sec. 2.3.1. The default value for this field is taken from the original
model.

• Library - Select the library to which the copied model component will belong. This deter-
mines the location of the copied model both in the physical and the logical model hierarchy.
(See sec. 2.3.1.)

• Physical Name - Define the physical name of the copied model. If no physical name is
given, it is generated from the logical name. For detailed information on the physical name,
see sec. 2.3.1. The default value for this field is taken from the original model.

Once you have defined all the necessary properties click the OK button to create a copy of the
model. As with the creation of new models, MLDesigner checks for the existence of models with
the same physical or logical name saved in the same location. (See sec. 2.3.1).

2-40 MLDesigner Version 2.8

2.3 Handling Models

The second way to copy a model is to drag & drop a model over any directory in Tree View and
select Copy or Duplicate from the appearing pop-up menu. See sec. 2.2.5.7 for further details.

NOTE: There is a very important difference between Save As on the one hand and Copy and �
Duplicate on the other hand. Save As copies the model directory and only files which
are necessary to describe the model, this are makefile, mml and pl file. Otherwise
Copy and Duplicate copy the model directory including all files and sub-directories.

2.3.3 Creating Special Primitives

MLDesigner supports primitive definitions that specify how many input or output ports they have
such as the SDF primitives Add found in the Arithmetic library and Fork primitive found in
the Control library. Open the source code by clicking Open Source on the toolbar. You will
see the port definition for the Add input port:

inmulti
{
name {input}
type {float}

}

As you can see the port is a multiple port and can accept particles with Data Type float.
The primitive Add has a double arrow input port when instantiated in a module or system. This
is a multiple input port that allows you to connect any number of signals to it, if the domain in
which the model is developed, has a built-in merge or fork primitive. It is not easy to read such
block diagrams to determine which port represents what. A solution is to instantiate a special
primitive where the exact number of ports is defined and graphically displayed when the special
is instantiated. Each input port or output port of a special primitive has a unique identifier and can
accept only one connection.

There are three ways to work with primitives that have multiple-input or multiple-output connec-
tions.

• You can draw multiple connections to or from the double-arrow porthole. This has some
limitations as it is not possible to control what order the connections will actually be made
in. That is not critical for an Add primitive, but for some primitive types it is important to
know which connection corresponds to which element of the multiple ports. In some cases
such as in the SDF domain, it is not possible to have multiple connections to a port as the
domain does not contain a built-in merge primitive.

• You can attach HOF primitives (Nop) that realize “bus create” or “bus break out” to the
multiple ports , choosing one that provides the right number of ports for the model. The
Nop primitive fires in the order of the connections made. These primitives are available in
MLD Libraries/HOF Domain in the Library View.
This solves the problems with multiple connections to a single multiple input port, but may
not make an easy to read block diagram.

2-41

2 Modeling with MLDesigner

• You can instantiate a special primitive with the specified number of simple ports. This is
what the two-input Add model actually is. The result is an easy to interpret block diagram.

A number of special primitives with a predefined number of input and output ports exist in MLDe-
signer . These special models are not visible in the tree view because navigation of the libraries is
easier without long lists of references to specialized versions of a primitive. These special primi-
tives define the exact number of input or output ports and gives each port a unique identifier. The
purpose of the special primitive is to make the systems and modules easier to interpret as each
transition between multi-portholes can be clearly traced. To instantiate a special primitive, drag
and drop a primitive with multiple input or output ports into a system or module. A Select Special
Primitive dialog displays. You must select the appropriate special primitive from the list of exist-
ing primitives. If you do not find a special primitive with the appropriate amount of ports, you can
create your own special primitive. An example of how to create a special model primitive that has
17 single input ports based on the existing Add primitive, that supports multiple inputs, follows.

• Go to MLD Libraries/SDF/Arithmetic/Add.
• Activate the context menu with the cursor over the Add entry in the Tree View. (This can

be done in the Library View or the File View.)
• Choose Save As. Give the primitive a unique name and save it to one of your libraries. You

can give the new special a logical name that differs from the physical name. The logical
name can be set to be the default name if the correct options are selected in the Settings
dialog. See the menu bar item Settings - Model Editor - Set Logical Name as Label for
New Instance option. Notice the radio button option group Specials shown in fig. 2.20.
The option include means that all .mml files describing the special primitive’s interface
are copied to the new library.

• Find your newly saved Add primitive and activate the context menu.
• Choose Create Special to activate the Create Special Primitive dialog.
• The Add primitive has a multiple input port and a single output port. As a result only the

Input ports drop-down menu is active. Select Input from the drop-down menu to activate
the New Value dialog.

• Type 17 in the input field and click OK.
• In the field Physical Name you can see the physical name of the special primitive. If you

want you can enter a logical name in the field Logical Name.
• If you have finished the special primitive definition you can click on Create button. An

error message displays if a special exists with the same number of ports (and following with
the same physical name).

While creating special primitives it is not possible to edit incorrect entries. To remove any spe-
cials close the Create Special Primitive dialog and activate the Delete Special Primitive dialog by
choosing Delete Special item from the context menu. Choose the special you want to delete and
click on OK button.

From the drop-down menus of the Create Special Model dialog shown in fig. 2.21, you can con-
clude that it is also possible to create special models with predefined parameter values. In this
example the other two fields Output Ports and Parameters are not active.
An example of a primitive with predefined parameter values can be found in the SDF Domain/-
Logic library and is called Logic. This is a special case of a primitive having predefined func-

2-42 MLDesigner Version 2.8

2.3 Handling Models

Figure 2.20: “Save as” Including Specials

Figure 2.21: Create Special Primitive Dialog

2-43

2 Modeling with MLDesigner

tions where the name of the primitive determines the function it performs. The Logic primitive
is instantiated by clicking and dragging the primitive into the Model Editor Window. A dialog dis-
plays and the special you need must be selected from the list of. (Look at the setup() method
in the primitive source code.)

Figure 2.22: Create Special Primitive - Parameter Logic

2.3.4 Create Model from Source
This section is of interest to those who have stars (primitive source code) created using Ptolemy
or have written primitive source code by hand. These source code files are defined using the
Ptolemy markup language and have the extension .pl. MLDesigner has a tool to convert source
code files and include them in the MLDesigner standard libraries. If you have created your own
Ptolemy stars and would like to incorporate them into MLDesigner, you need to save the .pl
files to a $MLD USER library, where you have read/write permission. These files will then be
visible in the File View window of MLDesigner if you have checked the filter icon for primitive
source files.

Activate the context menu over the relevant item indicated by the primitive name with the .pl
extension. Select the menu option Create Model to open the Create Model from Source dialog.
The input fields Logical Name and Library can be entered. The Physical Name field is not
editable. Click OK to convert the source files to MLDesigner primitives, the parser checks for
name conflicts with MLDesigner standard libraries. If a built-in primitive with the same name
already exists, you will not be a allowed to convert the .pl file to a user defined built-in primitive

2-44 MLDesigner Version 2.8

2.3 Handling Models

unless you change the physical name and edit the appropriate reference to the filename in the
source code.
To convert source code files with name conflicts to an MLDesigner type, proceed as follows:

• Open the source code of the Filename.pl file.
• The reference to the name is normally in the first couple of lines of code and looks like this

defstar {
name { Filename }

• Change the Filename in the source code to Filename new.
• Save the file as Filename new.pl in an MLDesigner user library.
• You can now select the primitive file in the File View window of MLDesigner and activate

the context menu with the right mouse. (If you do not see the source code file, check the
Show Primitive Sources icon in the tree view filter toolbar).

• Choose Create Model from the context menu. You can now create a MLDesigner primitive
with the same physical name as the primitive source code file Filename new.

2.3.5 Open Existing Models

There are different methods for opening existing models in both the File View or the Library
View:

• Double-click the model item in the Library or File View or select Open Model from the
context menu.

• Use the file menu or the tool button Open Model.

The context menu item is only available if the selected item refers to a model of type library,
system, module, or primitive including FSM primitives.

NOTE: Consider which Tree View filters are activated by the check buttons in tree filter toolbar. �
(See sec. 2.2.5 and sec. 2.2.9.2.)

If the selected item refers to a primitive source file, you can use the context menu item Open
Source to open the primitive source in a new Primitive Editor. If the selected item refers to an
FSM model, you can use the context menu item Open FSM to open the FSM model within a new
FSM Model Editor. Using the context menu has the same effect as double-clicking on the relevant
item in the Tree View window.

Another way to open a model is to use the file menu item File - Open which has the same effect
as using the tool button Open Model. This opens a dialog from which you can select the model
component you wish to open (See figreffig:3-28). After selection, click the OK button to open the
model. If the selected item refers to a primitive source file, it is opened within a Primitive Source
Editor. If the selected item refers to an FSM model, MLDesigner opens the file with the FSM
Model Editor.

2-45

2 Modeling with MLDesigner

2.3.6 Model Update
Whenever you open a library, primitive, module, or system in MLDesigner , the XML file (.mml)
is parsed by the version mapper. If the version number is lower than the actual number of your
installed version of MLDesigner , a Model Update dialog is displayed (see fig. 2.23). If the version
number is higher than the actual number of your installed MLDesigner version, the model cannot
be opened.

In case of a lower version number, there are two options to choose from:

• Save - The model version is updated to the current version number and all other changes are
updated.

• Cancel - A temporary file is generated ensuring that you can run simulations and use the
model instance in systems for the duration of your MLDesigner session. On shutdown of
MLDesigner , all references to the model are deleted. You will be prompted to update the
model when you attempt to open it in a later session using MLDesigner .

You can save the model to ensure faster loading the next time you open the model and to avoid
being prompted to update the model every time you open it.

Figure 2.23: Update Model dialog

2.3.7 Deleting Models
When deleting models from libraries or model bases you must remember the differences between
the File View and the Library View.
As described in sec. 2.2.5 the Library View is a view of the model base hierarchy resulting from

2-46 MLDesigner Version 2.8

2.3 Handling Models

logical relations between models. Deletion of a logical relation is only possible in Library View
by selecting the Remove Reference item from the context menu over the model reference.

To physically delete a model, you must select the item Move to Trash from the context menu
under the File or Library View tab. The model is moved to Trashcan.
From the Trashcan it is possible to restore deleted models or permanently remove them from the
system. You can also remove models from the File View by moving them to the Trashcan using
the drag and drop function. It is also possible to select more than one item for deletion by pressing
Ctrl while selecting items with the mouse.

NOTE: Before deletion of a model component ensure that the deleted model component is not �
open in a Model Editor Window.

Remember, the same model can be instantiated or referenced by more than one model. Deleting a
model physically before removing all references to this model in other model libraries can result
in library inconsistencies. Such inconsistencies are indicated in the library by a broken icon. It is
possible to remove the broken icon using the context menu option Remove Reference.
Deleting a model physically can lead to inconsistencies if other models contain instances of the
deleted model. If you open a model containing instances of models that no longer exist, an error
messages is displayed and the model cannot be opened.

After deletion of a model it is sometimes necessary to update the tree view affected. To do this
select Refresh from the context menu in the Tree View.

2.3.8 Printing Models
You can print models of type library, system, module, and primitive as well as FSM models if they
are open in the active Model Editor Window.

Printing

To print the model in the active Model Editor Window, use either the file menu item File - Print
or the tool button. The print job commences immediately. The Print dialog is used to configure
the printer as well as the document before printing (see next section). Once you are happy with
your printer settings, click Print in the Print window.
The output format used for the printing function is PostScript. This is the most common printing
format for UNIX. Normally the printer supports PostScript format or processes are running in
the background to convert the printed PostScript to a language supported by the printer. The
printer device can also print the model to a PostScript file. fig. 2.24 shows an example of printed
document.

Printing Configuration

Before you start printing, you should configure the printer device as well as the printed document
by using the Print dialog.

NOTE: The configuration of the printed document also affects the export of the vector graphic �

2-47

2 Modeling with MLDesigner

XML Model: file:$MLD/MLD_Libraries/FSM/Demo/digiWatch/Timer/Timer.mml#Timer [Module]

Unknown - Sun Jul 8 2001 17:57:23

Counter#1

Counter#2

Counter#3

SecTimer#1�

Fork.output=2#1
�

1
2

Fork.output=2#2
�

1

2

Logic.input=1.logic=NOT#1

Logic.input=1.logic=NOT#2

Logic.input=2.logic=AND#1

Logic.input=2.logic=AND#2

Logic.input=2.logic=OR#1�

Logic.input=2.logic=OR#2�

Logic.input=2.logic=OR#3�

BlackHole#1�

time

resetSec

incrMin

incrHr

incrDay

second

minute

hour

day

second

minute�

hour�

day�

time�

incrMin�

incrHr

incrDay

resetSec

Figure 2.24: Printed model example

to a file.

Figure 2.25: Print setup dialog

Use the file menu item File - Print to open the print configuration dialog (see fig. 2.25). To con-
figure the printer click the button Printer Setup. This opens the printer configuration dialog (see
fig. 2.26).

In the Printer Setup dialog, you can select printers and printer related options such as paper size
and paper orientation.

• Print destination - Define the destination of the printed model.

Print to printer Check this radio button to define the printer as destination for
printing. If this option is activated, you can select the printer
from the list of known printers shown below this radio button.

2-48 MLDesigner Version 2.8

2.3 Handling Models

Print to file Check this radio button to save the output in a file in Postscript
format. You can either edit the file location line or click the
Browse button to select a directory and specify a filename.

• Printer settings - Define whether printer is color or grey-scale. Normally, the default option
can be used, since all monochrome printers can interpret color output.

• Paper format - Define the paper format. This option is used to define the printing orienta-
tion and paper size.

• Options - Define several miscellaneous options. Some options are only available if docu-
ment is larger than one page.

- Define whether you want to print all pages or certain pages.
- Define the order of printed pages.
- Specify the number of copies of the printed document. Usually the value of this

option is 1.

Figure 2.26: Printer Configuration Dialog

Click OK to return to the Print dialog.

• Headline - Define the headline text for the printed document. The check box to the left
of the edit field determines whether a headline is generated. If selected you can define the
headline text format. The headline is centered at the top of the printed document. You can
enter your own headline or use the predefined symbols to generate the headline.
The predefined symbols for generation and formatting of headlines are explained here.

$NAME Includes the physical location, the model component type, and the logical
name (if there is one). The information is the same as shown in the headline
of the Model Editor Windows.

$AUTHOR Includes the author of the model. The author is the owner of the physical
files of the model component identified by the UNIX user name. If a real

2-49

2 Modeling with MLDesigner

name for the UNIX user is registered, the real name is used.

$DATE Includes the last modification date of the physical files of the model compo-
nent.

$TIME Includes the time the physical files were last modified.

• Footline - The check box to the left of the edit field determines whether a footline is gener-
ated. If selected you can define the footline text format as described under Headline. The
footline is centered at the bottom of the printed document.

• Draw Bounding - Define whether a bounding box is drawn around the model graphic.
• Scale - Define the scaling of the model. Here you can define the size of the printed doc-

ument. By checking the box Keep Aspect Ratio, the ratio between width and height is
preserved. There are three options for modifying the scale.

Pages Modify the size given by the number of pages.
Size Modify the size given in millimeter.
Zoom Modify the size given as a percentage of original size.

Once you are happy with your settings click Print.

2.3.9 Exporting EPS
You can export a models as a vector graphic. Select Export EPS from the File menu. MLDe-
signer opens a file selection dialog where you can select the directory and specify the filename.
The format of the exported vector graphic is Encapsulated PostScript (EPS). EPS is a text based
standard format for exchanging and embedding vector graphics into documents. There are tools
available to convert the resulting EPS file into other formats. It is possible to embed the exported
vector graphic representation of the model into different document formats. To format the EPS
file use the Printer Setup dialog (See above).

2.4 Shared Libraries
It is possible to develop a library within the environment specified by the $MLD USER environment
variable and then move this library to the shared environment specified by the $MLD SHARED
environment variable. However, since the $MLD USER variable is dynamic (because it can be
different for every user) the following prerequisite applies.

• All modules and files needed by systems in the library must be located within this library,
or in a location that never changes, such as the directory to which $MLD SHARED and
$MLD point.

The reason for this is that the systemName.mml file contains references to all model elements
needed for the system to function. If these variables change then MLDesigner will not be able to
locate the missing model elements.

2-50 MLDesigner Version 2.8

2.4 Shared Libraries

When starting MLDesigner the environment variable settings are printed in the shell. For those
that need to share their work with a workgroup, the MLD SHARED environment variable should
point to a directory where all members of the workgroup have read/write rights.

NOTE: This directory is only visible in the File view if the MLD SHARED environment variable �
has been set.

To set the environment variable type the following:

For bash or shell command lines enter:

export MLD_SHARED=˜/Directory/..

and for tcsh and csh command lines enter:

setenv MLD_SHARED=˜/Directory/..

2.4.1 Exporting a Top Level Library to Shared Libraries
There are two methods for moving a Library to the Shared Libraries directory or any other top
level directory. The first is to tar the library into an archive and untar it in the appropriate location.
The second method is exactly the same as the first except it is performed using the MLDesigner
GUI. The library is first exported as a tar archive using the context menu over the library and then
imported into Shared Libraries using the context menu over the directory folder in the tree view.

The dependency checking mechanism ensures that all models used or referenced by models in
the library you are exporting are listed as separate entries in the Export Library dialog. You can
choose whether to export all libraries listed or not. To deselect a listed library click with the cursor
in the appropriate check box to remove the tick sign.

2.4.2 Export Libraries
To export an archive activate the context menu over a top level library in the tree view and select
Export Library from the menu (see fig. 2.27). Exporting of libraries is restricted to top level
libraries only. The following formats are supported:
*.tar *.tar.gz and *.tar.Z
The specified directory should be a directory where read/write rights have been set for a work-
group.

2.4.2.1 Protecting Intellectual Property

Intellectual property can be protected if needed. Deselecting the include .pl files check box, in
the Export Library dialog, ensures that only compiled objects .o files are exported to the archive.
Note that precompiled systems are platform dependent. It is not possible to export precompiled
objects and execute the simulation on another platform. To do this the entire library must be re-
compiled after being exported and untarred.

2-51

2 Modeling with MLDesigner

With extremely large systems the size of the archive could be an inhibiting factor. To reduce the
size of the archive exclude the .htm online documentation and the .o files.

Figure 2.27: Export Top Level Library Dialog

2.4.3 Import Libraries
The Import Libraries option is only available in the context menu over the top level libraries My
Libraries and Shared Libraries in the File view.

NOTE: Ensure that all modules or primitives used by systems in the top level library are stored�
in that library. If this is not the case the library that contains the module or the module
itself must also be exported to the shared library. If the module is exported to the library
the reference to it must be changed by re-instantiating the module in the relevant system.

To import .tar archives to the top level Directories MyLibraries and Shared Libraries choose
the menu option Import Library from the context menu in File view. The import dialog shown
in fig. 2.28 allows selection of tarred and zipped archives with formats
*.tar *.gz *.tgz and *.Z .
The untarred archive will appear as a top level library in the tree view.

2-52 MLDesigner Version 2.8

2.4 Shared Libraries

Figure 2.28: Import Top Level Library Dialog

2.4.4 Environment Variables and Dynamic Referencing Mech-
anism

For a better understanding of the dynamic referencing mechanism read the following example:
Lets assume, you design a system ”S1” in a top level library ”L1” that uses an instance of a module
”M1” from the same top level library ”L1”. The reference to the module in the ”S1.mml” file is
stored as follows:

class="file:$MLD_USER/L1/M1/M1.mml"

However, when you instantiate a module ”M2” from another top level library ”L2”, the reference
is

class="file:$MLD_USER/L2/M2/M2.mml"

That is, the reference points to a location that depends on the user’s setting of the $MLD USER
variable.
What happens if you started to develop your model with $MLD USER variable set to ”/home-
/shared/MLD” and then changed the environment variable to /home/users/MLD. The refer-
ence would point in our example to

class=’’file:/home/shared/MLD/L2/M2/M2.mml’’

in the first case and

2-53

2 Modeling with MLDesigner

Figure 2.29: Library Structure and System

class=’’file:/home/users/MLD/L2/M2/M2.mml’’

in the second. This would not be a problem if library ”L2” would already be moved to $MLD SHARED,
since the reference would be

class="file:$MLD_SHARED/L2/M2/M2.mml"

and this should be the same for all users.
In other words developing a library within $MLD USER and then moving it to $MLD SHARED
works for top level libraries as long as all models inside the library use modules from the same
library or from a library located at $MLD SHARED.

A top level library is located directly below $MLD USER or $MLD SHARED. All the libraries
you can see as top level items in the library view are top level libraries.

2.4.5 Set User Environment Variables
It is possible to set your MLD USER environment variable to point to a project library or external
library. Lets assume you want to work on a project called MLD.project. This project is the
$MLD USER directory of another user. You want to access the systems and share libraries that
exist in the other user’s environment. Enter the following command where you would normally
open MLDesigner.

For bash or shell command lines enter

export MLD_USER=˜/MLD.project

And for tcsh and csh type command lines.

setenv MLD_USER ˜/MLD.project

You have now changed your environment. Shut down and restart MLDesigner as usual. The li-
braries you see will be those of the other user and not your own. You could also do the same

2-54 MLDesigner Version 2.8

2.4 Shared Libraries

locally on your own computer if you wanted to separate libraries and projects. You can create a
new directory ∼/MLDProject in your home directory. Set your MLD USER environment vari-
able to point to the new directory. When you open MLDesigner again you will see the tree view
with MLDesigner libraries and no user libraries. You could then create a top level library with
read and write rights for a workgroup on your network.

At the moment there is no version control mechanism within libraries when numerous designers
are working on one project. As a result the team members must communicate with each other
regarding who is going to make changes to the systems or libraries and when. With version 2.3 a
mechanism will be in place where copies of files will be saved with version numbers and the file
will be read only for all other members of a team as soon as a module or system is opened.

NOTE: If you set MLD SHARED variable to model libraries that are normally stored in $MLD USER,�
those models contain a lot of references to $MLD USER/.... When you now copy a
model from MLD SHARED to MLD USER, MLDesigner tries to replace all $MLD SHARED/...
(the origin of the copy operation) by $MLD USER/.... If you have a different library
structure in your models, references can become invalid by such an operation.

2-55

Chapter 3

Developing Models

In sec. 2.3, the handling of model components, including their creation, opening and deletion was
described. This section describes the construction of functional models for model components of
type library, system, module and primitive. It does not describe the construction of FSM models.
For detailed information on how to develop FSM models, refer to ch. 24.

3.1 Introduction

MLDesigner allows you to construct models schematically using design windows. The schematic
of a model is also known as a Block Diagram or System. “Design windows” (otherwise known
as block diagram editor) provide you with graphical model construction capabilities. By placing
model instances (blocks or modules) in the design area, and connecting them, the functional be-
havior of the model component is represented schematically. The model instance can reference
predefined library modules or new modules, whose functional model can be provided later, in
“top-down fashion”.
In addition to the model instances and the connections between them, a model can contain other
model elements such as:

• model instances
• input and output ports
• shared elements
• connections
• parameters and target parameters
• text labels
• delay properties, and
• bus properties.

Note that not all these model elements can be used in all types of models. The type of model and
the modeling domain of the model component determine what kind of model elements can be used
for functional modeling.

3 Developing Models

3.2 Steps to Develop Models
Models are manipulated in Model Editor Windows by using the command options found in the edit
menu, the context menu, or on the editor toolbar. The construction of a model using MLDesigner
normally involves some or all of the following tasks:

• Creating or opening a model;
• Editing the common model component properties (see sec. 3.3);
• Adding input and output ports (see sec. 3.4);
• Adding parameters and specifying the default values (see sec. 3.5);
• Adding shared elements (see ch. 10);
• Adding model instances and editing their placement (see sec. 3.6);
• Setting parameters of model instances;
• Connecting model instances and placing connection property elements (see sec. 3.8);
• Saving the model.

To construct a new model you must first create the model components

sinMod Example. Step 1.

This example takes you through the steps required to create a complete model.EX
The first step is to create a library to group all the components. You will then create the System
and Module components. This is done as follows:

1. Click the tool button New Model to open the Create New Model dialog.
2. Select Library from the Type of Model drop-down menu.
3. Enter the Logical Name as Sine Modulator Library.
4. Leave the Library field empty.
5. Type This library contains a sine modulator as Description.
6. Click the OK button.

You now have a top level Library in the Library view with the name Sine Modulator Li-
brary and in the File view with the name Sine Modulator Library as a sub-entry of the
MyLibraries directory.

7. Click the tool button New Model to open the Create New Model dialog.
8. Select Systemfrom the Type of Model drop-down menu.
9. Enter the Logical Name as Sine Modulator System.

10. Select the library Sine Modulator Library.
11. Select SDF from the Modeling Domain drop-down menu.
12. Enter This is the sine modulator system model. as Description
13. Click the OK button.

14. Click the tool button New Model to open the Create New Model dialog.
15. Select Modulefrom the Type of Model drop-down menu.
16. Enter the Logical Name as Sine Modulator.
17. Enter This is the modulator model. as Description

3-2 MLDesigner Version 2.8

3.3 Modifying Model Properties

18. Click the OK button.

19. Use the tool button New Model to open the Create New Model dialog.
20. Enter the Logical Name as Sine Generator.
21. Enter This is the generator model. as Description
22. Click the OK button.

Now you have created the model components including the library needed for this example. As
explained in ch. 2.3, MLDesigner opens a Model Editor Window for each created model compo-
nent excluding libraries. You should now have three design windows open in the workspace.

The models created for our example have predefined properties according to the values we speci-
fied in the Create New Model dialog (see fig. 3.1). To view the parameters in the Property Editor
for these models, switch to the relevant Model Editor Window. Example continued on 3-10.

(a) Sine modulator system (b) Sine modulator module

Figure 3.1: Model properties of the example

3.3 Modifying Model Properties
Every model has a number of properties in common. The properties assigned to a model depend
on the type of model component it belongs to. Table 3.1 summarizes the common properties and
their availability for the different model types. These properties can be edited in the Property
window. The model properties are:

3-3

3 Developing Models

Logical Name Defines the logical name of the model component. The logical name is
used to identify the model component in the Library view. The logical
name is shown in the headline of the Model Editor Window and is a string.

Model Type Defines the type of the model component. This could be of type Primitive,
Module, System, or Library. It is not possible to change the value of
these properties once the component or module has been created.

Copyright Defines the copyright notice. For primitives, the copyright is used to gen-
erate the copyright item in the primitive source code. This property is
a free text string.

Version Defines a version number string. For primitives, the version string is used
to generate the version item and must follow the conventions for the
version string described in sec. 13.5.1.5. For all other types of model
component the version string is free text.

Domain Defines the modeling domain, that determines the model of computation
for your model component. The property value is selected using a drop-
down menu which contains entries for all known domains. If you select an
experimental, unsupported domain, a warning message is displayed. For
primitives this property is used to generate the domain item in the prim-
itive source code. This property cannot be changed in primitive models.

Target Defines the target or top-level manager for the execution of the model.
This property is only available for systems and modules. The value is se-
lected from a drop-down menu. The drop-down menu contains all possible
targets applicable to the selected model component/domain.

Import Libraries This field is normally completed. This is necessary, if you want to use
composite data types (data structures) for model elements like parameters,
ports and shared model elements (see sec. 12.3.5). You have to import the
libraries before you can use the relevant data structure types.

Load Mode Defines the load mode. This property is only available for Primitives and
Probes. FSM primitives do not use this option. You can select the load
mode as Dynamic or Permanent. If you select load mode dynamic ,
a shared library containing the primitive code is created on loading. This
shared library is linked dynamically to MLDesigner so the primitive can
be reloaded after changes are made to it. In contrast, by selecting load
mode permanent, the primitive is linked to MLDesigner on startup as
is the case with built-in primitives (MLDesigner Libraries). Changes to
permanently loaded Primitives or Probes only take effect after shutting
down and restarting MLDesigner.

NOTE: It only makes sense to set the load mode to Permanent if you�
are going to create new primitives derived from the permanently
loaded primitive. In such cases the permanently loaded primitive
is known as the Base primitive.

Derive This property is only available for Primitives and Probes. A Select Prim-

3-4 MLDesigner Version 2.8

3.4 Modeling Input/Output Ports

itive dialog shown in fig. 3.2 displays from which you must select a Prim-
itive or Probe. The derived primitive inherits all ports, parameters and
shared model elements such as Events, Memories and Resources. Spe-
cial descriptions for multiports are not included in the new derived primi-
tive. A single multiport replaces special primitive port layouts. To create
a special of a derived primitive select the Create Special context menu
option over the instance in the tree view. The derived option can be set
in the Create New Model dialog or by clicking the icon in the Value
field next to Derive in the Property Editor window. Used to generate the
derivedfrom item in the primitive source code.

Figure 3.2: Select Primitive to Derive From

Compile Options This property is only available for primitive models. You can use this
property to define a string of additional compiler options such as additional
include search paths.

Description The description is a summary of the functionality of the model and is used
for generating tool tip text. The text is also used as a short description for
the hypertext documentation of the model component. For primitives, the
description generates the desc entry in the primitive source code.

Documentation This property generates the hypertext documentation of the model compo-
nent. Clicking the button in this field opens a text editor. HTML construc-
tors to define a structured hypertext documentation can be entered. For
primitives, the documentation property is used to generate the htmldoc
item in the primitive source code.

3.4 Modeling Input/Output Ports
When creating new model components, you must define its interface, consisting of input and/or
output ports, parameters and shared model elements such as events, memories and resources.
Therefore, the first step is usually to create port objects for each model component of type module,

3-5

3 Developing Models

Property Library System Module Primitive FSM Required

Logical Name X X X X X

Model Type X X X X X X

Copyright X X X X X

Version X X X X X

Domain X X X X X X

Target X X X

Import Libraries X

Load Mode X X

Derive X

Compile Options X

Description X X X X X

Documentation X X X X X

Table 3.1: Common properties for different model types

primitive and FSM primitive. This section describes how to create input and output ports.

3.4.1 Introduction
Ports are used to connect model instances for exchanging data objects. The kind of porthole and
the type of data objects accepted or produced by the model component to which the port belongs
must be defined. With primitive model components, ports can be single portholes or multiple
portholes. Table 3.2 shows the possible combinations of port types as well as the keywords used
for ports in the primitive sources. At this stage inoutmulti and inout ports are not supported by
MLDesigner .

NOTE: Ports of FSM primitives can only be single portholes.�

Port type Port number Icon representation Type name

Input Single single arrow input

Input Multiple double arrow inmulti

Output Single single arrow output

Output Multiple double arrow outmulti

Table 3.2: Possible data type combinations

3-6 MLDesigner Version 2.8

3.4 Modeling Input/Output Ports

Data objects that pass from one port to another in MLDesigner are called particles or tokens. There
are different types that are supported by MLDesigner (see table 3.3). A model that operates on
anytype particles is said to be polymorphic. Polymorphic models operate on multiple types
of data. For example, a Printer primitive can produce a textual representation of any type of
particle.

MLDesigner usually makes conversions between numeric particle types automatically. The float
to complex conversion does the obvious thing, putting the float value into the real part of the
complex number and setting the imaginary part to zero. The complex to float conversion
computes the magnitude of the complex number. integer to float conversion is easy enough.
float to integer conversion rounds to the nearest integer.
In some situations, automatic type conversions cannot be made. A common difficulty involves sev-
eral outputs of different types feeding a Merge primitive. MLDesigner must assign a specific type
to the Merge primitive’s output, but in this case it will be unable to decide which type to use. An
error message is displayed stating ”cannot determine DataType” for the output. The solution is to
insert one or more types of conversion primitives, so that all the values arriving at the Merge prim-
itive have the same type. The conversion primitives can be found in the Conversion libraries of
the appropriate domain. Some domains are more restrictive about particle type conversions than
others. Assignment of types to anytype portholes and resolution of type conflicts is discussed
further in sec. 14.5

The type of port and type of data objects consumed or emitted by the port determines the appear-
ance of the port. fig. 3.3 shows different types of ports and illustrates the type of data compatible
with each port type. A port definition in the model component is also called a formal port.

Scalar

Input Ports

Output Ports

Matrix Multiple Scalar Multiple Matrix

Figure 3.3: Representation of port types in MLDesigner

The black triangle inside the formal port is the point where you connect it to ports of model in-
stances within the model. The instance represents the model component if it is embedded into
another model. The port representation of an instance, the so-called actual port, serves as a con-
nection point for connecting model instances and is sometimes called a terminal.

• The position of the black triangle indicates whether the port is input or output.

• The color of the port indicates the type of data objects consumed or emitted by the port (see
table 3.3).

• The number of arrows indicates whether the port is a single input-output port “one arrow”
or multiple input-output port “two arrows”.

• The stem inside the port representation indicates whether the port accept or emits scalar or

3-7

3 Developing Models

Data type Data structure Port color Type name

Any type Scalar red anytype

Floating point Scalar blue float

Floating point Matrix blue float matrix env

Complex Scalar white complex

Complex Matrix white complex matrix env

Integer Scalar orange int

Integer Matrix orange int matrix env

Fixed Scalar violet fixed

Fixed Matrix violet fixed matrix env

Message Scalar green message

String Scalar black string

File Scalar yellow file

Data Structure Scalar cyan datastruct:

Continuous Scalar light blue continuous

Table 3.3: Possible data type combinations

matrix data objects.

3.4.2 Creating Ports

By using the tool buttons Add Input Port and Add Output Port, you can switch to input / output
port creation mode indicated by a special cursor. Click the tool button Select Tool or the right
mouse to deactivate port creation mode. In port creation mode, every click on the model back-
ground will create a new input or output port of type anytype. Each port gets a unique name.
You can change the properties later using the Property Editor window.

3.4.3 Changing Port Properties

You can use the property editor to change the port properties. With a click on a port, the Port
Properties plane in the Property Editor window becomes active and the current properties of the
selected port are shown (see fig. 3.4). The properties in this plane are:

Name If you change the name, you have to take care that the name is unique for the
model. The port name has to be a valid identifier, i.e., it can contain letters,
digits and the underscore but must start with a letter or an underscore

3-8 MLDesigner Version 2.8

3.4 Modeling Input/Output Ports

Port Type Defines the type of port. This property defines whether the port is input or
output as well as whether it is a single or multiple porthole. Possible values are
defined in table 3.2. For modules and FSM primitives, the values input and
output are available. For primitives, the values inmulti and outmulti
are also possible.

Data Type Defines the type of data objects (particles) consumed by the port. This value
defines the data type as well as whether the port accepts scalar values or ma-
trices. Please refer table 3.3 for possible values.

Data Structure If you selected the data type datastruct, you can use this property to
define which composite data type the port should accept or emit. In all other
cases this property is not editable. Use the button in the input field to open a
dialog for selecting the composite data type.

Description The description is used for generating the hypertext documentation of the
model component.

Instance Label Using this property you can define the text label of the port as it is shown on
instances of the model component. If you do not define an instance label, the
port is not labeled on instances.

Visibility Defines whether a port is visible or not. This attribute is normally used in
conjunction with derived ports where a model component should hide a port
that is derived from another model component.

Alignment Sets the alignment of the port within the model component. With the cursor
in add input/output port mode the port will be positioned according to which
border you click on. The position of the port can be changed by altering the
settings in the Property Editor.

Token Number This property is only available for primitive ports. It defines the number of
particles consumed or produced by the primitive on this port. This property is
only applicable to data flow domains such as the SDF domain.

Figure 3.4: Port property editor plane

3-9

3 Developing Models

sinMod Example. Step 2.

Continued from page 3-2
The next step in this example is to create ports for Sine Modulator and the Sine GeneratorEX
modules created on 3-2. Ports cannot be defined in the system model Sine Modulator System.

1. Select the Model Editor Window containing the Sine Generator module.
2. Use the Add Output Port tool button to switch to port creation mode.
3. Click on model background at the position where the port will be created.
4. Click the right mouse button to switch back to normal selection mode.
5. Select the created port. MLDesigner will show port properties in the property editor.
6. Set the port name to Output.
7. Select the data type float
8. Set the description to The sine signal output.
9. Save the model using the tool button Save Model (Ignore construction error messages).

10. Select the Model Editor Window that contains the Sine Modulator module.
11. Use the Add Input Port tool button to switch to port creation mode.
12. Click on model background at the position where the port will be created.
13. Click the right mouse button to switch back to normal selection mode.
14. Select the created port. MLDesigner will show port properties in the property editor.
15. Set the port name to Input.
16. Select the data type float
17. Set the description to The input signal.

18. Remain in the Model Editor Window containing the Sine Modulator module.
19. Use the Add Output Port tool button to switch to port creation mode.
20. Click on model background at the position where the port will be created.
21. Click the right mouse button to switch back to normal selection mode.
22. Select the created port. MLDesigner will show port properties in the property editor.
23. Set the port name to Output.
24. Select the data type float
25. Set the description to This output signal.
26. Save the model using the tool button Save Model (Ignore construction error messages).

Sine_Modulator#1
�

(a) Sine Generator module

Sine_Generator#1�

(b) Sine Modulator module

Figure 3.5: Example models after the creation of the ports.

3-10 MLDesigner Version 2.8

3.5 Definition of Parameters

3.5 Definition of Parameters
The next step is to define the parameters of the model. Parameters can be defined for model
components of type system, module, and primitive, but not for libraries and FSM primitives.

3.5.1 Introduction
Parameters are used to control the functionality of model components. Formal parameters of
modules or primitives define the interface on embedding into other modules or systems. The
corresponding parameters that appear in instances of the model component are called actual pa-
rameters. The terms formal and actual parameters are analogous to formal and actual parameters
in any procedural programming language. See sec. 3.5.3 for more details.
System parameters are used to configure a system model for execution. Such parameters are used,
for example, for simulation trade-off analysis to configure a set of different simulation runs. For
that purpose, a set of values can be defined for each system parameter.

Figure 3.6: Property editor for defining new parameters

For models that have defined targets i.e. systems and modules, special types of parameters called
target parameter are used. Target parameter are used to configure the target that controls the ex-
ecution of the model and not the model itself. Target parameters are predefined by the target and
cannot be created by you.

Parameters as well as target parameters of a model are shown as a list of parameter properties in
the Property Editor windows. Normal parameters are indicated by a leading [P], whereas target
parameter are shown by a leading [T] string.

3.5.2 Creating Parameters
There are two different ways to create new parameters. You can either:

3-11

3 Developing Models

• create a new formal parameter using model properties, or
• use an actual parameter of an existing model instance and export it to the model.

Creating a new parameter

To create a new formal parameter, you must ensure that the Model Properties plane is activated
in the Property Editor window by clicking on the model background. Open the context menu in
the Property Editor (see fig. 3.7 a). Select New Parameter to create a new parameter entry in the
model property list. MLDesigner creates a default collapsed entry that shows the new parameter
name and a default value. MLDesigner generates a unique name for the new parameter that can
be changed later. Expand the view by clicking the + to the left of the new parameter if necessary.

(a) (b)

Figure 3.7: Context menus for creating formal parameters

3.5.2.1 Exporting a Model Instance Parameter

By selecting a model instance, the property editor will show entries for all parameters defined by
the referenced model component. Click with the right mouse button on any of these parameter
entries to open the context menu shown in fig. 3.7 b. Then you can select menu items Export or
Export as to create a new formal parameter for the model with the same parameter properties.
The difference between Export and Export as is that you can define the name of the exported
parameter in the latter case. If a parameter with the name already exists MLDesigner generates a
unique one by extending the specified name with an integer.

Exporting an instance parameter automatically links the actual instance parameter to the exported
formal model parameter (See sec. 3.7.5).

3.5.2.2 Changing Parameter Properties

The property editor can be used to change the properties of formal parameter definitions. Fig-
ure 3.6 shows the expanded parameter entry.

Name If you change the name, you must ensure that the name is unique for the model.
The port name has to be a valid identifier, i.e., it can contain letters, digits and
the underscore but must start with a letter or an underscore.

3-12 MLDesigner Version 2.8

3.5 Definition of Parameters

Data Type Defines the data type of the formal parameter. Table 3.4 shows the data types for
parameters supported by MLDesigner. The parameter types fix and precision
are only allowed for primitive model components.

Data Structure If you selected the data type datastruct, you can use this property to
define which composite data type the parameter has. Click the button on the
right of the input field to open the dialog for selecting the composite data type.
In all other cases this property is not editable.

Value Defines the default value. This value is used for model instances where the
default value is not set explicitly. For more detailed information about the syntax
of parameter values, see sec. 3.7.

Attributes Defines parameter attributes. Attributes are only used for primitive models.
Click the button on the right of the input field to open the dialog where you
can select the parameter attributes.

Scope Defines whether a parameter is visible in the simulation control window. This
property is only available for system parameters. A parameter must be External
if you want to control it in the simulation control window.

Description The description is used in the hypertext documentation of the model. component.

Figure 3.8: Context menu for deleting parameters

3.5.3 Deleting Parameters
Activate the Model Properties plane in the property editor by clicking the background of the
model. Then, click with right mouse button on the parameter entry in the property editor window
to open the context menu shown in fig. 3.8. Select the Delete Parameter context menu option to
delete the parameter.

sinMod Example. Step 3.

Continued from page 3-10
The next step in this example is the creation of parameters Frequency and SampleRate for EX
our Sine Generator module. Switch to the Model Editor Window that contains the Sine

3-13

3 Developing Models

Generator module and follow the steps below. Exporting parameters will be demonstrated for
the creation of the parameters of the Sine Modulator module in sec. 3.7.

1. Select the Model Editor Window that contains the Sine Generator module.
2. Click with right mouse in the property editor and select the item New Parameter.

3. Click on the plus sign to the left of new parameter 1 to expand the item (if necessary).
4. Set the name to Frequency.
5. Set the type to float.
6. Set the default value to PI/50.
7. Set the description to The frequency of the generated sine wave.
8. Click on the minus sign to collapse the changed parameter Frequency.

9. Click with right mouse in the property editor and select the item New Parameter.
10. Click on the plus sign to the left of new parameter 2 to expand the item (if necessary).
11. Set the name to SampleRate.
12. Set the type to float.
13. Set the default value to 2*PI.
14. Set the description to The sample rate of the module.
15. Click on the minus sign left to the changed parameter SampleRate.

16. Save the model using the tool button Save Model (Ignore error message).

3.6 Adding Model Component Instances
To specify the functionality of the model you must create a number of model instances and con-
nect them. This section describes the creation of model instances as well as the capabilities of
MLDesigner to handle the model instances.

3.6.1 Add Model Instance
There are different ways to create new instances.

• Using the drag and drop capability of the tree view item.
• Using the copy and paste capability between Model Editor Windows.
• Using the context menu item Add Instance of the Model Editor Window.
• Using the tool button Add Model Instance.

The easiest way to create a new model instance is to select the item in the File or Library view and
drag the item onto the Model Editor Window. A model instance that refers to the model compo-
nent referenced by the tree view item is created in the model Model Editor Window.

It is possible to copy and paste model instances between different Model Editor Windows. You
can select and copy model instances from one Model Editor Window into the clipboard and then
paste the contents of the clipboard into another Model Editor Window. If complete connections
belong to the selection, they are copied, too. Connections are complete if all the model instances

3-14 MLDesigner Version 2.8

3.6 Adding Model Component Instances

to which the connection is attached were selected.

The third way is to click the right mouse button at the position where you would like to create a
new model instance. Select the context menu item Add Model Instance to open a Select Model
(see fig. 3.9). From this dialog you can select the model component you would like to instantiate
in the active Model Editor Window.

Figure 3.9: Select model dialog

By using the Add Model Instance tool button, MLDesigner switches to the block creation mode
indicated by a special cursor. In block creation mode, you can create new model instances at the
current cursor position wherever you click on the Model Editor Window background. As with
the creation of model instances using the context menu a Select Model window is displayed from
which you can select the model component to be instantiated. Right click the mouse to cancel
block creation mode or click the tool button Select Tool.
MLDesigner generates a unique name for every created model instance. This name is generated
using the physical name, also called “class name”, of the model component and extending it with
an integer preceded by a hash (#). On selecting a model instance the Instance Properties plane
in the property editor window is activated. The property Name shows the generated name of the
model instance. The name is a model instance property that cannot be changed. It is used to
identify the model instance uniquely within the hierarchical system model during simulation, see
ch. 7.

3.6.2 Setting Text Label
Instances of model components are labeled by default with the model instance name. Sometimes,
the default label of a model instance does not contain enough information about what the instanti-
ated model component does. In that case, it is better to label the model instance with a descriptive
text.

The quickest way to add a descriptive label to a model instance is to position the cursor over the
existing label and click the mouse two times slowly. The first click highlights the text area with a
broken grey border. The second click highlights the text in the text area. You can now type over

3-15

3 Developing Models

the existing label. You can use the line breaks within the text area. You will see the model instance
expanding to accommodate the text.

On selecting a model instance MLDesigner activates the Instance Properties plane in the property
editor window. Select the property Label to add a short description. Click the button to the right
of the input field to open a text editor where you can type text labels that need more than one line.
If you delete the text in the label property the default label is shown again.

NOTE: Another method of labeling model instances is to enter the details in the Description�
field of the Instance property editor. The model instance remains small in the Model
Editor Window, and the detailed information is available via tool tip text or online doc-
umentation.

3.6.3 Placement of model instances
After the creation of model instances they can be placed anywhere in the model using the drag and
drop function.
You can copy selected model instances by pressing Ctrl while clicking and dragging the model
instance.

sinMod Example. Step 4.

Continued from page 3-13
The next step is to include the model instances for the model components we need for the sine
modulator example. Follow the steps below to add the instances for the Sine Generator,EX
Sine Modulator modules, and system model.

1. Open the Sine Generator module.
2. Select the Library View tab in the tree view.
3. Expand the library MLD Libraries/SDF Domain/Sources.
4. Drag item Ramp into the Model Editor Window.
5. Expand the library MLD Libraries/SDF Domain/Nonlinear.
6. Drag item Sin into the Model Editor Window.
7. Arrange the components in the Model Editor Window as shown in diagram (a)
8. Save the model using the tool button Save Model.

Ignore the construction errors. The error is displayed because there is no output/input port
for the module and/or the ports are not connected or terminated.

9. Open the Sine Modulator module.
10. Select the Library View tab in the tree view.
11. Expand the library MLD Libraries/SDF Domain/Arithmetic.
12. Drag item Mpy into the Model Editor Window.
13. From the Select Special Primitive dialog select Mpy.input=2
14. Expand your library Sine Modulator Library.
15. Drag item Sine Generator into the Model Editor Window.
16. Arrange the components as shown in figure (b).

3-16 MLDesigner Version 2.8

3.7 Setting Parameters

17. Save the model using the tool button Save Model (Ignore construction error messages).

18. Open the Sine Modulator System.
19. Select the Library View tab in the tree view.
20. Expand the library MLD Libraries/SDF Domain/Sinks.
21. Drag item XMgraph.input=1 into the Model Editor Window.
22. Expand your library Sine Modulator Library.
23. Drag item Sine Generator into the Model Editor Window.
24. Drag item Sine Modulator into the Model Editor Window.
25. Arrange the components as shown in diagram (c)
26. Save the model using the tool button Save Model (Ignore construction error messages).

Ramp#1� Sin#1�

Output
empty�

empty�

(a) Sine Generator module

Sine_Generator#1�

Mpy.input=2#1�

Input Output

(b) Sine Modulator module

XMgraph.input=1#1Sine_Generator#1� Sine_Modulator#1
�

(c) Sine Generator System model

Figure 3.10: Example models after the creation of the model instances

The component type can be determined by observing the colored triangle in the upper right corner
of the instance. (See table 3.5).

3.7 Setting Parameters
The next task is setting the parameters of the created model instances. Remember that the pa-
rameters of model instances are actual parameters, i.e., they are defined by the formal parameters
of the instantiated model component. Actual parameter properties cannot be changed. Only the
value of these parameters can be set. However, if you do not set the value of an actual parameter,
the default value defined by the formal parameter of the instantiated model component is used
instead. For parameters of type datastruct, that specify a composite data type, you can select
another composite data type provided that the selected composite data type of the actual parameter
is derived from the composite data type of the formal parameter.

3-17

3 Developing Models

This section describes the different methods used to set the values of model instance parameters.

3.7.1 Changing Parameter Values
The parameter values of model instances are edited using the property editor. On selecting the
model instance to be changed, MLDesigner activates the Instance Properties plane. In this plane,
the property editor shows the actual parameters of the selected model instance. On clicking the
value field of the relevant parameter, it becomes editable. To open a multiple line text editor, you
can click on the icon to the right of the edit field. Figure 3.11 shows the parameters for the Ramp
model instance of the Sine Generator module. Parameter properties that cannot be edited
have grey text in italics.

Figure 3.11: Model instance properties example

3.7.2 Parameter Expressions
Parameter values set through MLDesigner can be arithmetic expressions. This is particularly
useful for propagating values from a system model parameter to primitive parameters lower down
in the hierarchy. An example of a valid parameter expression is:

PI/(2*\$order)

where order is a formal parameter defined in the module or system model. The basic arithmetic
operators are

+ addition,
- subtraction,
* multiplication,
/ division, and
ˆ exponentiation.

These operators work on integers and floating-point numbers. Currently all intermediate expres-
sions are converted to the type of the parameter being computed. Hence, it is necessary to be very
careful when, for example, using floating-point values to compute an integer parameter. In an
integer parameter specification, all intermediate expressions will be converted to integers.

3-18 MLDesigner Version 2.8

3.7 Setting Parameters

Figure 3.12: Parameter Expression Dialog

3.7.3 Complex-valued parameters

When defining complex values, the basic syntax is

(real, imag)

where real and imag evaluate to integers or floats.

3.7.4 Fixed-point parameters

Fixed-point parameters may be directly assigned a precision. To do this, the parameter is given
in the syntax (value, precision), where value is an ordinary number and precision
is given by either of two syntaxes:

Syntax 1: As a string like 3.2, or more generally m.n, where m is the number of integer
bits (to the left of the binary point) and n is the number of fractional bits (to
the right of the binary point). Thus length is m+n.

Syntax 2: A string like 24/32which means 24 fraction bits from a total length of 32. This
format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at least one.
Thus, for example, a fixed-point parameter might be defined as (0.8, 2/4). This means a
4-bit word will be used with two fraction bits. Since the value 0.8 cannot be represented in
this precision, the actual value of the parameter will be rounded to 0.75.

3-19

3 Developing Models

A fixed-point parameter can also be given a value without a precision. In this case, the default
precision is used. This has a total word length of 24 bits with the number of integer bits set as re-
quired to store the value. For example, the number 1.0 creates a fixed-point object with precision
2.22, and a value of 0.5 would create one with precision 1.23.

The precision of internal computations in a primitive is typically given by a parameter of type
precision. A precision parameter has a value specified using either of the two syntaxes above.

3.7.5 Linking Parameters
One possibility to set the value of an actual model instance parameter is to link it with a formal
parameter of the model in which the model instance is embedded. Linking means that the values
of the model parameter are used as parameter values of model instances, seen in fig. 3.13. In this
way, you can pass parameter values from the system model level down to the primitive model
level. Linking is realized using the parameter names, i.e., if an actual parameter value expression
of a model instance contains the name of a formal parameter of the model that embeds the model
instance.

Figure 3.13: Parameter linking in the singen module

Figure 3.13 shows an example of linked actual parameter expressions. This is a parameter link-
ing in the singen module that can be found in the MLD Libraries/DEMO/SDF Demo/-
Basic/sinMod system model. In this example the model defines the formal parameter sample rate,
frequency, and phase in radians. The values of these formal parameters are used to set
the actual parameter values of the Ramp primitive instance. The example shows two kinds of
linking:

1. the instance parameter value is determined by an expression that contains formal parameter
names, see step, or

2. the instance parameter value is determined directly from the formal parameter, see value.

The former case is called indirect linking whereas the latter case is called direct linking. Direct
linking is indicated by a green arrow in the parameter value field.

To create a direct link you can either export the actual model instance parameter as a new formal
model parameter (see sec. 3.5.2), or you can link the actual model instance parameter to an existing
formal model parameter. In the latter case, select the model instance of the actual parameter to link

3-20 MLDesigner Version 2.8

3.7 Setting Parameters

to and activate the Instance Properties plane. Click with the right mouse in the property editor on
the parameter entry. From the context menu select Link to. On selecting this item, MLDesigner
opens a sub-menu that contains items for all existing formal parameters of the model. Selecting
one of these items creates a link.
You will then see a green arrow indicating that a link exists.

sinMod Example. Step 5.

Continued from page 3-16
To demonstrate parameter setting and linking mechanisms, let us set the model instance parameter
values of our example. Different methods for achieving the same result are demonstrated here EX
such as linking and export. First, you must set the actual parameters of the Ramp instance in the
Sine Generator module.

1. Select the Model Editor Window containing the Sine Generator module.
2. Click on the Ramp model instance.
3. Click on the value field of the parameter step.
4. Set the value to 2*PI*$Frequency/$SampleRate.
5. Save the model using the tool button Save Model (Ignore the construction errors).

You have now set the actual parameter step of the Ramp instance to an expression that contains
the formal model parameter names. This realizes indirect linking between the Ramp parameter
and the Sine Generator parameter.

(a) Sine Generator properties (b) Ramp instance properties

Figure 3.14: Parameter settings for the example

3-21

3 Developing Models

The next step is to set the actual parameter of the Sine Generator instance in the Sine
Modulatormodel. The Sine Generator has two actual parameters Frequency and SampleRate.
Since the sample rate should be constant in the whole system model hierarchy it should be set-
table on the system model level. The Frequency of the sine modulator should be a parameter on
the system model level. Therefore, it is necessary to export the SampleRate and Frequency
parameters to the next higher model level. Follow the steps below to export these two parameters.

1. Select the Model Editor Window that contains the Sine Modulator module.
2. Click on the Sine Generator model instance in the Model Editor Window.
3. Click with right mouse button on parameter Frequency.
4. Select the context menu item Export.
5. Click with right mouse button on parameter SampleRate.
6. Select the context menu item Export.
7. Save the model using the tool button Save Model (Ignore the construction error messages).

NOTE: The green arrows in both fields indicate that these parameters are successfully exported.�

By exporting the actual parameters Frequency and SampleRate of the Sine Generator
instance, you have automatically created the two formal model parameters of the Sine Modulator
module.

(a) Sine Modulator properties (b) Sine Generator instance

Figure 3.15: Parameter settings for the example

The last step is to create the system model parameters. You need two different frequencies; one
for the signal frequency, and a carrier frequency for the sine modulator as well as a system model
parameter for the sample rate.

1. Select the Model Editor Window that contains the Sine Modulator System model.
2. Click on the Sine Generator model instance.
3. Click with right mouse button on parameter Frequency.
4. Select the context menu item Export as.
5. Set the name of exported parameter to SignalFrequency and click OK.
6. Click with right mouse button on parameter SampleRate.
7. Select the context menu item Export.

3-22 MLDesigner Version 2.8

3.7 Setting Parameters

8. Click on the Sine Modulator model instance.
9. Click with right mouse button on parameter Frequency.

10. Select the context menu item Export as.
11. Set the name of exported parameter to CarrierFrequency and click OK.
12. Click with right mouse button on parameter SampleRate.
13. Select the context menu item Link to.
14. Select the context sub-menu item SampleRate.

15. Click on the Sine Modulator System model background.
16. Click on the value field of the parameter SignalFrequency.
17. Set the value to PI/100 and click OK.
18. Click on the value field of the parameter CarrierFrequency.
19. Set the value to 0.2*PI.

20. Save the model using the tool button Save Model, ignore the construction error messages.

You have created the system parameters SignalFrequency, CarrierFrequency, and SampleRate
by exporting the model instance parameter. However, the setting of the actual parameter SampleRate
of the Sine Modulator model instance were realized by linking the parameter to the existing
system model parameter SampleRate. Now you can control the whole model using system pa-
rameters. By setting the Scope attribute to External in the System Properties window, you
can control them directly in the Simulation Properties window (see ch. 7).

3.7.6 Inserting Comments in Parameters
Comments are supported for non-string parameters. A comment is specified with the (#) symbol.
Everything after the (#) until the end of the line is ignored when the parameter is evaluated.
Comments are especially useful in combination with files, as they remind you about which module
or primitive parameter the code refers to.
Comments are, however, not supported for the string parameter or stringarray parameter
types. In fact, when the image processing primitives use string states to represent a filename,
the # character is used to denote the frame number of the image being processed.

3.7.7 Using Tcl Expressions in Parameters
Arbitrary PTCL expressions can be embedded in a parameter expression by preceding the expres-
sion with the tcl keyword as in the following example:

tcl(expression)

Firstly, parameters in the form of {parameter} appearing in the expression are replaced by their
values. Then the string is sent to the MLDesigner built-in interpreter for evaluation. Finally, the
result is spliced into the parameter expression and re-parsed. The interpreter is the same built-in
PTCL interpreter that appears in the console window under the Command tab.
This facility is generalized and supports both numeric and symbolic computing of expressions.
Through PTCL, you can access all of its math functions, which generally behave the same as

3-23

3 Developing Models

(a) Sine Modulator System

(b) Sine Generator instance (c) Sine Modulator instance

Figure 3.16: Parameter settings for the example

3-24 MLDesigner Version 2.8

3.7 Setting Parameters

ANSI C functions of the same name: abs, acos, asin, atan, atan2, ceil, cos, cosh,
double, exp, floor, fmod, hypot, int, log, log10, pow, round, sin, sinh, sqrt,
tan, and tanh.
A parameter expression could be

tcl(expr sqrt(2.0 / \$BitDuration))

for the amplitude of the oscillators in a binary frequency shift keying system, in which BitDuration
is a parameter. The expr command is a PTCL command that treats its arguments as a single math-
ematical expression that must evaluate to a number.

There are several PTCL commands embedded in MLDesigner that help support parameter calcula-
tions. They are: listApplyExpression, max, min, range, rangeApplyExpression,
and sign. For example,

tcl(min [max 1 2 3] [sign {-2}])

first evaluates to min 3 -1 and then to -1. The procedure range returns a consecutive sequence
of numbers:

tcl(range 0 5)

returns 0 1 2 3 4 5. The rangeApplyExpression procedure generates a sequence of
values by applying a consecutive sequence of numbers to a PTCL expression that is a function of
i. For example, you can generate the taps of an FIR filter that is a sampled sinusoid by using

tcl(rangeApplyExpression { cos(2*{PI}*\$i/5) } 0 4)

This generates one period of sinusoidal function and returns

1.0 0.309042 -0.808986 -0.809064 0.308916

The listApplyExpression is similar to rangeApplyExpression except that it only
takes two arguments: the second argument is a list of numbers to substitute for i in the expression.
The command

tcl(listApplyExpression { cos(2*{PI}*\$i/5) } [range 0 4])

is equivalent to the previous example of the rangeApplyExpression function.

You can receive help on the new PTCL procedures listApplyExpression, max, min, range,
rangeApplyExpression, and sign, by typing

help sign

at the prompt.

3-25

3 Developing Models

3.7.8 Using MATLAB and MATHEMATICA to Compute Param-
eters

Since PTCL can be used to compute parameters as described in the previous section, MLDe-
signer’s PTCL interface to MATLAB [HL96] and MATHEMATICA [Wol91] can be used to
compute parameters. This allows even more expressiveness, but the drawback is that demon-
strations relying on MATLAB and MATHEMATICA will only work at sites that have MATLAB
and MATHEMATICA installed. For example, MATLAB can be used to design a 32-order FIR
half-band filter using the Parks-McClellan optimal equiripple FIR filter design algorithm:

matlab"getpairs c {c=remez(32, [0 0.4 0.6 1], [1 1 0 0])}"

Similarly, MATHEMATICA can be used to derive formulas to be used as parameters:

mathematica"get c {c=Integrate[A x, {x, 0, 1}]}"

This command returns the symbolic expression A/2 which is re-parsed by MLDesigner. MAT-
LAB and MATHEMATICA can be used to keep track of how parameter values are computed.
MATHEMATICA can also be used to return symbolic expressions that can be used in conjunction
with higher-order functions to define scalable systems [EGKL95].

3.7.9 Array parameters
When defining arrays of integers, floats, complex numbers, fixed-point numbers, or strings, the
basic syntax is a simple list separated by spaces. For example,

1 2 3 4 5

defines an integer array with five elements. The elements can be expressions if they are surrounded
by parentheses:

1 2 PI (2*PI)

Repetition can be indicated using the following syntax:

value[n]

where n evaluates to an integer. An array or portion of an array can be an input from a file using
the symbol <as in the following example:

1 2 < filename 3 4

Here the first two elements of the array will be 1 and 2, the next element(s) will be read from
file filename, and the last two elements will be 3 and 4. The latter capability can be used in
combination with the WaveForm primitive to read a signal from a file.

3-26 MLDesigner Version 2.8

3.7 Setting Parameters

3.7.10 String Parameters
There are complications when you wish to set a string parameter or stringarray parameter
equal to the value of a module or system model parameter. This is because a distinction must
be made between a sequence of characters that give the name of a symbol and a sequence of
characters to be interpreted literally. The syntax to use is:

This string has the word {word} taken from another parameter

Here {word} represents the value of a string module or system model parameter. This capability
is especially useful for constructing labels for output plots. When using string parameter to specify
options for a UNIX command, as in the options parameter in Xgraph primitives. You need either
double quotes or single quotes to include whitespace:

-0 ’original signal’ -1 ’estimated signal’

String arrays have a few more special restrictions. Each word (separated by whitespace) is a
separate entry in the array. To include whitespace in an element of the array, use quotation marks.
Thus, the following string array

first "the second element" third

has three elements in it. The string array

repeat[10]

has ten separate copies of the string repeat in 10 separate entries in the array. Curly braces are
used to substitute in values from module parameters. Thus, in

{paramname}

paramname must be the name of either a string array or a scalar-valued parameter (an integer,
float, or complex array, for example, is not permitted). If it is a string array, then each element
of paramname becomes an element of the parameter. If it is some other kind of parameter, the
value becomes a single element of the string array.

To use one of [,], {, or } literally, quote them with double quotes. To turn off the special meaning
of a double quote, precede it with a backslash: \¨. Similarly, use \\ to get a single backslash.
String array values may also be read from files using the <symbol.

Note that for string arrays, the filename can be a literal string such as

< \$MLD/data/filename

as well as a string that refers to parameters such as

< \$MLD/{data_dir}/data_file

in this case the value of the parameter data dir would be substituted. MLDesigner does not
perform expansion of filenames such as file.{1,2} into file1 file2 as a UNIX shell might
do.

3-27

3 Developing Models

3.8 Connecting Blocks
After the configuration of model instances, you need to connect them. To create connections, you
must switch to connection creation mode either by clicking on the Add Connection tool button or
by double-clicking on a port of a model instance. In the connection creation mode, every time you
click on a port you start or finish a connection. Clicking anywhere on the model background after
clicking an input or output port while the cursor is in connection mode, will result in a connection
line being drawn to that point. Connections are also known as transitions.

Connection Nodes
A node is a point on a connection between model instances where the line turns a corner or where
a connection makes a fork or a merge. New nodes can be created by double clicking a connection
line and drawing a connection to a port or another connection line. It is also possible to create a
Corner Node by clicking on the connection and dragging the line. This is sometimes necessary in
order to neaten up your model or block diagram.
To switch back from the connection creation mode click the right mouse button or the tool button
Select Tool. The name of the model instance and the name of the port are shown in the tool tip
box if the mouse pointer is held over these elements.

sinMod Example. Step 6.

Continued from page 3-21
The next step is to connect the model instances of the example models. Start with the creation of
connections in the Sine Modulator model.EX

1. Select the Model Editor Window that contains the Sine Modulator model.

2. Double-click on the Output port of the Sine Generator instance to start a new con-
nection.

3. Click on input#2 port of the Mpy.input=2 instance to complete the connection..

4. Click on the output of the model port Input to start a new connection.
5. Click on input#2 port of the Mpy.input=2 instance to complete the connection.

6. Click on the output port of the Mpy.input=2 instance to start a new connection.
7. Click on the input port of the model port Output to complete the connection.

8. Save the model using the tool button Save Model.

Repeat these steps for the Sine Generator and Sine Modulator System examples.
Your models should now look like those in fig. 3.17.

NOTE: Unused ports must be terminated. This is achieved by choosing Terminate from the con-�
text menu while the relevant port is selected. In these cases the appropriate BlackHole
primitive for output ports and the Const or NULL primitive for input ports for the do-
main are instantiated.

3-28 MLDesigner Version 2.8

3.9 Auto-Forking

Ramp#1� Sin#1�

Output
empty�

empty�

(a) Sine Generator module

Mpy.input=2#1�

Sine_Generator#2�

Input Output

(b) Sine Modulator module

XMgraph.input=1#1Sine_Generator#1� Sine_Modulator#1
�

(c) Sine Generator System model

Figure 3.17: Example models after connecting the model instances

3.9 Auto-Forking
In MLDesigner there are a wide variety of options when connecting ports, primitives, or modules.
In some domains it is possible to make use of the autoforking and automerging facility built into
MLDesigner (see table 3.6). In some instances, delays and buses are allowed but are not neces-
sary. The following section explains where buses and delays are allowed and where autofork and
automerge functions are supported.

3.9.1 Relations without formal ports
In cases where one single input port is connected to a single output port or where a multi-input is
connected to a multi-output:

• delay is allowed
• bus is allowed if both ports are multiports
• ports must be compatible or must be of type Anytype

In cases where one single output is connected to many single/multi input ports:

• delay is allowed
• bus is not allowed
• port types must be compatible

In cases where many single/multi output ports are connected to one multi input port:

• delays are allowed

3-29

3 Developing Models

A
�

A
�

B�B�
2

Figure 3.18: Single to Multi and Multi to Single Port

A
�

A
�

B�

Figure 3.19: Single to Many Multi Port

• port types must be compatible
• buswidth must be equal to one

A
�

B�

C
�

D�

Figure 3.20: Many Single to Single/Multi Ports

In cases where many single/multi ports are connected to many ports

• delays are allowed
• busses are not allowed
• inmulti ports are not allowed. The transitions are broken as shown in fig. 3.21(a) if a multiple

input port is used in conjunction with a fork.
• buswidth on multi output ports must be equal to one
• all ports must be compatible
• a new merge primitive is created if a built-in merge primitive exists in the domain and all

outputs are connected with the merge’s input.

3-30 MLDesigner Version 2.8

3.9 Auto-Forking

(a) Auto Merge and Fork with Multi input Port (b) Example with Input Ports of Type input

Figure 3.21: Forks may Not be used in conjunction with Port Type inmulti

3.9.1.1 Relations with formal inputs

In cases where a single output is connected to a single input port:

• delays and buswidth have no effect
• ports must be compatible
• connections to outputs are only allowed if a Identity primitive exists in the actual do-

main. A block of the Identity primitive is created between the ports.

In cases where an input port is connected to many single/multi input ports:

• a new fork primitive is created if a built-in fork exists in the actual domain and the and the
input is connected with the fork’s output. If the fork primitive does not exist for the domain,
such connections are not allowed.

A
�

B�

input1

(a) Auto Fork

A
�

B�

Fork.output=2#1�
1
2

input1

(b) What really happens

Figure 3.22: Example models after connecting the model instances

3.9.1.2 Relations with formal outputs

In cases where a single output port is connected to a single input port:

• delay and buswidth have no effect

3-31

3 Developing Models

• ports must be compatible
• connections to formal input ports are only allowed if a built-in identity star exists in the

actual domain. A block of the identity primitive is created between the formal ports

In cases where many single/multi input ports are connected to a formal output:

• a new merge primitive of the actual domain is created (if one exists in the actual domain)
and the formal output is connected with the merge’s outputs

• If no merge exists for the actual domain, such connections are not allowed
• Such connections may alter the behavior of the

output
A

�

B�

(a) Auto merge in DE domain

A
�

B�

Merge.input=2#1�
1
2

output1�

(b) What really happens

Figure 3.23: Example models after connecting the model instances

3.10 Using Buses and Delays
There are additional property elements like buses and delays that are placed on top of connections.
These property elements can be used to influence the behavior of the model.

3.10.1 Buses
If you create a connection between multiple output and multiple input ports, it is often necessary
to specify the number of connections the single wire represents. This can be realized by the bus
property element. The bus property is much like a delay in that it is placed directly over the
multiple connection. Its single parameter busWidth specifies the number of connections the
single wire represents. Take a look at the following example. The Map primitive represents a
number of model instances of the same model component, in this example the Gain primitive.
Here, the bus width has to be three or the Map primitive will issue an error message. This is
because there are three inputs to the Map primitive, so three instances of the Gain primitive will
be created. The three outputs from these three instances need somewhere to go.
To create a bus property element, use the Add Bus tool button to switch to the bus property
creation mode.
You can specify the bus width by the parameter busWidth. To do this select the bus icon in the
Model Editor Window.MLDesigner activates the Instance Properties plane in the property editor
window. This property can be used to modify the bus width.

3-32 MLDesigner Version 2.8

3.10 Using Buses and Delays

MLDesigner provides a number of primitive components that realize capabilities to model the
conversion from single connections to bus connections and vise versa. For that purpose, you need
the bus create and bus merge primitives from the HOF domain available, for example, in library
MLD Libraries/HOF Domain. The figure below shows an example for using a bus merge
primitive.

IIDGaussian#1�

IIDGaussian#2�

IIDGaussian#3�

XMgraph#1�Nop�
3

3.10.2 Delays
In several domains, delays can be placed on connections. A delay is not a primitive, but rather
a property of the arc connecting two primitives. The interpretation of the delay in the data flow
domains (SDF, DDF, BDF, and most code generation domains) is as an initial particle on the
connection. An initial particle for the scalar data types is one whose value is zero. When the con-
nection passes particles containing message type data, a delay on the connection will create an
”empty” message. Most often, the destination primitive of the connection must be able to interpret
such ”empty” messages explicitly in context of the user-defined type because a ”zero” might have
different meanings depending on the type. Any feedback loop in the SDF domain must have a
delay, or the computation in the loop would not be able to begin. You can specify the number of
delays.

Other domains (besides data flow) also use delays, but the meaning can be quite different. See the
chapters describing the domain.

A new feature added to MLDesigner releases is the support of initializable delays for simulation
domains. These delays use a different icon from the old white diamond with green borders. The
new delays use an icon that is a green diamond with a white border and has an ”I” in the middle
of the diamond to signify that it is initializable. MLDesigner has kept around the old delays for
backward compatibility, but the syntax for the two is quite different and you should probably use
just one type to prevent confusion.

The syntax for the new delays is that the arguments to the delay are the initial value themselves.
There is no value in the argument that signifies the number of delay particles. Instead, a count of
the number of values in the delay arguments is the number of delay particles that will be added to
the buffer of the connection corresponding to the delay. These arguments are specified as a string
and are parsed according to the data type associated to the connection. For example, an initializ-
able delay with parameter 1 0 1 on an connection passing float particles will have a buffer with
three initial particles. The three particles will have the values 1.0, 0.0, and 1.0 respectively.
If the connection was working on complex particles instead, an error would be given since com-
plex numbers must be specified using a pair of numbers. A proper argument list for the delay in

3-33

3 Developing Models

that case would be (1,0) (0,0) (1,1). The shorthand for declaring multiple values in the
argument list is valid, just as in the arraystate case. For example, an argument list of 2 [5]
would specify five initial particles with value 2_

Initializable delays also work on connections which handle matrix particles. The argument string
in this case is parsed differently than above. The first two values in the last specify the number
of rows and columns in the initial matrix, respectively. For example, an initializable delay with
parameter 1 2 3 [2] on an connection passing integer matrices would place one matrix with
dimension one row by two columns, whose entries all have the value three, in the buffer for that
connection. For the case where multiple initial matrices are desired, simply give enough entries
in the delay argument string to fill multiple numbers of initial matrices of the given size. For
example, an initializable delay with parameter 1 2 3 3 4 4 5 5 on an connection passing
integer matrices would create three matrices, all of dimension one row by two columns, such that
the first initial matrix on the buffer has all entries equal to three, the second has all entries equal to
four, and the last matrix has all entries equal to five.
To use delays in MLDesigner, you must place a delay or initializable icon on top of the wire
connecting two instances. The delay icon is a white diamond with a green border. As mentioned
above, the initializable delay use an icon that is a green diamond with a white border and has
an ”I” in the middle of the diamond to signify that it is initializable. To create a delay, use the
Add Non-initializable Delay tool button or the Add Initializable Delay to switch to the delay
property creation mode. In this mode, every time you click in the model port, a delay property
element, initializable or not, is created. You can specify the number of non-initializable delays
and the expression of initializable delays. To do that, you must click on the top of the delay icon.
MLDesigner activates the Instance Properties plane in the property editor window.

3.11 Using Labels for Annotation
It is often useful to annotate a block diagram with titles and comments. Use the tool button
Add Text Label to switch to the label creation mode. In this mode, every click on the model
background opens the Add Text Label dialog shown in fig. 3.24. The text of the label and a
number of label properties can be defined using this dialog. To switch back from the label creation
mode explicitly, use the second mouse button or the tool button Select Tool.

Figure 3.24: Add Text Label dialog

3-34 MLDesigner Version 2.8

3.12 Color Settings

3.12 Color Settings

You can set the colors for the model background, the instances, and connections. Use the context
menu item Background Color or Color of the selected model element. The menu option Color
is only available for relations between models. The menu option Background Color applies to
model instances and systems.
The Select color dialog allows you to define colors for model components (see fig. 3.25).

Figure 3.25: Color Selection Dialog

sinMod Example. Step 7.

Continued from page 3-28
Setting colors for model instances and system backgrounds is possible. The color setting dialog
is available from the context menu. When a model instance is selected the context menu option is
Color... and when no model elements are selected the menu option is Background Color.

XMgraph.input=1#1Sine_Generator#1� Sine_Modulator#1
�

Sine wave modulator example system

Figure 3.26: Model after colors are changed

3-35

3 Developing Models

3.13 Using Shared Elements
With MLDesigner you can use a number of so-called shared elements to model the functionality
of a component. Such elements are called shared elements as they are used to share information
without exchanging data. For that purpose they can be linked over different model hierarchy
levels. Linking means that different model components use the same model element to manipulate
the data. Shared elements are:

- memories
- events, and
- resources.

This section covers using shared elements. For more detailed information see ch. 10.

3.13.1 Creating Shared Elements
To create shared model elements, use the tool buttons Add Event, Add Memory, and Add Re-
sources. The cursor changes mode and every time you click on the model background a new
shared element with default properties and a unique name is created. To switch the cursor back to
normal mode click the right mouse button. You can also use the relevant context menu to create
shared model elements. This method only creates one model instance before the cursor reverts
back to normal mode

NOTE: Not all shared model elements are available in each modeling domain. Events and re-�
sources can be used only in the DE domain. In all other domains only memories are
available.

3.13.2 Setting Shared Model Elements
There are a number of ways to share data between blocks of a hierarchical model.
You can use the property editor to set the properties of shared model instances once they have
been created. To do this select the shared element to activate the relevant Properties window. The
properties a shared element has depend on its type (see ch. 10). The common properties of shared
elements are the Name and the Scope.

The Scope of a shared element specifies whether it is visible in instances of the model component.
If visible it can be linked to shared elements of the same type on the next higher model hierarchy
level. A shared element is visible if you set the scope as External. In a system (the highest
level of a hierarchical model) the scope is set to Internal and cannot be changed.

NOTE: A shared element with external scope is indicated by a small triangle at the top of the�
visible model element.

3.13.3 Exporting Shared Model Elements
It is now possible to export shared model elements from one module in a hierarchical model to
the next highest level until the element is instantiated in the topmost level - the system. Till now it

3-36 MLDesigner Version 2.8

3.13 Using Shared Elements

was necessary to instantiate a shared element in each level of the hierarchical model ensuring the
element had the same name and the same data type as the defining element in the lower level of the
hierarchy. Exporting elements makes modeling quicker and reduces the possibility of errors such
as typos. It is possible to choose to Export the shared element in which case the name remains
unchanged unless an element exists with the same name in the next highest level of the model in
which case the name of the element is extended by a #instance number. Another possibility
is to choose the Export as option in which case the name of the shared element must be defined
manually.

The exported shared element has its scope set to internal by default. To share the element with
the next highest level of the system set its scope to external and save the module. Instantiate
the module in a system or module and click once on the model instance to activate the Instance
Properties window. Activate the context menu over the relevant entry in the Instance Properties
window and select Export. The shared element is then instantiated in the model in the Model
Editor Window with its scope set to internal.

Events and Memories have a data type which can be any data type which is derived from the Root
data type (see ch. 12.3.5). By default, Memories and Events are of data type Root. If you define
an external event or external memory, you must link them, in instances of the model component,
to according shared element which are of the same data type or a data type that is derived from the
data type you defined for the event or the memory.
In instances of model components you must link shared elements with external scope. External
shared elements are shown as properties in the property editor when you select the according
model instance. The property entries are marked with the prefix [E] for event, [M] for memories,
and [R] for resources. To link a shared element click with the right mouse button on the relevant
property to open the context menu (see fig. 3.27). If there are shared elements with compatible
data type in the model in which the model instance is embedded, the Link to context menu item
is enabled. In that case, a list of shared elements to which the selected one can be linked is shown.
You can select one from this list to create the link. Linking is indicated by a green arrow in the
default value field of the linked shared element.

NOTE: If you change the type of the shared element of the model to which a shared element of an �
embedded model instance is linked, the link becomes invalid. In that case, MLDesigner
will throw a construction error message if you try to save the model.

Figure 3.27: Property context menu for shared element

3-37

3 Developing Models

3.14 Dynamic Instances
The creation of dynamic model instances in the DE domain simplifies modeling of complex sys-
tems where flexibility is needed. Using dynamic model instances, DE module or primitive in-
stances can be created and deleted at run time.

3.14.1 Create a Dynamic Instance
To create a dynamic model instance, activate the context menu over an instance in the Model
Editor Window (DE domain). Select the menu option Dynamic Instance. The model instance
now has auxiliary ports and parameters in addition to those of the conventional model instance.
The additional ports and parameters are described here:

• Associated with each input port is an index port of type integer with the same name and
the extension Idx. The index port specifies, on which instance of the model, the data of the
associated input port will be placed. If no instance with this index exists, it will be created
automatically.

• Associated with each output port is an index port of type integer with the name and the
extension Idx. The index port specifies which instance releases the data on the associated
output port.

• The dynamic instance has an auxiliary port named Create of type integer. This port can be
used to create an instance with the index specified by the integer value placed on the port.
If an instance with the given index already exists, the input will be ignored.

• The dynamic instance contains an auxiliary port named Delete of type integer. This port
can be used to delete an instance with the index specified by the integer value placed on the
port. If no instance with the given index exists, the input will be ignored.

NOTE: A deleted instance cannot be re-created with the same index, unless the parameter�
RecreateDeletedInstances is set to TRUE.

• The dynamic instance contains an auxiliary port named Statistics of type
Root.Statistics.DIStats. Each time the number of instances changes (instance
created/deleted) this port outputs a data structure of type root.Statistics.DIStats, which con-
tains a member containing an integer representing the current number of existing instances.

• The dynamic instance contains a parameter called RecreateDeletedInstances that, if set to
TRUE, allows the re-creation of an instance with an id that was already used and deleted
in the current simulation run. By default, the value of this parameter is set to FALSE, and
re-creation is not allowed.

NOTE: Models of the DE AddressMapping library as well as models of the DE GotoGroup�
library using the global address table are not working in connection with dynamic in-
stances.

3.14.2 Example Tutorial
An example of a dynamic primitive instance can be found in the Library View under
MLD Examples/Tutorials/DynamicInstance/XGraphWithDI. The ”Xgraph” is instantiated as

3-38 MLDesigner Version 2.8

3.15 Dynamic Linking

a dynamic instance. During simulation a new instance of the ”Xgraph” is created with each itera-
tion. The index and value of the current simulation time is displayed on each plot. The Interval-
Const#1 model instance sends a particle to the delete port of the Dynamic graph at StartupTime
followed by a particle every Period. The graphs that are generated at the same time as the Inter-
valConst#1 fires are deleted.

Figure 3.28: Dynamic Instance of Xgraph in the DE domain

The parameters of the Ramp#1 and the IntervalConst#1 have their scope set to External
and are visible when MLDesigner is in simulation mode. These values can be changed while
MLDesigner is in simulation mode without recompiling the system.

3.15 Dynamic Linking
Dynamic linking of objects in external libraries with systems in MLDesigner is possible. This
is a useful feature if you want to include functions from a variety of different libraries without
rewriting the function.
You can only link objects such as files with extension .o (object files), .a (static libraries), and
.so (shared objects). MLDesigner checks to see if the object files exist in the specified directory.
With previous versions of MLDesigner it was only possible to link precompiled objects. Now if
the specified files no longer exist MLDesigner will look for a makefile in the location where the
object files were specified. If a makefile does not exist you must create it in the correct location.
MLDesigner will then compile the object files thus ensuring that any changes made to the object
are updated.

You can dynamically link on a primitive level where the function defined in the external library is
defined as extern in defparameter of the source code before being called in the go method.
You can also link on a system level where an external library is defined.

3-39

3 Developing Models

For this example we need to create a small system containing two Ramp primitives, a user defined
Add primitive and a Dump primitive to write the simulation results to a file. This system can be
found in the Tutorials library in MLD Examples and is called DynamicLinking.

1. Create a new system in the SDF domain called dynamLinking. in a library where you have
write permission (see fig. 3.30).

2. Drag and drop the Ramp primitive from the MLD Libraries/SDF/Sources library
into your system twice.

3. Save your system.

You must now create the Add primitive called AddExt:

• Click the New Model icon and create a primitive in the SDF domain called AddExt.
• Add two input ports and one output port using the appropriate icons on the toolbar.
• In the Model Properties editor change the Data Type of each port from anytype to int.
• Save the primitive.

You must now open the primitives source code and modify the code manually to look like the
following:

ccinclude {}

code
{
extern int externalLibraryAdd(int, int);

}

constructor
{
}

The primitive now tells the parser to look in an external library for the described function .
The next step is to describe the behavior of the primitive during simulation, i.e. call the function
of the external library.

go
{
int a = (int)(input1%0);
int b = (int)(input2%0);
int c = externalLibraryAdd(a, b);
output1%0 << c;

}

The next step is to show MLDesigner where the external file is physically saved.

• Click on the background of the primitive in the Model Editor Window. In the Model Prop-
erties window click the folder icon in the Linked Objects field to open the Select Multiple
Files dialog window.

• In this dialog, click on the folder icon right to the Select File field.

3-40 MLDesigner Version 2.8

3.15 Dynamic Linking

• In the Open File dialog window change to directory MLD Examples/Tutorials/-
DynamicLinking/LinkedObjects and select libextadd.so.

NOTE: You can select multiple files using the <Shift> or <Control> keys combined �
with mouse clicks.

• Click the Open button. You will now see the selected file(s) in the Select File field of the
Select Multiple Files dialog.

• Click the Add button to add the selected file(s) to the list of linked objects (see fig. 3.29).

NOTE: If you leave the dialog using the OK button without clicking Add before, your �
selection will be lost.

NOTE: You can delete files from the list or add more files if needed. Furthermore, you �
can determine the order in which the files are linked by ordering the files in this
list. All files in the list can be located in different folders.

• Click OK to take over the selection.

NOTE: You can select as many files as are needed for your system by using the <SHIFT> �
or CONTROL and mouse-click combination. Once you are happy with your selec-
tion click the Add button to add the complete file path to the Selected Files list
(see fig. 3.29). You can delete files from the list or add more files if needed.

Figure 3.29: Linked Objects Dialog

3-41

3 Developing Models

Save the primitive and click and drag it into the dynamLinking system. You now need to add
the Dump primitive to the system. Select the primitive from MLD Libraries/SDF/Sinks/-
DmpNInt and drag it into the Model Editor Window. Click the DmpNInt once. In the Instance
Properties window click the folder icon next to the [P]ods OUT DATA FileName input field.
Select a location where you would like the simulation results to be saved and type in a filename
or select an existing file to overwrite. The Dump primitive also has a parameter showGraph. To
print the results to a graph change the default setting to Yes.

3.15.1 Linked Objects and External Simulations

It is important in to observe the order in which linked objects are used by a system when the
system is being simulated Extern. The objects should be listed in the correct order otherwise the
simulation will not run. It is easy to change the order in which linked objects are listed by selecting
the appropriate object in the Linked Objects dialog and using the Up/Down arrow shown in
fig. 3.29 to move the object up or down in the list. The appropriate order should also be observed
in the ∼/.mld/.mldrc file.
Connect the ports as shown in fig. 3.30.

Ramp#1�

Ramp#2�

ExtAdd_2#1 DmpNInt#1
�

Figure 3.30: Example of Dynamic Linking

3.15.2 Permanently Linking Objects to MLDesigner at Startup.

Permanently loading code at startup in order to extend the functionality of MLDesigner such as
including a new domain or your own interface for interaction with other tools for co-simulation
is possible. Locate the file ∼/.mld/.mldrc. You will see place holders for filenames with
extension .o (object files), .a (static libraries), and .so (shared objects). You must enter the
full path of the file you wish to dynamically link to MLDesigner in the appropriate place holder.
Before these setting become active you need to shutdown and restart MLDesigner. On restarting
MLDesigner , the file∼/.mld/.mldrc is parsed and the dynamic linking command is activated.

3-42 MLDesigner Version 2.8

3.16 Model Documentation

3.16 Model Documentation
One crucial point of modeling is the documentation of developed model components. MLDesigner
provides a mechanism to automatically create and browse hypertext documentation. The hypertext
documentation is used by the online documentation browser to provide information about model
components.

3.16.1 Creating Documentation
Every time saving a model, MLDesigner automatically creates a hypertext documentation. This
hypertext documentation contains descriptions for

• model properties,
• ports,
• parameters, and
• model instances.

For each model instance, MLDesigner creates a hyperlink documentation so that you can browse
through the documentation of a whole model component hierarchy. Figure 3.31 shows the gener-
ated hypertext documentation for the Sine Modulator System example. Furthermore, for EX
user libraries, usually stored in My Libraries ˜/MLD you can generate an index of model com-
ponent documentations.

Before starting the generation of a documentation index for a certain library, you must select
the according model component item in the tree view, either in the library or the file view. Af-
ter that, use the context menu item Generate Index & Documentation to start the generation.
MLDesigner starts with the generation of an index file in the library directory and creates a hy-
pertext link to the hypertext documentation for each model component that belongs to the library.
The index generation works recursively, that is, if there are sub-libraries in the library, MLDe-
signer continues to generate the index files for the sub-libraries a.s.o If one of the modules in a
library does not have hypertext documentation, MLDesigner creates it automatically. Figure 3.32
shows the generated index for the Sine Modulator example library

3.16.2 Browsing Documentation
There are different way to open the hypertext documentation for a model component. If the model
is not opened in a design window, you can take the tree view. For that purpose, he has to select the
according model component item either in the file or in the library view. After selecting the model
component item, he can use the context menu item Online Documentation to open the hypertext
documentation.
If the model is opened, the Online Documentation tool button is used to open the documentation
of the model component to which the model belongs.

It is also possible to open the hypertext documentation for a model instance. If the context menu
item Online Documentation is used for a selected model instance, MLDesigner opens the hyper-
text documentation of the model to which the model instance refers.

3-43

3 Developing Models

Figure 3.31: Generated hypertext documentation

Figure 3.32: Generated hypertext documentation

3-44 MLDesigner Version 2.8

3.17 Source Code Editors

NOTE: Only one hypertext documentation browser can be open at any given moment. �

3.17 Source Code Editors
MLDesigner has a built-in editor which is extremely useful for debugging systems or modules. In
certain situations you may have your environment variables set so that when you click the open
source icon in MLDesigner an external editor is activated.
The ability to choose an external editor for checking or changing source code may be useful to pro-
grammers who have invested a lot of time in customizing their favorite editor. There are, however,
some disadvantages to using external editors. As described earlier in this document, MLDesigner
allows you to open the source code for a primitive, once only. This avoids the type of confusion
that could arise if the same primitives source code is open in more than one window of an external
editor. With some editors the changes made in one buffer are not automatically applied to the
other buffer. The changes made to one buffer could be overwritten by another buffer depending
on which buffer is closed last. Another disadvantage is that not all editors have the compile option
with an error console as is the case with MLDesigner’s built-in editor.
To change your environment variables so that source code is opened using the built-in editor, open

a console and at the prompt where you would normally start MLDesigner , enter the following:

For sh and bash command shells:

export MLD_EDITOR=

For csh and tcsh command shells:

setenv MLD_EDITOR=

As an example for setting the environment variables to open the source code using an external
editor we will describe how to set Emacs or XEmacs as default external editor for MLDesigner.

NOTE: The built-in editor is used as default editor in cases where compile errors occur. The �
reason is that you can highlight errors in the built-in editor error console and the cursor
will be automatically placed in the correct line of the source code editor.

At the prompt where you would normally start MLDesigner, enter the following for sh and Bash
command shells:

export MLD_EDITOR=xemacs

and for csh and tcsh command shells enter:

setenv MLD_EDITOR=xemacs

at the prompt. You can now start MLDesigner as usual. To reset the environment variables back
to the built-in editor enter

export MLD_EDITOR=
or

unsetenv MLD_EDITOR=Xemacs

3-45

3 Developing Models

respectively.

3-46 MLDesigner Version 2.8

3.17 Source Code Editors

Type name Description Example

int integer 10

float floating point number 0.2/PI

complex pair specified as (real-part, imag-part) (1.0, 2.0)

string string this is a string

fix fixed point numbers (2.546, 3.5)

intarray array of integers 1 2 3 4 5 6 7

floatarray array of floating point numbers 0.0 [10] 1.0 0.0 [10]

complexarray array of complex numbers (0.1, 0.2) (0.3, 0.4) (0.5, 0.6)

stringarray array of strings this string array ”has five” ele-
ments

fixarray array of fixed point numbers 41.78 2.546 [2] -3.5

precision precision for fixed point numbers 3.5

boolean enumeration with values FALSE and
TRUE

FALSE

enum enumeration with user-defined values

expression an expression of constant values, pa-
rameters, ports and memories

$Input+$Mem*$Param-3.2

file filename (obsolete) /tmp/input.test

filename filename $MLD USER/output.txt

filenamelist a list (array) of filenames

datastruct data structure instance Root

datastructname data structure name Root

datastructmembername name of a composite data structure’s
member

Byte1

modelname an XML or OCT model $MLD USER/M/M.mml

integrator an array describing continuous states see floatarray

stateevent continuous state variable used by ODE
solver

see floatarray

Table 3.4: Parameter data types supported by MLDesigner

3-47

3 Developing Models

Model Type Expander Color

System red

Module green

Primitive blue

FSM Primitive yellow

Table 3.5: Colors defined for model instances

Domain Identity Merge Fork

DE Oneway Yes Yes

SDF Gain No Yes

BDF Gain No Yes

DDF Gain No Yes

FSM No No No

HOF No No No

Table 3.6: Domains containing Merge and Fork Primitives

3-48 MLDesigner Version 2.8

Chapter 4

Debugging and Analyzing Systems

The combination of Probes, Breakpoints, Graphical Animation and Textual Animation are useful
when you need to understand how a model works or want to check if the model is behaving as
expected. With breakpoints, you can specify where and when you want a system to pause during
a simulation. Probes are used to see what data is consumed or emitted by a specific port or shared
model element.

The debug features Add Breakpoint and Add Probe discussed in the following sections are only
available via the context menu when MLDesigner is in simulation mode.

4.1 Breakpoints
There are a number of types of breakpoints. The following types are implemented in MLDesigner:

• Instance Breakpoint,
• Port Breakpoint,
• Memory Breakpoint,
• Event Breakpoint,
• Resource Breakpoint,
• FSM Transition Breakpoint,
• Module Breakpoints,
• FSM State Breakpoints, and
• FSM History Breakpoints.

To place a breakpoint you need to switch to simulation mode. Click the Switch to simulation
Mode icon on the toolbar and activate the context menu over the model instance where you would
like to place the breakpoint. Select Add Breakpoint from the context menu.

4.1.1 The Breakpoints Console
A list of all breakpoints in the active system is displayed in the Breakpoints console when the
system is switched to simulation mode. When you select an entry in the Breakpoints console the
model instance flashes in the Model Editor Window. Each breakpoint has a unique ID and an

4 Debugging and Analyzing Systems

Figure 4.1: Breakpoint Properties Window

Object Name. The entries Enable and Ignore Count are editable entries. To change the settings
or disable the breakpoint activate the context menu over the item in the Breakpoints console. The
following options are available (see fig. 4.2):

• Edit - Opens the Edit Breakpoint dialog.
• Enable/Disable - If status is Yes the option to Disable the breakpoint is available. If status

is No the option to Enable the breakpoint is available. The breakpoints can be toggled off
and on using the Break Point icon on the simulation control toolbar.

• Remove - Removes the selected breakpoint.
• Remove All - Removes all breakpoints from the system in the active Model Editor Window.

Figure 4.2: Context Menu in Breakpoints Console

4.1.2 Unconditional Breakpoints
It is possible to place unconditional breakpoints on ports, modules, primitives and shared model
elements such as resources and memories when MLDesigner is in simulation mode. The simula-
tion pauses as soon as a model instance containing a breakpoint fires or an event is produced at
the specified point in the simulation. You can adjust the breakpoints to ignore a certain number
of firings or events before pausing the simulation by setting the value in the Ignore Count input
field.

4-2 MLDesigner Version 2.8

4.1 Breakpoints

The input field Ignore Count sets the amount of times a model instance or port fires before stop-
ping the simulation. Once the instance has fired the specified number of times, the simulation is
paused. Thereafter the simulation pauses every time the model instance fires.

4.1.3 Module Breakpoints

Sometimes a module is instantiated in a system more than once. Consider the sinMod system
found in $MLD/MLD Libraries/SDF/Demo/sinMod. This demo system contains two in-
stances of the same module. The SinusGenerator#1 module is instantiated in the modulator#1
module and in the top level hierarchy of the system. Both instances of the module contain the
same two primitives namely Ramp#1 and Sin#1. When you place a breakpoint on either of these
two primitives, the simulation will be stopped every time the module fires. You may want the sim-
ulation to stop when the primitive in question fires within a specific model instance of the module.
This means you need to change the type of breakpoint.

To change the breakpoint type click on the appropriate breakpoint to activate the Breakpoint
Properties window. Change the Module Breakpoint property from Yes to No. Click on the Source
Models property. As shown in fig. 4.3 it is possible to select one or more model instances of the
module from this list by mouse-click. If all are selected then you essentially have a Module
Breakpoint.

Figure 4.3: The Select Source Module dialog for Breakpoints

Example

A simple system containing two instances of the same module is found in the File view under
SDF/Demo/ and is called sinMod.

1. Open the system in the Model Editor Window and double-click the modulator#1 model
instance.

2. Notice the model instance singen#1 is contained in the modulator module and in the
sinMod system.

3. Double-click the singen#1 model instance to open it in the Model Editor Window.
4. Click the Switch to Simulation Mode icon on the toolbar.

4-3

4 Debugging and Analyzing Systems

5. Click on the Ramp#1 output port and activate the context menu. Select Add Breakpoint

Two entries are visible in the Add New Breakpoint dialog. The entries show the system
name, the module name, the model instance name, the primitive name and the selected Port
name of the primitive.

6. Click the Module Breakpoint check box to select both instances of the Ramp primitive in
the sinMod system and click OK.

7. Click the Graphical Animation icon on the toolbar.
8. Click the Go icon on the toolbar to start the simulation.

Figure 4.4: sinMod with singen#1 Model Instance

The system pauses every time the Ramp primitive port fires and the module that contains the
breakpoint is highlighted in the Model Editor Window. In simulation mode the tool tip text facility
no longer displays a name and description for the model instance but rather displays values and
parameters of the model instance or input/output port. When the system is paused at a breakpoint
you can see what values are on which ports in order to analyze the system or suspected bug.

4.1.4 Breakpoints in Dynamic Instances
Breakpoints are, by default, set to stop the simulation every time a dynamically instantiated in-
stance of a module fires. This behavior is determined by the Breakpoint Properties parameter
Module Breakpoint which is set to Yes. This parameter must be set to No if you want the break-
point to stop the simulation when a specific dynamically instantiated instance of the module fires.
The Source Model property then becomes editable and must be defined. To do so click the icon
of the Source Model property in the Breakpoint Properties window (see fig. 4.5). Activate the
context menu in the Select Source Models dialog and choose the Add supposed Breakpoint
menu option. All information regarding the module is automatically generated and entered in the
dialog except for the instance number. The instance number is represented by the asterisk [*] as
shown here:

SystemName.ModuleName#1.ModuleName#*.ModelInstance#1.port

4-4 MLDesigner Version 2.8

4.1 Breakpoints

You need to define on which instance you want the simulation to stop. Activate the context menu
over the entry in the Select Source Models dialog and choose Edit Breakpoint. Replace the
asterisk with an appropriate instance number. The instance number should be between zero and
the maximum number of instances that will be instantiated during the simulation.

Figure 4.5: Breakpoint Properties window and Select Source Models Dialog

You can add more dynamic breakpoints by selecting Add Supposed Breakpoint from the con-
text menu and defining on which dynamically instantiated instance of the model you want the
simulation to stop.

NOTE: Only entries that are selected (highlighted) when the OK button is clicked are active �
breakpoints. You can select/deselect all breakpoints via the appropriate context menu
option or by single mouse click.

4.1.5 FSM Breakpoints
There are a number of new FSM breakpoints that can be used to stop an FSM simulation when
certain model items change their state or when an entry action occurs. Each breakpoint has options
that can be set in the Breakpoint Properties window. By default all options are active. To
deactivate certain breakpoint conditions select no from the drop down menu in the appropriate
item in the Breakpoint Properties window.

FSM State Breakpoint properties
The following options are available for State Breakpoints:

• Before Entry: The breakpoint pauses the simulation before execution of the Entry Action
of the associated State, even if the Entry Action is empty.

• After Entry: The breakpoint pauses the simulation after execution of the Entry Action of
the associated State, even if the Entry Action is empty.

• Before Exit: The breakpoint pauses the simulation before execution of the Exit Action of
the associated State, even if the Exit Action is empty.

• After Exit: The breakpoint pauses the simulation after execution of the Exit Action of the
associated State, even if the Exit Action is empty.

4-5

4 Debugging and Analyzing Systems

FSM Transition Breakpoint properties
The following options are available for Transition Breakpoints:

• Before Guard: The breakpoint pauses the simulation before evaluation of the Guard Con-
dition of the associated Transition, even if the Guard Condition is empty.

• After Guard: The breakpoint pauses the simulation after evaluation of the Guard Condition
of the associated Transition, even if the Guard Condition is empty.

• Before Action: The breakpoint pauses the simulation before execution of the Action of the
associated Transition, even if the Action is empty.

• After Action: The breakpoint pauses the simulation after execution of the Action of the
associated Transition, even if the Action is empty.

FSM History Breakpoint properties
The following options are available for History Breakpoints:

• Read Access: The breakpoint pauses the simulation while reading a memorized State from
the History.

• Write Access: The breakpoint pauses the simulation while writing a State to the History.

4.2 Probes
Probes are useful model elements when it comes to searching for bugs or simply understanding
what a model instance or module does during simulation runs. Probes are recognized in the tree
view by the probe icon shown here. A probe reads data from a model element and displays the
information in one of the following ways:

• Online Display - A re-sizeable white display with a thin black border is placed close to the
model element on which the probe is placed.

• File - The output data is written to a file in ASCII format. Whitespace separation followed
by a hard return.

• Tcl Variable - The data is defined as a Tcl variable.

Probes are capable of reading information from input/output ports, Memories and Events. The
information displays or is printed to a file when the value of the information on the appropriate
model element changes.

NOTE: Probes can only be placed on or deleted from model elements before or after a simulation�
run while MLDesigner is in simulation mode

4.2.1 Probe Properties
The Probe Properties editor shown in fig. 4.6 is visible when a probe is selected in the Model
Editor Window while MLDesigner is in simulation mode. The probe properties are listed and
explained in table 4.1.

4-6 MLDesigner Version 2.8

4.2 Probes

Property Name Function

Probe Defines the type of Probe primitive to use. Default is the Dump
primitive. Other types of probes are :

• FloatingMean
• Maximum
• MeanValue
• Minimum

SourceModel Instance from which to sample data.

Display Yes/No: Defines whether the probe is a display which is visible
in the Model Editor Window during simulation.

File Yes/No: Defines whether the data should be saved to a file or not.

Filepath Opens a dialog where it is possible to select or create a file to write
the data to. The data is printed to the file in ASCII Format. Data
is separated by whitespaces and a newline for each new element.
The data is overwritten with each simulation run or with each
iteration.

Workspace Yes/No: Whether the data should be written to a Tcl variable or
not.

Workspace vari-
able
name

Name of a Tcl variable to print the data to. The variable is over-
written with each triggering.

Control Type Time/Trigger: Defines whether the probe must write data after
a certain simulation interval or after a certain number of trigger-
ings.

Start Time The time to start reading data from the model element if Control
Type is set to Time.

Stop Time The time to stop reading data from the model element if the Con-
trol Type is set to Time.

Ignore Count The number of triggerings to ignore before reading data from the
selected model element if the Control Type is set to Trigger.

Trigger Count The number of triggerings to read data from the selected model
element if the Control Type is set to Trigger.

Table 4.1: Probe Properties Editor

4-7

4 Debugging and Analyzing Systems

4.2.2 Probe Primitives

The probe primitives define the algorithm used to analyze data samples. The primitives have an
input and an output port. Data samples are collected on the input port. Additional parameters can
be defined for probe primitives. Additional ports, Memories, Events or Resources may NOT be
defined.

Probes are not specific to a particular domain and can be used in all simulations.

Figure 4.6: Probe Properties Editor

4.2.3 Port Probes

The probe is triggered every time data is written to or read from a port. Numbered ports of special
primitives are handled as normal ports.
Probes do not differentiate between multiports and single ports. All ports represented by the multi-
port deliver data to the probe. The probe cannot determine which port delivered which data.

4.2.4 Probes on Memories and Events

Probes on Memories and Events are triggered when data is written to the shared model element.
The Dump primitive in the Probes library is designed to handle data of type “Anytype” and can be
used for reading from Memories and Events. The data is placed on the input port of the probe.

4-8 MLDesigner Version 2.8

4.2 Probes

4.2.5 Creating User Defined Probes
The procedure for creating user defined probes is exactly the same as creating a new primitive.
Open the Create New Model dialog. From the Type of Model drop-down menu select Probe.
Give the probe an appropriate name and save it in a library. A probe primitive with one input port
and one output port is now open in the Model Editor Window.

Open the source code of the new primitive. The three methods init(), trigger() and
finish() must be defined. These methods are briefly explained here:

Method Description

void init() Is called when a probe is instantiated or when a simulation is
started. There is no data on the port but the parameter is initial-
ized.

trigger() Typically reads data from the input, analyzes the data and puts the
result on the output.

finish() Is called when the simulation is complete or when the probe is
deleted.

Table 4.2: Probe Methods

4.2.6 The DataNew Flag
The programmer must ensure that the DataNew flag for a port is set to true when a probe places
data on an output port in the finish method. The following example demonstrates a Sum probe
that collects all values and passes them on once they have all been received.

output
{
name { Output }
type { float }
num { 0 } <= don’t put out any data on trigger()

}

protected
{
double sum;

}
init
{
sum = 0.0;

}

trigger
{

4-9

4 Debugging and Analyzing Systems

sum += double(Input%0); // accumulate
}

finish
{
Output.setPort(FLOAT, 1); // put one value of float at the end
Output%0 = sum;
Output.setDataNewFlag(true); // set the flag!

}

}

4.2.7 Probes on Dynamic Instances
The mechanism for placing probes within modules that are dynamic instances is the same as that
used for placing breakpoints. As explained previously the dynamic instance does not exist when
the probe is placed and must therefore be defined as a supposed probe on a model instance that
will be dynamically created at some stage in the future. The difference is that only one probe can
be placed on a given port whereas numerous breakpoints can be defined for a port. Breakpoints
can also be placed on a model instance whereas the placement of probes is restricted to ports and
shared model elements.

4.3 Argument Dependency Highlighting
When a shared model element is selected in the Model Properties window, all instances that use
the element are highlighted in the Model Editor Window. This feature works for model elements
such as Parameters, Resources, Events and Memories and works in both directions. When a model
instance is selected in the design window all shared elements that are used by the model instance
are highlighted in the Model Editor Window.

When a Parameter is selected in the Module Properties or System Properties window, all instances
that use the Parameter are highlighted in the design window.

4.4 Compile with Debug Option
It is possible to compile all primitives in a library with debug symbols for execution using an exter-
nal debugger. Only the primitives physically contained in the library are compiled. This option is
available via the context menu over library entries in the tree view or via the context menu over the
primitive in the Model Editor Window. A warning is printed to the command console to remind
you that the primitive is compiled with debug symbols.

NOTE: Systems containing primitives which are compiled with debug symbols run slower in�

4-10 MLDesigner Version 2.8

4.5 Debugging With External Debugger

MLDesigner. Once you have finished debugging it is recommended that you recompile
the primitive optimized.

The debug symbols are removed from the object files when the system is recompiled Optimized.
Once again you can choose to recompile all primitives in a given library or a single primitive via
the respective context menu.

4.5 Debugging With External Debugger
Debugging using an external debugger may be useful to programmers. To start MLDesigner with
an external debugger proceed as follows:

• Depending on the type of command line you are using, enter one of the following at the
prompt:

for bash or shell

export MLD_PREBIN=ddd

for tcsh and csh

setenv MLD_PREBIN ddd

• The ddd entry refers to the ddd debugger supplied with every Linux package and can be
replaced with a call referring to your favorite debugger.

Start MLDesigner as normal by typing mld2 in the command line. The debugger you have chosen
will start. If you are using ddd proceed as follows:

• Click the View menu and choose Command Tool.
• Click Run to start MLDesigner . This can take longer than normal.
• Once MLDesigner is started, you can open and run a system. It is possible to load the source

files of those primitives compiled with debug information and to place breakpoints in the
source code.

Starting with MLDesigner version 3.0 it is easier to debug the simulation process: the Switch to
Simulation Mode toolbar button is a drop down button offering the possibility to start the simu-
lation in the normal way or within a debugger.

If you want to debug an external simulation proceed as follows:

• Start MLDesigner as normal by typing mld2 in a command window without setting the
MLD PREBIN variable before.

• Select a system to run, e.g. $MLD USER/MyLibrary/MySystem.
• Click the Switch to Simulation Mode icon on the toolbar.
• Click the Generate and Simulate Extern toolbar icon.
• MLDesigner generates all the files needed to describe the system, compiles the generated

files, and executes the simulation.

4-11

4 Debugging and Analyzing Systems

• Leave MLDesigner or switch to another command shell.
• Set the MLD PREBIN variable as shown above.
• Change to the directory where MLDesigner created the files for the external simulation, e.g.
$MLD USER/SYSTEMS/MyLibrary/MySystem.

• Start the external simulation by typing the name of the system in the command line, e.g.
./MySystem.

• A new ddd window is opened and the simulation is ready for execution.
• Activate the Command Tool and click the Run button. ddd now runs the simulation com-

pletely independent of MLDesigner .

4-12 MLDesigner Version 2.8

Chapter 5

MLDesigner Kernel

The core of MLDesigner is a compact software infrastructure upon which specialized design envi-
ronments, so-called domains, can be built. The software infrastructure, called the kernel, is made
up of a family of C++ class definitions. For detailed information on all the kernel classes, please
refer to Ptolemy 0.7 Kernel Manual [BH97]. The MLDesigner kernel was taken from the origi-
nal Ptolemy system with some slight modifications. Therefore, the items MLDesigner kernel and
Ptolemy kernel are used synonymously.
Domains are specific implementations of a model of computation. They are defined by creating
new C++ classes derived from the base classes in the kernel. Domains can operate in either of two
modes

Simulation A scheduler invokes code segments in an order appropriate to the model of
computation.

Code generation Code segments in an arbitrary language are stitched together to produce one
or more programs that implement the specified function.

The use of an object-oriented software technology permits domains to interact with one another
without knowledge of the features or semantics of the other domain. Thus, using a variety of
domains, a team of designers can model each subsystem of a complex, heterogeneous system
in a natural and efficient manner. These different subsystems can be nested to form a tree of
subsystems. This hierarchical composition is the key in specifying, simulating, and synthesizing
complex, heterogeneous systems.

In summary, the key idea in the Ptolemy kernel and thus also in the MLDesigner kernel was to
mix models of computation, implementation languages, and design styles, rather than trying to
develop one all-encompassing technique. The rationale is that specialized design techniques are

1. more useful to the system-level designer, and
2. more amenable to high-quality high-level synthesis of hardware and software.

The MLDesigner kernel demonstrates a way to mix tools that have fundamentally different se-
mantics, and provides a laboratory for experimenting with such mixtures.

5 MLDesigner Kernel

5.1 Models of Computation
The MLDesigner kernel does not define any model of computation. Every effort has been made to
keep data flow semantics out of the kernel. Thus, for example, a network of blocks could just as
easily represent a finite state machine, where each block represents a state. It is up to a particular
domain to define the semantics of a computational model.

The semantics of a domain is defined by classes that manage the execution of a specification. These
classes could invoke a simulator, could generate code, or could invoke a sophisticated compiler.
The principal classes responsible for control and execution of the system model are the target and
the scheduler.

Targets

Targets take on particular importance in code generation domains where they describe all the
features of the target of execution, but they are used to control execution in simulation domains as
well. Since class Target is derived from the most common kernel class Block, the target object
itself has methods called setup, run, and wrapup. To define a simulation domain called XXX,
for example, one would define at least one object derived from Target that runs the simulation.
A Target can be quite sophisticated. It can, for example, partition a simulation for parallel
execution, handing off the partitions to other targets compatible with the domain. See sec. 6.5 for
a more in-depth look at how targets function.

Scheduler

A target will typically perform its function via scheduler objects derived from class Scheduler.
The schedulers control the order of execution of blocks under their control. In some domains, the
scheduler does almost everything. In such domains, the target simply starts it up. In others, the
scheduler determines an execution order and the target takes care of many other details, such as
generating code in accordance with the schedule, downloading the code to an embedded processor,
and executing it. The Scheduler defines the operational semantics of a domain by controlling
the order of execution of functional modules. Sometimes, schedulers can be specialized. For
instance, a subset of the data flow model of computation called Synchronous Data Flow (SDF)
allows all scheduling to be done at compile time. The MLDesigner kernel supports such special-
ization by allowing nested domains. For example, the SDF domain, see fig. 5.3 is a subdomain of
the Boolean Data Flow (BDF) domain. Thus, a scheduler in the BDF domain can handle all prim-
itives in the SDF domain, but a scheduler in the SDF domain may not be able to handle primitives
in the BDF domain. A domain may have more than one scheduler and more than one target.

5.2 Mixing Models of Computation
Large systems often mix hardware, software, and communication subsystems. The hardware sub-
systems may include pre-fabricated components such as: custom logic processors with varying
degrees of programmability, systolic arrays, and multiprocessor subsystems. Tools supporting
each of these components are different and possibly use different data flow principles such as:

5-2 MLDesigner Version 2.8

5.3 Simulation Domains

regular iterative algorithms, communicating sequential processes, control/data flow hybrids, func-
tional languages, finite-state machines, and discrete-event system theory and simulation.

XXXfromUniversal

XXXtoUniversal

YYYtoUniversal

YYYfromUniversal

YYYDomain

Particles

Particles

Scheduler

E
ve

nt
 H

or
iz

on

Scheduler

XXXWormHole

XXXDomain

XXXUniverse

Figure 5.1: Interface between internal and external domains

In MLDesigner, domains can be mixed and even nested. Thus, a system-level description can con-
tain multiple subsystems that are designed or specified using different styles. The kernel support
for this is shown in fig. 5.2. An object of class XXXWormhole in the XXX domain is derived from
class XXXStar, so that from the outside it looks just like a primitive in the XXX domain. Thus,
the schedulers and targets of the XXX domain can handle it just as they would any other primitive
block. However, inside, hidden from the XXX domain, is another complete subsystem defined
in another domain, say YYY. That domain gets invoked through the setup, run, and wrapup
methods of XXXWormhole. Thus, in a broad sense, the wormhole is polymorphic. The worm-
hole mechanism allows domains to be nested on many levels, e.g., one could have a DE domain
within an SDF domain within a BDF domain. The FSM domain is designed to always be used in
combination with other domains.

5.3 Simulation Domains
Data Flow Models

One of the most mature domains included in the current system is the synchronous data flow
(SDF) domain [LM87a, LM87b]. This domain is used for signal processing and communications
algorithm development, and has particularly good support for multirate algorithms [BHLM91].

A dynamic data flow (DDF) domain extends the SDF domain by allowing data-dependent flow
of control, as in Blosim. Boolean data flow (BDF) [BL93c, BL93b, Buc93] has a compile-time

5-3

5 MLDesigner Kernel

Figure 5.2: Hierarchical Model Structure

Figure 5.3: MLDesigner domains

5-4 MLDesigner Version 2.8

5.4 Code Generation Domains

scheduler for dynamic data flow graphs [Lee91b].

Several code-generation domains use data flow semantics [PHLB93, Mur93]. These domains
are capable of synthesis of C code, assembly code for certain programmable DSPs [Won92],
VHDL, and Silage [KL93]. A significant part of the research that led to the development of
these domains has been concerned with synthesizing code that is efficient enough for embedded
systems [BL94a, BBHL93, BBHL95, BL93a, BL94b, BL93b, Buc93]. A large amount of effort
has also been put into the automatic parallelization of the code [HL91, Ha92, SL93a, SL93b], and
on parallel architectures that take advantage of it [Lee91a, SL93c].

Discrete-Event Models

A number of simulation domains with discrete-event (DE) semantics has been developed for
MLDesigner , but the DE domain is the only pure discrete event domain released with MLDe-
signer . The DE domain is a generic discrete-event modeling environment useful for simulating
queuing systems, communication networks, and hardware systems.

Discrete Event / Continuous Time Models

Synchronous Reactive Modeling

The software analogy of synchronous digital circuits has been realized by Stephen Edwards in the
Synchronous Reactive (SR) domain [Edw92]. This model of computation is better suited than data
flow to control-intensive applications and is more efficient than DE.

Finite State Machines

Another approach to designing control-intensive applications is to mix Finite State Machines
(FSM) domain with data flow, DE, or other domains. Through FSMs you have the ability to
mix timed and untimed domains into hierarchical systems.

5.4 Code Generation Domains
Domains in fig. 5.3 are divided into two classes: simulation and code generation. In simulation
domains, a scheduler invokes the run methods of the blocks in a system specification, and those
methods perform a function associated with the model. In code generation domains, the scheduler
also invokes the run methods of the blocks, but these run methods synthesize code in some lan-
guage. That is, they generate code to perform some function, rather than performing the function
directly. The target then is responsible for generating the connecting code between blocks (if any
is needed). This mechanism is very simple, and language independent. Ptolemy has released code
generators for C, Motorola 56000 assembly, and VHDL languages, and these are now included in
the MLDesigner kernel (see fig. 5.3).

An alternative mechanism that is supported but less exploited in current MLDesigner domains
is for the target to analyze the network of blocks in a system specification and generate a single
monolithic implementation. This is what we call compilation. In this case, the primitive blocks

5-5

5 MLDesigner Kernel

must have functionality that is recognized by the target. In previous code generation mechanisms,
the functionality of the blocks was arbitrary and could be defined by the end user.

XXXSystem

XXXPrimitive

XXXPrimitive

XXXPrimitive

XXXPrimitiveModule

XXXPrimitive

XXXPrimitive

Module

Figure 5.4: Hierarchical system model structure.

5-6 MLDesigner Version 2.8

Chapter 6

Introduction to MLDesigner Domains

6.1 Foreword to the domain concept

In MLDesigner, a System, also known as a Hierarchical Model, is made up of primitives, mod-
ules and model instances with ports connected together via transitions. Each subsystem or model
instance may be modeled in a different domain to that of the parent System or model instance. In
mixing domains, the key is to ensure that at the interface, the child module obeys the semantics of
the parent domain. This interface method is called a wormhole.

Domains perform either:

• Simulation. Interpreters run an executable specification of a system on a local workstation.
• Code generation. Code generation domains translate the specification into some language

such as C or C++ and then optionally manage the execution of that generated code

The model of computation represents the semantics of the network of blocks. It defines what is
meant by an interconnection of blocks, and how the interconnection will behave when executed.

Timed and Untimed Domains

Simulation domains can be either timed or untimed. Untimed domains carry no notion of time
in their semantic model. Instead of chronology, they deal only with the order of particles or ac-
tions. Timed domains have a notion of simulated time, where each particle or action is modeled
as occurring at some particular point in this simulated time. Particles and actions are processed
chronologically. Timed and untimed domains can be mixed. From the perspective of a timed do-
main, actions in an untimed domain will appear to be instantaneous. Timed domains can exist at
several levels in the hierarchy, or in parallel at a given level of the hierarchy, separated by untimed
domains, and their chronologies will be synchronized.

That is, the notion of simulated time in MLDesigner is a global notion. When particles and actions
are processed chronologically in each timed domain present, they will be processed chronologi-
cally globally.

6 Introduction to MLDesigner Domains

6.2 Supported domains

6.2.1 Synchronous Data Flow (SDF)
The SDF domain is the most mature and widely used domain in MLDesigner. SDF is a special
case of the data flow model of computation developed by Dennis [Den75]. The specialization of
the model of computation is to those data flow graphs where the flow of control is completely
predictable at compile time. It is a good match for synchronous signal processing systems, those
with sample rates that are rational multiples of one another.

The SDF domain is suitable for fixed and adaptive digital filtering, in the time or frequency
domains. It naturally supports multirate applications, and its rich primitives library includes
polyphase real and complex FIR filters. Applications with examples in the demo library include
speech coding, sample-rate conversion, analysis-synthesis filter banks, modems, phase-locked
loops, channel simulation, linear prediction, chaos, filter design, Kalman filtering, phased array
beamforming, spectral estimation, sound synthesis, image processing, and video coding.

6.2.2 Higher-Order Functions (HOF)
A function is higher-order if it takes a function as an argument and/or returns a function. A classic
example is mapcar in Lisp, which takes two arguments, a function and a list. Its behavior is to
apply the function to each element of the list and to return a list of the results.

The HOF domain implements a similar function, in the form of a primitive called Map, that can
apply any other primitive (or module) to the sequence(s) at its inputs. Many other useful higher-
order functions are also provided by this domain.

The HOF domain provides a collection of primitives designed to be usable in all other MLDesigner
domains. It is intended to be included as a sub-domain by all other domains.

6.2.3 Dynamic Data Flow (DDF)
The predictable control flow of SDF allows efficient scheduling, but limits the range of appli-
cations. In particular, data-dependent flow of control is only allowed within the confines of a
primitive. To support broader applications, the DDF domain uses dynamic (run-time) scheduling.
For long runs, involving many iterations, this is more extensive than the static scheduling that is
possible with SDF. But in exchange for this additional cost, the result is a model of computation
that is as versatile as that of conventional programming languages. It supports conditionals, data-
dependent iteration, and true recursion.

Although the DDF domain is, in principle, a fully general programming environment, it is nonethe-
less better suited to some applications than others. We have found that signal processing appli-
cations with a limited amount of run-time control are a good match. Examples include systems
with multiple modes of operation, such as modems (which have start-up sequences and often im-
plement multiple standards), signal coding algorithms (which often offer a range of compression
schemes), and asynchronous signal processing applications, such as timing recovery and arbitrary

6-2 MLDesigner Version 2.8

6.2 Supported domains

SampleRate conversion. The demos provided with the domain show how to realize conditionals,
iteration, and recursion.

The SDF domain is in fact a sub-domain of DDF, which means that SDF primitives can be used in
DDF systems. For greater efficiency on long runs, the two domains can also be mixed using the
MLDesigner hierarchy. A module within a DDF system can be SDF, meaning that it will use an
SDF scheduler. Conversely, a module within an SDF system can be DDF.

6.2.4 Boolean Data Flow (BDF)

Boolean data flow was developed by Joe Buck [Buc93]. Like DDF, it supports run-time flow of
control. Unlike DDF, it attempts to construct a compile-time schedule. Thus it achieves the effi-
ciency of SDF with the generality of DDF. It currently supports a somewhat more limited range of
primitives than DDF, and does not support recursion, but the model of computation is, in principle,
equally general. Its applications are the same as those of DDF.

The basic mechanism used in BDF is to construct an annotated schedule, by which is meant a
static schedule where each firing in the schedule is annotated with the Boolean conditions under
which it occurs. Thus, any sequence of firings can depend on a sequence of Boolean values
computed during the execution. Executing the annotated schedule involves much less overhead
than executing a dynamic data flow schedule.

6.2.5 Discrete Event (DE)

The DE domain is a relatively mature domain using an event-driven model of computation. In
this domain, particles carry time stamps, and represent events that occur at arbitrary points in
simulated time. Events are processed in chronological order. Two schedulers are available. The
default scheduler is based on the ”calendar queue” mechanism developed by Randy Brown and
was written by Anindo Banerjea and Ed Knightly. Since this scheduler is relatively new, an older
and simpler but less efficient scheduler is also provided.

DE schedulers maintain an event queue, which is a list of events sorted chronologically by time
stamp. The scheduler selects the next event on the list, and determines which primitive should be
fired to process the event. The difference between the efficient calendar queue scheduler and the
naive simple scheduler is in the efficiency with which this queue is updated and accessed. Consid-
erable effort was put into consistent and predictable handling of simultaneous events.

The DE domain is suitable for high-level modeling of communications networks, queuing systems,
hardware systems, and transportation networks. The demos included with the domain include
a variety of queuing systems, shared resource management, communication network protocols,
packet-switched networks, wireless networks, and multimedia systems. The latter class of appli-
cations take advantage of the ability that MLDesigner has to mix domains by modeling speech
and video encoding algorithms using the SDF domain and a packet switched network using the
DE domain. There are also some more specialized uses of the DE domain, such as modeling shot
noise and synchronizing a simulation to a real-time clock.

6-3

6 Introduction to MLDesigner Domains

6.2.6 FSM Domain
MLDesigner 2.3 introduces a new Finite State Machine domain which is a significant upgrade
over its predecessor. The new FSM supports an extended set of finite state machine elements,
including

• events
• states
• transitions
• actions
• arguments
• histories

The FSM supports multiple levels of hierarchy. Most MLDesigner elements can be linked to
states, transitions and actions.

When developing FSM models, the Model Editor is automatically configured as an FSM Editor
through the addition of tool buttons for FSM model actions such as adding ports, arguments, states,
transitions, histories, and labels.

The FSM domain is a sub-domain and can never be the domain of an MLDesigner system. In-
stead, FSM Models are always incorporated into other domains via the MLDesigner wormhole
mechanism. In addition, the new FSM domain provides:

• reusability of the old MLDesigner FSM model
• support of the UML Statechart semantic
• support of all MLDesigner data types and data structures
• support of FSM relevant shared elements
• interaction with concurrency MLDesigner domains
• storage of FSM blocks via XML
• mapping of the BONeS FSM model

6.2.7 CTDE Domain
The purpose of this domain is to design and simulate continuous-time and mixed signal systems
(mixed-signal simulation). There are many instances where pure discrete event or continuous
time models of computation are not sufficient and are in fact problematic. By combining the
two models of computation into a new domain it is now possible to design heterogenous sys-
tems with completely different signal types. Connections between ports of different types are
made possible by inserting a primitive to convert the signal. These Primitives can be found in
the EventInterpreters library (to convert a discrete into a continuous signal) and in the
EventGenerators library (to convert a continuous to a discrete signal). This greatly enhances
the designers ability to create models which were till now problematic.

The CT part of this mixed domain is suited for modeling physical systems with linear or nonlinear
algebraic equation descriptions and has been extended to handle discrete events. This is achieved
by the scheduler switching between continuous time and discrete event mode. At a given time in

6-4 MLDesigner Version 2.8

6.3 Unsupported domains

the simulation interval the Discrete-Event scheduler processes all events that have a current time-
stamp. The simulator then switches to the Continuous-Time scheduler. The continuous trajectory
of the signal is calculated by a numerical ordinary differential equations (ODE) solver until the
next scheduled discrete event is reached where the scheduler switches back to discrete event mode.

Direct connection between ports of different types are not allowed. One has to insert a primitive
to convert the signal. These Primitives can be found in the:

• EventInterpreters library; to convert a discrete into a continuous signal and in the
• EventGenerators library; to perform the opposite conversion.

Continuous signals are vectors of real numbers. Many primitives can operate on vectorial inputs
such as the add primitive, as long as all inputs have the same width. The vector widths must be
consistent and are checked before the simulation starts.

6.3 Unsupported domains

6.3.1 Synchronous Reactive (SR)
The Synchronous Reactive domain, created by Stephen Edwards [Edw92], is a new and very
experimental domain. The Synchronous Reactive domain is a statically-scheduled simulation
domain in MLDesigner designed for concurrent, control-dominated systems. To allow precise
control over timing, it adopts the synchronous model of time, which is logically equivalent to as-
suming that computation is instantaneous.

SR is similar to existing MLDesigner domains, but differs from them in several important ways.
Like Synchronous Data Flow (SDF), it is statically scheduled and deterministic, but it does not
have buffered communication or multi-rate behavior. SR is better for control-dominated systems
that need control over when things happen relative to each other; SDF is better for data-dominated
systems, especially those with multi-rate behavior.

SR also resembles the Discrete Event (DE) domain. Like DE, its communication channels transmit
events, but unlike DE, it is deterministic, statically scheduled, and allows zero-delay feedback
loops. DE is better for modeling the behavior of systems (i.e., to better understand their behavior),
whereas SR is better for specifying a system’s behavior (i.e., as a way to actually build it).

6.3.2 Multidimensional Synchronous Data Flow (MDSDF)
The MDSDF domain was developed by Mike Chen and is still very experimental. This domain is
an extension of the Synchronous Data Flow model to multidimensional streams and is based on the
work of Edward Lee. MDSDF provides the ability to express a greater variety of data flow sched-
ules in a graphically compact way. It also allows nested reset-table loops and delays. Additionally,
MDSDF has the potential for revealing data parallelism in algorithms. The current implementa-
tion of the MDSDF domain only allows two dimensional streams, although we hope that many of
the ideas used in the development of the domain can be generalized to higher dimensions.

6-5

6 Introduction to MLDesigner Domains

6.3.3 Code generation (CG)
The CG domain is the base from which all other code generation domains (such as CGC and
CG56) are derived. This domain supports a general data flow model equivalent to the BDF and
SDF models. The primitives in this domain do little more than generate comments when fired,
but they can serve to demonstrate and test the features of scheduling algorithms. In this domain,
you can build test systems, view the generated code (comments) for multiple processors, and
display a Gantt chart for parallel schedules. In derived domains, real code is generated, compiled,
downloaded and executed, all under control of the selected target. In MLDesigner , one serious
weakness of the code generation domains is that they only support scalar data types (complex,
floating-point, integer, and fixed-point) on the input and output ports.

6.3.4 Code generation in C (CGC)
The CGC domain uses Boolean-controlled data flow semantics, and has C as its target language.
We have made every effort to name primitives and their parameters consistently so that it is easy
to move from one domain to another. With a little effort, one could create CGC versions of all
SDF primitives. If this were accomplished, then re-targeting from one domain to another would
be a simple matter of changing domains and targets and running the system again.

The generated C code is statically scheduled, and the memory used to buffer data between prim-
itives is statically allocated. Moreover, for many of the primitives, the code that is generated
depends on the values of the parameters. One way to think of this is that the parameters of the
primitive are evaluated at code generation time, so no run-time overhead is incurred from the
added flexibility of parameterizing the primitive.

There are several targets to choose from in the CGC domain. The bdf-CGC target supports the
boolean-controlled data flow model of computation. It must be used whenever primitives with
BDF semantics are present in a program graph. The default-CGC target supports the SDF model
of computation, so it can be used when the program graph contains only primitives with SDF
semantics. The TclTk Target target also supports SDF, and must be used whenever Tcl/Tk
primitives are present in the program graph. The unixMulti C target supports SDF and parti-
tions the program graph for execution on multiple workstations on a network.

6.3.5 Code generation for the Motorola DSP56000 (CG56)
This domain synthesizes assembly code for the Motorola DSP56000 family. The code generation
techniques that are used are described in [PHLB93]. They are derived from techniques used in
Gabriel [BGH+90]. This domain has been used to generate real-time implementations of various
modem standards, touch tone generators, and touch tone decoders.

6.3.6 Code generation in VHDL (VHDL, VHDLB)
This pair of domains is for generating code in VHDL (VHSIC Hardware Description Language).
The VHDL domain supports functional models using the SDF model of computation, while

6-6 MLDesigner Version 2.8

6.4 Summary of various domains

VHDLB supports behavioral models using the native VHDL discrete event model of computa-
tion. Since the VHDL domain is based on the SDF model, it is independent of any notion of time.
The VHDLB domain supports time delays and time-dependent behavior of blocks. The VHDL
domain is intended for modeling systems at the functional block level, as in DSP functions for
filtering and transforms, or in digital logic functions, independent of implementation issues. The
VHDLB domain is intended for modeling the behavior of components and their interactions in
system designs at all levels of abstraction.

Within the VHDL domain there are a number of different Targets to choose from. The default
target, default-VHDL, generates sequential VHDL code in a single process within a single entity,
following the execution order from the SDF scheduler. This code is suitable for efficient simu-
lation, since it does not generate events on signals. The SimVSS-VHDL target is derived from
default-VHDL and it provides facilities for simulation using the SYNOPSYS VSS VHDL sim-
ulator. Communication actors and facilities in the SimVSS-VHDL target support code synthesis
and co-simulation of heterogeneous CG systems under the CompileCGSubsystems target devel-
oped by Josè Luis Pino. There is also a SimMT-VHDL target for use with the Model Technology
VHDL simulator. The struct-VHDL target generates VHDL code where individual actor firings
are encapsulated in separate entities connected by VHDL signals. This target generates code which
is intended for circuit synthesis. The Synth-VHDL target, derived from struct-VHDL, provides
facilities for synthesizing circuit representations from the structural code using the SYNOPSYS
Design Analyzer tool set. Because the VHDL domain uses SDF semantics, it supports re-targeting
from other domains with SDF semantics (SDF, CGC, etc.) provided that the primitives in the orig-
inal graph are available in the VHDL domain. As this experimental domain evolves, more options
for VHDL code generation from data flow graphs will be provided. These options will include
varying degrees of user control and automation depending on the target and the optimization goals
of the code generation, particularly in VHDL circuit synthesis.

Unlike the VHDL domain, the older and less-developed VHDLB domain is much simpler in its op-
eration. When a system in the VHDLB domain is run, the graph is traversed and a code file is gen-
erated in a pop-up window and in a subdirectory which reflects the topology and hierarchy of the
graph. The generated VHDL code will reference VHDL entities which are expected to be included
in other files. There is a VHDL code file in the $MLD/src/domains/vhdlb/lib directory
for each VHDL primitive in the main primitives of the $MLD/src/domains/vhdlb/icons
directory. Adding a new primitive is a matter of writing VHDL code for the entity and adding
a primitive file in the primitives subdirectory of the VHDLB domain which reflects the inputs,
outputs, and parameters of that primitive. The existing primitives should serve as examples for
how new primitives can be written.

6.4 Summary of various domains
The following table shows a quick overview of all the domains currently available in MLDesigner.
A ’*’ denotes domains which are experimental and therefore not supported by the MLDesigner
support group.

6-7

6 Introduction to MLDesigner Domains

Domain Description

Synchronous Data Flow
(SDF)

Oldest and most mature domain; this is a sub-domain of DDF and BDF
Domains

• Special case of data flow model of computation developed by Den-
nis [Den75]

• Flow is completely predictable at compile time thus allows for effi-
cient scheduling

• Allows for static scheduling
• Good match for synchronous signal processing systems with sam-

ple rates that are rational multiples of one another
• Supports multi-rate applications and has a rich primitives library
• Range of applications is limited

Dynamic Data Flow
(DDF)

Versatile model of computation as it supports conditionals, data-
dependent iteration, and true recursion

• More general than SDF
• Uses dynamic (run-time) scheduling which is more time-intensive

than static scheduling
• Good match for signal processing applications with a limited

amount of run-time control

Boolean Data Flow
(BDF)

Relatively new domain which supports run-time flow of control

• Attempts to construct a compile-time schedule to try and achieve
efficiency of SDF with generality of DDF

• More limited than DDF
• Constructs an annotated schedule: execution of a task is annotated

with a boolean condition

Discrete Event
(DE)

Relatively mature domain which uses an event-driven model of computa-
tion

• Particles carry time-stamps which represent events that occur at ar-
bitrary points in simulated time

• Events are processed in chronological order

6-8 MLDesigner Version 2.8

6.4 Summary of various domains

Domain Description

Finite State Machine
(FSM)

The new FSM supports an extended set of finite state machine elements,
including

• events
• states
• transitions
• actions
• arguments
• histories

Continuous Time/Dis-
crete Event
(CTDE)

Combined Continuous Time and Discrete Event Model of computation

• The Discrete-Event scheduler processes all events that have a cur-
rent time-stamp. The simulator then switches to the Continuous-
Time scheduler.

• The trajectory of the continuous signal is calculated by a numerical
ordinary differential equations (ODE) solver.

• Direct connections between ports of different types are not allowed.
One has to insert a primitive to convert the signal.

Higher Order Functions
(HOF)

Implements behavior of functions that may take a function as an argument
and return a function

• HOF collection of primitives may be used in all other domains
• Intended to be included only as a sub-domain by other domains

Integer and State Con-
trolled Data Flow
(STDF)*

Very new to MLDesigner and still experimental. This is an extension to
BDF

• Realizes data flow control by integer control data and port statuses
• Scheduling is static and conditional like BDF
• It has user-defined evaluation functions

Multidimensional Syn-
chronous Data Flow
(MDSDF)*

Relatively new and experimental

• Extends SDF to multidimensional streams
• Provides ability to express a greater variety of data flow schedules

in a graphically compact way
• Currently only implements a two-dimensional stream

6-9

6 Introduction to MLDesigner Domains

Domain Description

Synchronous/Reactive
(SR)*

Very new to MLDesigner and still experimental

• Implements model of computation based on model of time used in
Esterel

• Good match for specifying discrete reactive controllers

Code Generation
(CG)*

Base domain from which all code generation domains are derived

• Supports a data flow model that is equivalent to BDF and SDF se-
mantics

• This domain only generates comments, allows viewing of the gen-
erated comments, and displays a Gantt Chart for parallel schedules

• Can only support scalar data types on the input and output ports
• All derived domains obey SDF semantics
• Useful for testing and debugging schedulers
• Targets include bdf-CGC which supports BDF, default-CGC

which supports SDF semantics, TclTk Target which supports
SDF and must be used when Tcl/Tk primitives are present, and
unixMulti C which supports SDF semantics and partitions the
graph for multiple workstations on a network

Code Generation in C
(CGC)*

Uses data flow semantics and generates C code

• Generated C code is statically scheduled and memory used to buffer
data between primitives is statically allocated

Code Generation for
the Motorola
DSP 56000
(CG56)*

Synthesizes assembly code for the Motorola DSP56000 family

Code Generation in
VHDL
(VHDL,VHDLB)*

Relatively new and experimental

• Generates VHDL code
• VHDL domain supports SDF semantics whereas VHDLB supports

behavioral models using native VHDL discrete event model of
computation

• Many targets to choose from
• VHDL domain is good for modeling systems at functional block

level whereas VHDLB is good for modeling behavior of compo-
nents and their interactions at all levels of abstraction.

Table 6.1: Summary of various domains

6-10 MLDesigner Version 2.8

6.5 Targets

6.5 Targets
A target coordinates the scheduling and implementation of algorithms described in a particular
domain. As part of the coordination, a target may provide an interface to software (compiler,
assembler, simulator, etc.) or hardware. A typical domain supports many different types of sched-
ulers and many different implementation technologies. This is made possible by having many
different target types for each domain.

In a simulation domain, the target selects the scheduler to use (there can be several schedulers
in a single domain) and starts and stops a simulation. In a code generation domain, the target
also selects the scheduler, but then also generates the code, compiles it, and runs it on a suitable
platform. Targets can be defined hierarchically; for example, a multiprocessor target may consist
of several, possibly heterogeneous execution platforms, each specifying itself as a target. In this
example, the top level target might handle the partitioning and interprocessor communication, and
the lower level targets might handle the code generation, compilation, and execution. Targets play
a much bigger role in code generation domains than in simulation domains.

SDF Domain Targets
As is typical of simulation domains, the SDF domain does not have many targets. These [T]argets
are visible in the Property Editor under the Model Properties tab. The default-SDF target is
normally selected by default.

6.5.0.1 Default SDF target

The default SDF target has a simple set of options: The SDF scheduler determines the order of
execution of stars in a system at start time. It performs most of its computation during its setup()
phase. If the loopScheduler target parameter is DEF, then we get a scheduler that exactly imple-
ments the method described in [LM87a] for sequential schedules. If there are sample rate changes
in a program graph, some parts of the graph are executed multiple times. This scheduler does not
attempt to generate loops; it simply generates a linear list of blocks to be executed. For example,
if star A is executed 100 times, the generated schedule includes 100 instances of A. A loop sched-
uler will include in its ”looped” schedule (where possible) only one instance of A and indicate the
repetition count of A, as in (100 A). For simulation, a long unstructured list might be tolerable,
but not in code generation. (The SDF schedulers are also used in the code generation for a single
processor target).

Neglecting the overhead due to each loop, an optimally compact looped schedule is one that con-
tains only one instance of each actor, and we refer to such schedules as single appearance sched-
ules. For example, the looped schedule (3 A)(2 B), corresponding to the firing sequence AAABB,
is a single appearance schedule, whereas the schedule AB(2 A)B is not.

By setting the loopScheduler target parameter to CLUST, we select a scheduler developed by Joe
Buck. Before applying the non-looping scheduling algorithm, this algorithm collects actors into
a hierarchy of clusters. This clustering algorithm consists of alternating a ”merging” step and a

6-11

6 Introduction to MLDesigner Domains

”looping” step until no further changes can be made. In the merging step, blocks connected to-
gether are merged into a cluster if there is no sample rate change between them and the merge will
not introduce deadlock. In the looping step, a cluster is looped until it is possible to merge it with
the neighbor blocks or clusters. Since this looping algorithm is conservative, some complicated
looping possibilities are not always discovered. Hence, even if a graph has a single appearance
schedule, this heuristic may not find it.

Setting the loopScheduler target parameter to ACYLOOP results in another loop scheduler being
selected, this one developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96][BML96].
This scheduler only tackles acyclic SDF graphs, and if it finds that the universe is not acyclic, it
automatically resets the loopScheduler target parameter to CLUST. This scheduler is optimized
for program as well as buffer memory. Basically, for a given SDF graph, there could be many
different single appearance schedules. These are all optimally compact in terms of schedule length
(or program memory in inline code generation). However, they will, in general, require differing
amounts of buffering memory; the difference in the buffer memory requirement of an arbitrary
single appearance schedule versus a single appearance schedule optimized for buffer memory
usage can be dramatic. Again, in simulation this does not make that much difference (unless really
large SDF graphs with large rate changes are being simulated of-course), but in code generation
it is very helpful. Note that acyclic SDF graphs always have single appearance schedules; hence,
this scheduler will always give single appearance schedules. If the logFile target parameter is set,
then a summary of internal scheduling steps will be written to that file. Essentially, two different
heuristics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one
of the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory requirement
(called BMLB) over all possible single appearance schedules.

NOTE: The ACYLOOP scheduler modifies the System during its computations; hence, scripted�
runs that depend on the System remaining in the original state, cannot be used with
this scheduler. Since the System reverts to its original state after a run sequence, the
ACYLOOP scheduler will work fine in normal usage.

6.5.0.2 The loop-SDF target

An exact looping algorithm, available in an alternative target called the loop-SDF target, was de-
veloped by adding postprocessing steps to the CLUST loop scheduling algorithm. For lack of a
better name, we call this technique ”SJS scheduling”, for the first initials of the designers (Shuvra
Bhattacharyya, Joe Buck, and Soonhoi Ha). In the postprocessing, we attempt to decompose the
graph into a hierarchy of acyclic graphs [BBHL93], for which a compact looped schedule can
easily be constructed. Cyclic subgraphs that cannot be decomposed by this method, called tightly
interdependent subgraphs, are expanded to acyclic precedence graphs in which looping structures
are extracted by the techniques developed in [BL94a] and extensions to these techniques devel-
oped by Soonhoi Ha. This scheduling option is selected when the loopTarget is chosen instead of
the default SDF target.

The target options are:

• logFile

6-12 MLDesigner Version 2.8

6.5 Targets

• schedulePeriod

They have the same interpretation as for the default target, but in the loop-SDF target, schedulePe-
riod has an initial default of 10000.0. When there are sample rate changes in the program graph,
the default SDF scheduler may be much slower than the loop schedulers, and in code generation,
the resulting schedules may lead to unacceptably large code size. Buck’s scheduler provides a fast
way to get compact looped schedules for many program graphs, although there are no guaran-
tees of optimality. The somewhat slower SJS scheduler is guaranteed to find a single appearance
schedule whenever one exists [BBHL95]. Furthermore, a schedule generated by the SJS scheduler
contains only one instance of each actor that is not contained in a tightly interdependent subgraph.
However, neither the SJS scheduler nor Buck’s scheduler will attempt to optimize for buffer mem-
ory usage; this need is met by the ACYLOOP scheduler chosen through the default-SDF target
as described above, for acyclic graphs. Algorithms for generating single appearance schedules
optimized for buffer memory systematically for graphs that may contain cycles have not yet been
implemented.

The looped result can be seen by setting the logFile target parameter. That file will contain
all the intermediate procedures of looping and the final scheduling result. The loop scheduling
algorithms are usually used in code generation domains, not in the simulation SDF domain.
Refer to the Code Generation domain documentation for a detailed discussion to the section on
”Schedulers”.

Target Target Parameters

logFile (STRING) Default = The name of a file into which the scheduler will
write the final schedule. The initial default is the empty string.

loopScheduler (STRING) Default = DEF A String specifying whether to attempt to com-
pact the schedule for forming looping structure (see below). Choices are
DEF, CLUST, ACYLOOP. The case does not matter: DEF, def, Def are
all the same. For backward compatibility, ”0” or ”NO”, and ”1” or ”YES”
are also recognized, with ”0” or ”NO” being DEF, and ”1” or ”YES” be-
ing CLUST.

schedulePeriod (FLOAT) Default = 0.0 A floating-point number defining the time taken
by one iteration through the schedule. This is not needed for pure SDF
systems, but if SDF systems are mixed with timed domains, such as DE,
then this will determine the amount of simulated time taken by one itera-
tion.

Table 6.2: SDF Targets and Target Parameters

6.5.0.3 SDF to PTCL target

The SDF-to-PTCL target was introduced in Ptolemy 0.6. This target is substantially incomplete,
we give a rough outline below. We hope to complete work on the SDF-to-PTCL target in a later

6-13

6 Introduction to MLDesigner Domains

release. The SDF-to-PTCL target uses CGMultiInOut stars to generate abstract ptcl graphs which
capture the SDF semantics of a simulation SDF universe. These abstract graphs can then be used
to test SDF schedulers.
The ptcl output filename will use the universe name as a prefix, and append .pt to the name (e.g.,
the ptcl output for the butterfly demo would be in butterfly.pt). Currently the directory that will
contain the ptcl output is hardwired to ∼/PTOLEMY SYSTEMS/ptcl/. You may need to create
this directory by hand. The most interesting aspect about the target is that it collects statistics on
the execution time of each star. This is valuable for seeing the relative run-times of the various
stars which can be used in code generation. It collects statistics by running the scheduled universe,
accumulating elapsed CPU time totals for each star. This new target does not call the wrapup
methods of the stars, so you will not see XGraph outputs.

6-14 MLDesigner Version 2.8

Chapter 7

Simulation with MLDesigner

The Switch to Simulation Mode icon is visible on the toolbar when a System is open in the
Model Editor Window. Click the icon to switch to simulation mode. The simulation run control
icons are now visible on the toolbar. These are, from left to right:

Figure 7.1: Simulation Icons on the Toolbar

1. Edit Mode. The run controls apply to the system that was active when you clicked the
Simulate icon. If you want to run another system without physically closing the active
system, first click the Switch to Edit Mode icon before selecting a new system to simulate.

2. Go. To start the simulation click this icon. Notice the Progress tab at the bottom of the GUI
showing the progress of the simulation.

3. Step Into - The simulation is advanced to the next block. If the next block in the system
is a hierarchical module, the first block within the module is highlighted. In the example in
fig. 7.2. The firing order is Step 1, Step 2.1, Step 2.2, Step 2.3, Step3, Step 4.

4. Step Over - The simulation is advanced to the next block on the same hierarchical level in
the system. The firing order is Step 1, Step 2, Step 3, Step 4. Clicking Step Over when Step
2 is highlighted causes Step 2.1, Step 2.2 and Step 2.3 to execute and the simulation pauses
at Step 3.

5. Finish - If the simulation has advanced to an instance within a module it is possible to
execute all events in the module and advance to the next model instance outside the module.
Clicking Finish while Step 2.1 of the hierarchical model Step 2 is highlighted advances the
simulation to Step 3. Clicking Finish while step 3 is highlighted causes the simulation to
run through to the end.

6. Early End Calls the wrap up command and all graphs are produced if enough information
was available for the end conditions to be met.

7. Abort. The simulation is halted and reset.
8. Graphical Animation. Model instances and ports are highlighted as they fire during the

simulation. This slows the simulation down a lot but is useful in connection with Break-
points for debugging systems.

NOTE: The formal ports of the modules are not highlighted because they do not exist in �

7 Simulation with MLDesigner

kernel during simulation. A system containing no wormholes is, after compila-
tion, nothing else than a plain network of primitive instances.

9. Textual Animation. Opens the Animation console. A textual report of each port firing or
model instance firing is printed to the Animation console. This is useful for checking firing
order of model elements and wormholes.

10. The Debug Mode icon activates/deactivates all breakpoints in the active system.
11. Generate Extern. A single click on the icon executes the simulation using the method

chosen in the Settings configuration of the main menu. The default is Generate C++.
The files are created in the target directory but are not compiled (see sec. 7.1.1 for more
information about compiling and running external simulations.) To generate a PTcl file
for simulation, click and hold the mouse over the Generate Extern icon for more than 1
second. A submenu displays the two options Generate C++ and Generate PTcl. The
default simulation method can be changed under the Run control item in the Settings menu.
Check the appropriate radio button under the Preferred external simulation method.

12. Generate & Run Extern. Generates all object files needed to run a simulation extern (in-
dependent of the MLDesigner GUI), compile and execute the simulation once. All files are
written to $MLD USER/SYSTEMS/Library Name/System Name/.. unless other-
wise specified in the Target Directory property of the Simulation Properties window.

Figure 7.2: Step Into Example

Figure 7.3: Step Over Example

7.1 Generate Extern
The following options are available when executing a simulation Extern.

7-2 MLDesigner Version 2.8

7.1 Generate Extern

Figure 7.4: Finish Example

7.1.1 Generate C++
The Generate C++ option on the toolbar starts the process of generating all files needed to run
a simulation independent of the MLDesigner GUI. The simulation will, however, not run Extern
unless MLDesigner is installed on the machine where you execute the system; a result of the dy-
namic linking mechanism.

All files are written to "TargetDirectory"/"LibraryName"/"SystemName"/...,
where "TargetDirectory" means the content of the same named property of the ”Simu-
lation Properties”, which is set to $MLD USER/SYSTEMS/ as default. Here is a list of the files
which are generated from MLD.

NOTE: Note that "SystemName" stands for the according system name, e.g. "butterfly". �

Here is a list of the files which are generated from MLD.
Before the system can be executed, it must be compiled. In the directory where the files are stored
type make, or better, start the script ending with "-build". If compilation is successful, the
directory contains several more files listed below.

NOTE: Note that $MLDARCH means the output of "mldarch" on your site. �

As you can see, now there is a file called "SystemName". To give the simulation a try, you
can start it by typing "./SystemName". If your system uses X, Tk, Qt or similar primitives,
you have to start the simulation with "./SystemName -x", which is the common case. If
you are unsure about this, use -x in every case. The file with the extension .param is parsed
when the simulation is executed. This file can be edited manually and the simulation can be
rerun independent of the MLDesigner GUI. The simulation parameters for each simulation run
are stored in a file with the extension .param.* where * indicates a unique simulation number.

7.1.2 Generate PTcl Extern
The Generate PTcl option on the toolbar opens a dialog where you can create a location to save
the .ptcl file in. It is possible to create a new directory and/or change the default name of the

7-3

7 Simulation with MLDesigner

file role

SystemName script for compiling with a lockfile mechanism, to avoid
parallel compilation of the same architecture.

SystemName-mldstart script used by mld to start distributed external simula-
tions, do not use it.

*.cpp, *.cc, *.h source code files, where for each module one cc file is
generated

SystemName.params parameter file

makefile makefile

version file containing the version number under which these
files are generated. To avoid conflicts, MLDesigner will
generate new source files if the version number found
here does not match the version number of MLDesigner
itself

obj/* object files of the user primitives

Table 7.1: generated files

file role

SystemName script for starting the simulation

SystemName.$MLDARCH simulation binary file

*.$MLDARCH.mo module object files

SystemName.moc moc file

Table 7.2: files in extern directory

ptcl file.

The two files *.params and *.ptcl are generated in the specified location. The *.params
file contains the default settings for all visible parameters (parameters that are visible in the Sim-
ulation Properties window). After every simulation a *.params.* file is created containing the
settings for the simulation. The filename is extended by a unique number indicating the simula-
tion number. This feature means it is possible to execute a number of simulations with different
settings while keeping a record of the parameter settings for each simulation. It makes sense to
save the results of each simulation with the name extended by the simulation number.

7.1.2.1 Run PTcl Extern

• Via the MLDesigner Console

7-4 MLDesigner Version 2.8

7.1 Generate Extern

In the MLDesigner Command Console cd to the directory where the files are stored and
type:

execute <systemname.ptcl>

• Via the Shell
An MLDesigner PTcl shell makes it possible to execute PTcl simulations independent of
the MLDesigner GUI. To execute the simulation type:

$MLD/ptclsh -x SystemName.ptcl

It is also possible to run PTcl simulations in batch mode using the at command followed
by $MLD/ptclsh -x SystemName.ptcl.

7.1.2.2 Parameter Values

The .params file can contain a list of numbers separated by semi colons or can be a list of
numbers defined using the following syntax:

for -1.0 to 1.0 step 0.1

which would be equivalent to a list of numbers separated by semicolons such as

-1.0; -0.90; -0.80;to 1.0.

These values represent the initial particle value per iteration of the relevant Parameter Set.
A typical file of a simulation with three parameter sets looks like this:

Parameter_Set
{
GlobalSeed : 1234567890
PTclScript :
RunLength : 1000
new_parameter_1: for -1.0 to 1.0 step .1

}

Parameter_Set
{
GlobalSeed : 1234567890
PTclScript :
RunLength : 1000
new_parameter_1: for 2 to 10 step 2

}
Parameter_Set
{
GlobalSeed : 1234567890
PTclScript :
RunLength : 1000

7-5

7 Simulation with MLDesigner

new_parameter_1: 3; 30; 300
}

It is not possible to create new parameters by editing the file: it is only possible to edit the values
of parameters in the .params file.

7.1.3 Execute on other Platforms

It is possible to execute systems designed under one operating system such as Linux on another
operating system such as Solaris, but only if the system DOES NOT contain user-defined prim-
itives. User-defined primitives that are compiled for external simulation on one system will not
be compatible with another operating system. If the system contains user defined primitives they
are exported to the $MLD/SYSTEMS/.. directory as .o object files. The primitive itself is not
exported. The simulation c n only run if the user-defined primitive has been compiled on the
machine where you want to execute the system. To do so, export the system using the Export
Library feature available via the context menu in the tree view window. For more information on
exporting libraries see sec. 2.4.2.

7.1.4 Environment Variables

Extern files are sensitive to MLDesigner environmental variable settings. Changes to the default
settings, if made incorrectly, could lead to unsuccessful compilation of extern systems.

The environment variables SIM SYSTEM and SIM EXTERN are set to the URL of the simulated
system and the directory where the code of the external simulation is generated (specified by the
Target Parameter property in the Simulation Properties window).

7.2 Generate & Run Extern

Generate & Run Extern creates all files and compiles them. Once all files are generated the
system is executed once in the background. The option to generate and run using PTcl or C++ can
be selected. To select a preferred simulation method, click and hold the left mouse button with the
cursor placed over the Generate & Run Extern icon. Select one of the methods available.

A single click on the icon will run the simulation in default mode. The default setting can be
set via the Settings configuration. Under the Run Control item the option Preferred external
simulation method.

NOTE: With external simulations, model source code is regenerated only if a model has changed.�
The .cpp file must be updated in this case. As a result the compile process is a lot faster
when recompiling after minor changes are made.

7-6 MLDesigner Version 2.8

7.2 Generate & Run Extern

7.2.1 External Parameters
A number of [P]arameters can be defined for a system. These parameters are a class of arguments
used to control the functions of a system. Parameters on system level are not used to control the
model component on embedding, but to control its behavior during simulation. You can set simu-
lation parameters in system models and can change them while in simulation mode.

Parameter definitions on system model level have an additional property called Scope. This
property is used to specify whether the parameter is shown as a user interface control element in the
Simulation Properties window. The system model defines the default values of the parameters.
These values can be changed anytime in the simulation control window without any modification
of the system model. To change the default settings, click the Switch to Edit Mode icon before
changing the parameter values. Save the model and return to simulation mode by clicking the
relevant icon.

7.2.2 Example
Continued from page 3-21
Let us come back to the example system model we developed in ch. 3. The system model Sine EX
Modulator System defines the two parameters to set the frequencies for the sine wave gen-
erators. Follow the steps below to make these parameters visible within the simulation control
window.

- Select the Model Editor Window that contains the Sine Modulator System model.

- Click on the Sine Modulator System model background.
- Click on the plus sign to the left of the parameter SignalFrequency.
- Set the Scope attribute to true.

- Click on the Sine Modulator System model background.
- Click on the plus sign next to the parameter CarrierFrequency.
- Set the Scope attribute to true.

- Save the model using the tool button Save Model.

The simulation control buttons located on the toolbar perform the following actions.

The GO button starts the simulation run.

The PAUSE button merely interrupts the simulation.
Use the Step Forward button to continue the simulation run.

Every time the STEP Forward button is pressed, the simulation continues for one step. That is,
the scheduler that controls the simulation fires the next block (it calls the go method of the next
scheduler). The Step Increment parameter in the Simulation Properties window allows you to
step through the simulation in larger steps, i.e., setting this value to 5 will advance the simulation
by five firings of the actual ports represented on both the system level as well as the subsystem

7-7

7 Simulation with MLDesigner

level. This applies to both homogenous modules and wormholes.

With the ABORT button, the simulation is stopped and re-initialized. If needed you can click
Clear in the Textual Animation window to clear the results of the aborted simulation. The Early
End button initializes the wrapup script. All relevant graphs associated with the simulation dis-
play the results of the simulation if enough information was available when the simulation was
ended.

The Switch to Edit Mode icon closes the Simulation Properties window but leaves the Ptolemy
Xgraph windows open.
You have the following options:

• Save EPS (saves the results in Postscript format)
• Print (prints the graph directly to your default printer)
• Zoom In- this is done by left click on the mouse and dragging a rectangle, from left to right,

over the area you want to examine more closely.
• Zoom Out- is achieved by dragging a rectangle over the area you want to expand, from right

to left.
• Fill (resets the zoom level so the whole graph is visible in the display window after you have

zoomed in on a section of the graph)
• Close (closes the relevant graph)
• Close All (closes all graphs resulting from the simulation)

If the model uses Tk primitives the Tk user interface elements appear within tclRunControl win-
dows (see fig. 7.5). For details on customizing the GUI see sec. 16.2.

Figure 7.5: Additional controls in TclScript panel

Figure 7.6 and fig. 7.7 show the simulation control window for the SDF example system MLD
Libraries/DEMO/SDF Demo/Tcl/Tk/animatedLMS. Using these Tk elements, the model
parameters can be controlled during the simulation run.

7.3 Debug Mode

The debug features of MLDesigner are only available via the context menu when MLDesigner
is in simulation mode. This is an interactive tool for locating and diagnosing inconsistencies or
bugs in your modules and systems. With breakpoints, you can specify where and when you want
a system to pause during a simulation.

7-8 MLDesigner Version 2.8

7.3 Debug Mode

Figure 7.6: Simulation control window with Tk slider elements

Figure 7.7: Simulation control window with Tk slider elements

7-9

7 Simulation with MLDesigner

7.3.1 Place a Breakpoint
To place a breakpoint you need to switch to simulation mode. Click the Switch to simulation
Mode icon on the toolbar and activate the context menu over the model instance where you would
like to place the breakpoint. Select Add Breakpoint from the context menu.
If there are existing breakpoints on the model instance you chose, the new breakpoint will get
a unique identifier. You have the option of selecting and enabling multiple breakpoints but this
only makes sense if you have conditional breakpoints and you want to stop a simulation if one
or another condition is met on a model instance. At the moment conditional breakpoint are not
working but they will be implemented soon.

Figure 7.8: Breakpoint Properties Window

7.3.2 Unconditional Breakpoints
It is now possible to place unconditional breakpoints. The simulation pauses as soon as a model
instance containing a breakpoint fires or an event is produced at the specified point in the simula-
tion. You can adjust these breakpoint to ignore a certain number of firings or events before pausing
the simulation by setting the value in the Ignore Count input field.

7.3.2.1 Ignore Count Breakpoints

The input field Ignore Count sets the amount of times a model instance 0r port fires before stop-
ping the simulation. Once the instance has fired the specified number of times, the breakpoint
becomes an unconditional breakpoint and stops the simulation every time it fires. Enter a numeri-
cal value in the Ignore Count input field.

7.3.3 Module Breakpoints
If a module is instantiated more than once in a system the option of placing a module breakpoint
is available. In the top of the Add New Breakpoint dialog a list of all modules is displayed. It is
possible to select one or more modules from this list by mouse-click. To select all in the list select
the check box Module Breakpoint. When a selected module fires the simulation will pause.

7-10 MLDesigner Version 2.8

7.4 Simulation with Parameter Sets

In short, breakpoints are useful when you know that at a certain point in your program, or, when a
certain condition occurs, a problem exists. By defining an appropriate breakpoint, you can stop a
simulation at the point in the simulation where the problem appears.
In simulation mode the tool tip text facility no longer displays a name and description for the
model instance but rather displays values and parameters of the model instance or input/output
port. There are a number of types of breakpoints depending on the type of model instance. The
following types are implemented in MLDesigner:

• Instance Breakpoint,
• Port Breakpoint,
• Memory Breakpoint,
• Event Breakpoint,
• Resource Breakpoint,
• FSM Transition Breakpoint,
• FSM State Breakpoint, and
• FSM History Breakpoint.

7.3.3.1 Simulate from Command line

It is possible to run PTcl systems or C++ systems from the command line once all files have been
generated. To run a C++ simulation external from the command line enter

./SystemName

at the ˜/MLD/SYSTEMS/directory prompt. The simulation will run in the background as
normal.

To revert back to opening MLDesigner without the debugger type one of the following lines:

export MLD_PREBIN=
or

unsetenv MLD_PREBIN

Once again the first line is for bash or shell command lines and the second line is used for tcsh
and csh type command lines.

7.4 Simulation with Parameter Sets
It is possible to run simulation permutations using a combination of multiple iterations and a
number of parameter sets. The two examples covered here are relatively simple and are intended
to show the order of simulation achieved by using more than one set of parameters in systems. This
option can also save you a lot of time in terms of running a simulation once in order to display a
variety of simulation results. The best way to explain this is by way of example.
We need to create a simple system using a Ramp primitive and an XGraph. Proceed as follows:

• Click the new model icon on the toolbar.

7-11

7 Simulation with MLDesigner

• Choose System from the Type of Model drop-down menu.
• In the Logical Name field enter SimpleParamSet.
• Select a Library where you will easily find your new system.
• In the File View of the tree view window go to
MLD Libraries/SDF/Sources/ and click and drag the Ramp primitive into your
blank system window.

• Press Control and click the Ramp primitive with the left mouse button. The cursor changes
to a plus sign when you move the mouse indicating you have a copy of the Ramp primitive.
Drag the copied primitive to the appropriate position as shown in fig. 7.9. Release the mouse
button and thereafter the control key.

• Open the Sinks library in the SDF directory. Click and drag the XYgraph into your
system.

• Connect the ports as shown in the diagram.

Ramp#1�

Ramp#2�

XYgraph#1�

Figure 7.9: Data Type Hierarchy

You are now ready to create new parameters for your first parameter set.

Click on the background of the Model Editor Window to deselect any model instances in the sys-
tem. Activate the context menu in the Name column of the Model Properties window. Choose
New Parameter from the context menu. A new parameter is created with the name Parameter1.
Repeat the procedure to create a second field called Parameter2.

The next step is to give values to the parameters:

• Scroll down to the fields Parameter1 in the Model Properties window. Enter the Values
1; 2; 3 separated with semicolons.

• In the Parameter2 input field type 4; 5; 6 in the input field.

You now need to link the parameters Step and Value of the model instances Ramp#1 and
Ramp#2 to the Parameter1 and Parameter2:

7-12 MLDesigner Version 2.8

7.4 Simulation with Parameter Sets

• Click on the Ramp#1 primitive model instance in the Model Editor Window.
• Activate the context menu of the Step parameter in the Instance Properties window.

Choose Link To and select Parameter2 from the sub-menu.
• Activate the context menu for the parameter Value and select Parameter1 from the

sub-menu.
• Click on the Ramp#2 primitive model instance in the Model Editor Window.
• Activate the context menu of the Step parameter in the Instance Properties window.

Choose Link To and select Parameter2 from the sub-menu.
• Activate the context menu for the parameter Value and select Parameter1 from the

sub-menu.

Click the Switch to Simulation Mode icon. In the Simulation Properties window set the Run
Length to 2 to see the results of the simulations clearly. Large simulations often produce many
graphs that all appear the same at first glance but are in fact all very different. This is a result of
the scale factor of the XYgraph. You will often only see the differences when you use the Zoom
function (click and drag the mouse over a section of the graph).

The sets of simulations carried out as a result of these settings are in table 7.3:

Graph Number Start Value Step Size

1 1 4

2 2 4

3 3 4

4 1 5

5 2 5

6 3 5

7 1 6

8 2 6

9 3 6

Table 7.3: Permutation of Simulation with Three Step Parameters and Three Start Value

The next step is to create a second Parameter Set and see what results or permutations are achieved.
Between the tree view window and the properties editor is a small window titled Parameter Set
1. Activate the context menu in this window and choose New Parameter Set. All default values
from Parameter Set 1 are set as default value in parameter set 2. For this example proceed as
follows:

• Choose Parameter Set 1 from the Parameter Set window drop-down menu.
• Set the Value of Parameter1 to 1; 2; 3 and the Value of Parameter2 to 4.
• Choose Parameter Set 2 from the Parameter Set window drop-down menu.
• Set the Value of Parameter1 to 3 and the Value of Parameter2 to 5; 6.

7-13

7 Simulation with MLDesigner

Graph Number Start Value Step Size

1 1 4

2 2 4

3 3 4

4 3 5

5 3 6

Table 7.4: Permutation of Simulation with Two Parameter Sets and Three Start Value

7.5 Saving Simulation Results
You may wish to write the simulation results to a file where you can analyze the data later or use
the data as input for other software tools. There are a number of ways to do this.

7.5.1 Write Simulation Results to the Console
Start MLDesigner from the Command Shell with the parameter -c as appendage.

mld2 -c

A system containing a Print primitive will print simulation results to the command shell. An ex-
ample is found in Library View/Demos and is called MinDirectivity. Here the default [P]arameter
Value for Printer.input=1#1 are set as 〈stdout〉. The results of the simulation are printed to
the console.

7.5.2 Write Simulation Results to File
With the previous MinDirectivity example, it is also possible to write the simulation results to a
file. The MLD Libraries directory is, however, write protected so you must first copy the system
to your own library folder. There you will be able to edit certain parameters. Activate the context
menu and select Save As to create a copy of MinDirectivity in your library. The new copy is
automatically opened and active in the design area. Proceed as follows:

• Click on the Printer.input=1#1 primitive in the Design Window. The Property Editor
will display the Instance Properties for the primitive.

• Click in the [P]arameter Field fileName and click the folder icon to open the directory
explorer.

• Select a folder and open the folder using the explorer. Type a name for the file. The file will
be created automatically if it does not exist, unless you do not have write permissions to that
folder.

• Run the system to write the results to the file.

7-14 MLDesigner Version 2.8

7.6 Distributed External Simulations

The same is also true for printing the results of a XGraph to a file. A list of co-ordinates are saved
in this case.
Using a program such as MLDesigner’s pxgraph you can view the file later. pxgraph is shipped
with MLDesigner and can be found in the MLDesigner installation directory.

From the Command Shell you can open the results of a simulation and view them as a graph. Enter
the command to call the pxgraph program followed by the full path of the file you wish to view in
a 2 dimensional format.

mldpxgraph ˜/MLD/testgraph =800x400

The image is displayed using mldpxgraph. As you can see, it is possible to define how you would
like the graph to appear using Ptcl script as in the =800x400 (see sec. 8.3).

Another way to open the simulation results dumped to a file is to select the instance that produced
the output file, then right click on its parameter of type filename in the Property Editor Win-
dow and choose the Open option from the context menu.

It is possible to use the simulation and iteration number in the expression that defines the filename
to generate distinct files for different simulations/iterations. If the filename is given by a parameter,
you can specify an expression that combines the simulation and iteration number, e.g.:

$MLD_USER/results.$absSimul.$absIter.txt
$MLD_USER/results_${SIMNO}_${SIMIT}.txt

If the filename is generated in the primitive’s code, during initialization or when the wrapup is
called, you can use the environment variables in conjunction with expandPathName function:

char* tFileName = expandPathName("results.$SIMNO.$SIMIT");
// open and write to file
delete []tFileName;

Also you can use in your code the static methods of the SimControl class:

int getCurParamSet ();
int getAbsSimul ();
int getAbsIter ();
int getCurIter ();

7.6 Distributed External Simulations
The ability to run a simulation extern on a number of computers simultaneously is useful where
complex simulations with numerous iterations result in long simulation run times.

NOTE: The computers used for the distributed simulation must all have the same architecture �
and the same version of MLDesigner otherwise the simulation will not run.

7-15

7 Simulation with MLDesigner

The first step towards running a distributed simulation is to ensure that all workstations have
MLDesigner installed in a shared environment. The $MLD USER environment variable should
also be set to a shared environment i.e., the command mld2 should start the same MLDesigner on
all computers. The computers to be used must also be registered in the /etc/hosts.equiv file.

Workstation /etc/hosts.equiv entries

Computer 1 Computer2
Computer3

Computer 2 Computer1

Computer 3 Computer1

Table 7.5: Host registry for Distributed Simulations

On computer 2 and 3 the rshdeamon must be running. To test if this is the case type:

rsh Computer2 rsh Computer1 hostname

This command should return Computer1.

In the Used Computers property of the simulation Properties window shown in fig. 7.10 enter the
computers you wish to use. If this field is empty the simulation runs only on localhost. A list of
servers can be added to the Used Computers property by editing the ∼/.mld/.mldrc file. By
default localhost is entered in the <SHARED SERVERS >environment. To add servers to this
list, type the server name next to or below the localhost entry. Save the file and restart MLDesigner
. The servers entered now appear in the Used Computers list when MLDesigner is in simulation
mode.
The simulation can now be run. Note that the rshscheduler runs each iteration parallel although
only one iteration per computer can be run at a given time. If the Progress bar is visible it is
possible to observe the simulation as it is executed on all computers.

7.7 Simulation Statistics
It is possible to print the simulation statistics to the Command console. This is a useful feature
if you want to see how much processor time primitives or modules need in simulation and how
many times each instance fires. This function is activated by the PTcl command stats on.
Simulation time is increased by between 15 and 30 percent depending on the complexity of the
model when statistics collection is active. We recommend you keep the stats turned off when
possible.
The following TCL commands are valid:

To turn statistics on/off.

stats on
stats off

7-16 MLDesigner Version 2.8

7.7 Simulation Statistics

Figure 7.10: Used Computers Dialog

To execute the simulation from the MLDesigner command console:

execute MySimulation.ptcl

You can write all the statistics from a given simulation to a file. First you must run the simulation
with stats on and then type the following in the MLDesigner Command console:

set fd [open "MySimulation.stats" w]

creates the file specified with the .stats extension

puts $fd [stats recursive]

writes the statistics to the file specified with the .stats extension

close $fd

Closes the file with the statistics from the last simulation.

The file now holds all the relevant information regarding the simulation and can be viewed using
a text editor. In this case you should have a file called testPacket.stats in your working
directory.

Module testPacket:
Primitive Clock#1 0.0s 52
Primitive Ramp#1 0.0s 51
Primitive Packetize#1 0.0s 51

7-17

7 Simulation with MLDesigner

Primitive ITerminator#12 0.0s 0
Primitive UnPacketize#1 0.0s 57
Primitive VarServer#1 0.0s 10
Primitive XMgraph.input=2#1 0.0s 102
Primitive RanGen.distribution=e#1 0.0s 10
Primitive ExecuteInOrder.Out=2#1 0.0s 10
Primitive auto-fork-node73 0.0s 51
Primitive auto-fork-node74 0.0s 51
sum Module testPacket: 0.0s

The file contains four columns:

• Column 1 - The type of model instance
• Column 2 - The Name and instance number of the model instance
• Column 3 - The processor time needed in seconds and tenths of a second.
• Column 4 - The total number of times the model instance fired.

In this case the total processor time is measured in 100ths of a second and the .stats file shows
10ths of a second.

NOTE: The simulation must run for more than one tenth of a second processor time.�

7-18 MLDesigner Version 2.8

Chapter 8

Plots, Graphs and Animation

8.1 Animation Using Tk Primitives
MLDesigner provides you with a number of primitive components that can be used to create
complex animations. All these primitives are based on execution of Tcl/Tk scripts that realize Tk
widgets. Tk widgets are realized by the Tk toolkit associated with the Tcl language.

TkPlot#1

TkMeter#1�

TkShowBooleans#1�

TkShowValues#1
�

TkText#1�

TkBarGraph#1�

TkXYPlot#1�

Figure 8.1: Sink primitive model components for animation

Any number of animated displays can be created using Tcl/tk primitives. Some of them are opened
in separate windows, others can be embedded in the simulation control window. The animation
can be textual or graphical. The Tk animation primitives can be found within the Tcl/Tk library
of the according domain, e.g., MLD Libraries/SDF Domain/TclTk. The most important
primitives, shown in fig. 8.1, are:

TkPlot Plot Y input(s) vs. time with dynamic updating. Two styles are cur-
rently supported: dot causes individual points to be plotted, whereas
connect causes connected lines to be plotted. Drawing a box in the
plot will reset the plot area to that outlined by the box. There are also
buttons for zooming in and out and for resizing the box to fit the data
in view.

TkXYPlot Plot Y input(s) vs. ”X” input(s) with dynamic updating. Two styles are
currently supported: dot causes points to be plotted, whereas connect
causes connected lines to be plotted. Drawing a box in the plot will

8 Plots, Graphs and Animation

reset the plot area to that outlined by the box. There are also buttons
for zooming in and out and for resizing the box to fit the data in view.

TkShowValues Display the values of the inputs in textual form. The print method of
the input particles is used, so any data type can be handled, although
the space allocated on the screen may need to be adjusted.

TkBarGraph Dynamically display the value of any number of input signals in bar-
chart form. The first 12 input signals will be assigned distinct colors.
After that, the colors are repeated. The colors can be controlled using
X resources.

TkMeter Dynamically display the value of any number of input signals on a set
of bar meters.

TkShowBooleans Display input Booleans using color to highlight their value.

TkText Display the values of the inputs in a separate window, keeping a spec-
ified number of past values in view. The print method of the input
particles is used, so any data type can be handled.

The simplest animation is to print the output of ports to text widgets using a TkText primitive
connected to the output port. For detailed information of the functionality of the animation primi-
tives, please refer the online documentation of the primitives.

Example

To demonstrate the using of Tk primitive modules we will modify the Sine Modulatormodel.
Follow the steps below to modify the Sine Modulator module as shown in fig. 8.2.EX

- Select the Model Editor Window that contains the Sine Modulator module.
- Select the Library View plane in the tree view.

- Expand the library MLD Libraries/SDF/TclTK
- Drag item TkBarGraph into the Model Editor Window. From the Select Special Primi-

tive dialog select TkBarGraph.input=1
- Expand the library MLD Libraries/SDF/Control.
- Drag item Fork into the Model Editor Window. From the Select Special Primitive dialog

select Fork.output=2
- Connect the model instances as shown in fig. 8.2.

- Click on the TkBarGraph.input=2 model instance.
- Click on the value field of the parameter number of bars.
- Set the value to 32.

- Save the model using the tool button Save Model.

Click the Switch to Simulation Mode. Click Go to run the simulation. A Bar Chart Display
appears when the simulation is complete (see fig. 8.3). Also displayed are two Ptolemy Xgraphs.

8-2 MLDesigner Version 2.8

8.1 Animation Using Tk Primitives

Mpy.input=2#1�

Sine_Generator#1�

MemoryWrite#1�M Baseband

outputinput�

TkBarGraph.input=2#1�

Figure 8.2: Model

Figure 8.3: Animation

8-3

8 Plots, Graphs and Animation

8.2 Visualization Using 2D Plotting System
The 2D visual representation of simulation results, usually in the form of a set of graphs, are
realized through primitives working as sinks.These primitives generate different types of graphs
such as Line plots, Histograms a.s.o. All these primitives use the internal plotting system derived
from the pxgraph program. The pxgraph program belongs to the original Ptolemy distribution.
These primitives can be found within the Sink library of the according domain, e.g., MLD Libraries/-
SDF Domain/Sinks.lib.
These primitives produce the following results:

XMgraph Generate a generic multi-signal plot.

XYgraph Generate an XY plot using the 2D plotting system. The X data is on
xInput and the Y data is on input.

Xscope Generate a multi-trace plot using the 2D plotting system. Successive
traces are overlaid on one another.

Xhistogram Generate a histogram using the 2D plotting system. The plot is suc-
cessive. The parameter binWidth determines the bin width.

Waterfall Plot a series of traces in the style of a waterfall plot. This is a type of
three-dimensional plot used to show the evolution of signals or spec-
tra. Optionally, each plot can be made opaque, so that lines appearing
behind the plot are eliminated.

Printer Print out one sample from each input port per line. The fileName
parameter specifies the file to be written; the special names stdout
and cout specify the standard output stream, as well as stderr and
cerr specify the error output stream.

8.3 Xgraph Configuration
The sink primitives Xgraph, XMgraph and XYgraph are parameterized so you can con-
figure them to display a variety of graph types. They can display up to 64 independent datasets
using different colors and/or line styles for each set. It annotates the graph with a title, axis labels,
grid lines or tick marks, grid labels, and a legend. There are options to control the appearance of
most components of the graph. Use the parameter [P]options field in the Instance Properties
window to control the appearance, size, and position of your simulation output graphs. Click the
XMgraph primitive in the System Design Window. The Instance Properties tab is activated.
You will now see the default values of the [P]arameter options. Click the icon to the right of the
input field to activate the Property Text Editor. The commands seen in fig. 8.4 will produce
an XMgraph with a bright green background, no grid lines, each data point marked by a pixel
sized dot. The first dataset is called data out in the legend, and the second dataset, data lost. The
graph is 800 X 150 pixels in size and is positioned on the left of the screen 600 pixels from the top.

If you have an XMgraph with three input ports and you would like to define the label for each
input port, select the primitive in the Design window, with a single mouse-click. The Instance
Properties tab is activated in the Properties Editor window. The syntax for the graph input label is:

8-4 MLDesigner Version 2.8

8.3 Xgraph Configuration

-0 label1 -1 label2 -2 label3

where -0 indicates the index of the first set of output data consumed by the XMgraph.

Figure 8.4: XMgraph Configuration Syntax

The following commands can be entered in the Options field:

=wxh+x+y Specifies the initial size and location of the plot window. Co ordinate
values x and y are optional. (+0+0 indicates the top left corner of the
screen).

-〈digit〉 〈name〉 The legend title for the corresponding dataset. The digit can range be-
tween 0 and 63 with -0 being the first dataset and -1 being the second.
The name will be seen in the legend.

-tk Removes the light grey grid pattern from the graph background.

-bar Specifies that vertical bars should be drawn from the data points to a
base point, which can be specified with -brb. Usually, the -nl flag
is used with this option. The point itself is located at the center of the
bar.

-bb In previous versions this was used to draw a bounding box around the
data region. This option is not supported anymore. All graphs have
bounding boxes.

-bg 〈color〉 Background color of the plot window. Color is given by name.

-binary This specifies that the input is a binary file rather than an ASCII file.

-brw 〈width〉 This specifies the width of bars in a bar graph. The amount is specified
in the user’s units. By default, a bar is drawn with one pixel width.

-fg 〈color〉 Foreground color. This color is used to draw all the text and the normal
grid lines in the window. Color is given by name.

-lf 〈fontname〉 Label font. All axis labels and grid labels are drawn using this font.
A font name may be specified exactly (e.g. 9x15 or -*-courier-
bold-r-normal-*-140-*) or in an abbreviated form: 〈family〉-
〈size〉. The family is the family name (like Helvetica) and the size is
the font size in points (like 12). The default value for this parameter is
Helvetica-12.

-lnx Specifies a logarithmic x axis. Grid labels represent powers of ten.

8-5

8 Plots, Graphs and Animation

-lny Specifies a logarithmic y axis. Grid labels represent powers of ten.

-lx 〈xl,xh〉 This option limits the range of the x axis to the specified interval. This
(along with -ly) can be used to ”zoom in” to a particularly interesting
portion of a larger graph.

-ly 〈yl,yh〉 This option limits the range of the y axis to the specified interval.

-m Mark each data point with a distinctive marker. There are eight distinc-
tive markers used by the plotting system. These markers are assigned
uniquely to each different line styles on black and white machines and
varies with each color on color machines.

-M Similar to -m but markers are assigned uniquely to each of the eight
consecutive datasets (this corresponds to each different line style on
color machines).

-nl Turn off drawing lines. When used with -m, -M, -p, or -P this can be
used to produce scatter plots. When used with -bar, it can be used to
produce standard bar graphs.

-p Marks each data point with a small marker (pixel sized). This is usu-
ally needed with the -nl option for scatter plots.

-P Similar to -p but marks each pixel with a large dot.

-rv Reverse video. On black and white displays, this will invert the fore-
ground and background colors. The behavior on color displays is un-
defined.

-t 〈string〉 Title of the plot. This string is centered at the top of the graph.

-tf 〈fontname〉 Title font. This is the name of the font to use for the graph title. The
usage is the same as for the -lf option.

-treasure Redundant option. Replaced by the Parameter ’Cumulation’.

-x 〈unitname〉 This is the unit name for the X axis. Its default is ”X”.

-y 〈unitname〉 This is the unit name for the Y axis. Its default is ”Y”.

Figure 8.5 shows the output of the XMGraph.input=1 instance in the Sine Modulator
System model.

The following options are available in the Xgraph window:

Save EPS To export the graph as vector graphic in EPS format. Select a location
from the Save as dialog or create a new folder.

Print Prints the graph direct to your default printer.

Fill After using the cursor to zoom in on an area of a graph, click Fill
to revert to normal view where the entire result of the simulation is
visible.

Close Closes the Result window.

Close All Closes all result windows resulting from the simulation.

8-6 MLDesigner Version 2.8

8.3 Xgraph Configuration

Figure 8.5: XMGraph example

8-7

Chapter 9

Modeling Using PTCL - The Ptolemy TCL
Interpreter

9.1 Introduction
There are a few ways to work with MLDesigner: Firstly using the graphical user interface (GUI),
and secondly using the built-in interpreter. This combination allows you to interact with MLDe-
signer using both graphical elements and textual commands. The MLDesigner GUI is described in
sec. 2.2. The MLDesigner built-in interpreter is called PTCL, which stands for Ptolemy Tool Com-
mand Language. It conveniently operates within the Command console window of MLDesigner
. This chapter holds information about using the Command console.
The Ptolemy interpreter, PTCL, accepts input commands from the keyboard, from a file, or from
combinations thereof. It allows you to set up a new simulation by creating instances of blocks
(primitives, modules, or wormholes), connecting them together, setting the initial values of pa-
rameters, and running/restarting the simulation. It allows simulations to be run in batch mode.
PTCL is based on John Ousterhout’s tool command language TCL, pronounced ”tickle”, which is
an extensible interpreted language. All the commands of Tcl are available in PTCL .
PTCL extends the Tcl interpreter language by adding new commands. The underlying grammar
and control structure of Tcl are not altered. Commands in Tcl are string based with relatively few
constructs and a simple syntax: the basic syntax is

command arg1 arg2 arg3 . . .

This chapter describes only the extensions to Tcl made by PTCL . Two excellent references on Tcl
are books by Ousterhout [Ous94] and Welch [Wel97].

9.2 Global information
The interpreter has a list containing all the classes of primitives and modules it currently knows
about. New primitives can be added to the list at run time by using the incremental linking facility,
but this has restrictions (see sec. 9.8.4).

NOTE: Remember that the Ptolemy vocabulary for models and parameter differs from that in �
MLDesigner: star refers to primitive, galaxy refers to modules, universe refers to system,

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

and state refers to parameter, see sec. 2. Therefore, some PTCL commands still contain
the Ptolemy vocabulary.

9.3 Commands for Defining Simulation
This section describes using the built-in PTCL interpreter as well as the commands to build simu-
lations, add primitives, modules, parameters, and the connections between them. These commands
are entered at the prompt in the Command Console window. The commands are summarized in
table 9.1.

Command Arguments Description Page

alias galport b1 p1 Connect a module port galport to
the port p1 of block b1.

9-8

animation [on|off] Enable or disable printing of primitive
names as they fire.

9-14

busconnect b1 p1 b2 p2
w [delay]

Form a bus connection of width w be-
tween the two multiportholes p1 and
p2 that belongs to the blocks b1 and
b2.

9-8

cancelAction action handle Cancel an action previously registered
using registerAction.

9-19

cd [directory] Change the current directory to the
one given by argument directory.

9-17

connect b1 p1 b2 p2
[delay]

Form a connection between the two
portholes p1 and p2 that belongs to
the blocks b1 and b2.

9-7

cont num Continue executing the current sys-
tem num times (default: 1).

9-13

cursystem [name] Print or set the name of the current
system to name.

9-6

defmodule name { body } Define a new module class with
name.

9-10

delds ds name Delete the data structure or enumera-
tion ds name.

9-26

delnode name Delete the node with name from the
current module.

9-15

delprimitive name Delete the primitive with name from
the current module.

9-14

delsystem [name] Delete the current system or the sys-
tem with name.

9-6

9-2 MLDesigner Version 2.8

9.3 Commands for Defining Simulation

Command Arguments Description Page

descriptor [block] Return the descriptor of block (de-
fault: current module).

9-12

disconnect b1˜ p1 Remove the connection going to/from
the specified port.

9-15

domain [name] Set the domain name as current, or
print the name of the current domain.

9-7

domains List the known domains. 9-7

execute filename Reads the file filename.ptcl and
runs the simulation.

9-12

exit Exit MLDesigner . 9-18

halt Request that the current simulation
stop.

9-13

help [command] Print a short description of command,
or help on help, if the argument is
omitted.

9-18

knownlist [domain] List the known blocks of domain
(default: current domain).

9-11

link objfile Incrementally link objfile into
MLDesigner .

9-17

listobjs class [name] List parameters, ports, multiports,
event, memories, and resources in the
block name (default: current mod-
ule).

9-12

matlab command
[arg1] [arg2]

Manage a Matlab process and evalu-
ate Matlab commands.

9-19

mathematica command
[arg1] [arg2]

Manage a MATHEMATICA process
and evaluate commands.

9-19

multilink linker args code.o Link arbitrary code into the inter-
preter.

9-17

newds ds name ds base Define a new data structure ds name
with parent type ds base.

9-24

newdsmember ds name
member name
member type
[default] [subrange]

Define a new member member -
name with type member type for
data structure ds name.

9-24

9-3

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

Command Arguments Description Page

newenum enum name enum base Define a new enumeration
enum name with parent type
enum base.

9-25

newenummember enum name
member value
member index

Define a new member with
value member value and index
member index for enumeration
enum name.

9-25

newevent name scope type value Define an event name for the cur-
rent module with type and a default
value.

9-23

newmemory name scope type value Define a memory name for the cur-
rent module with type and a default
value.

9-22

newparam name type value Define a parameter name for the cur-
rent module with type and a default
value.

9-9

newquantity name scope
indexed|non-indexed

Define a quantity resource name for
the current module with type and a
default value.

9-23

newserver name scope
indexed|non-indexed

Define a server resource name for the
current module with type and a de-
fault value.

9-23

newsystem [name] [domain] Create a new empty system with
name in domain (defaults: main
and the current domain).

9-6

node name Create a node with name for use by
nodeconnect.

9-8

nodeconnect b1 p1 node
[delay]

Connect a porthole given by block ar-
gument b1 and port argument p1 to a
specified node with name.

9-8

numports b1 p1 number Force a multiporthole to have a given
number of portholes.

9-10

paramvalue b1 name
[current|initial]

Print the current or initial value of pa-
rameter name in block b1.

9-18

permlink linker args code.o Link arbitrary code into MLDesigner
permanently.

9-17

pragma b1 b2 name
value

Set pragma name to value for block
b2 in parent b1.

9-16

9-4 MLDesigner Version 2.8

9.3 Commands for Defining Simulation

Command Arguments Description Page

pragmaDefaults target Print default values of the pragmas for
the target

9-16

primitive name class Create an instance with name of a
primitive from the given class.

9-7

print [name] Print a description of block name or
block class (or the current module)

9-12

printds ds name Print out the default value of the data
structure or enumeration ds name.

9-26

printdsnames Lists all existing data structure and
enumeration names.

9-26

registerAction pre|post
command

Register a Tcl command to be ex-
ecuted before or after primitives are
fired.

9-19

renamesystem [oldname]
newname

Rename a system (default: current
system).

9-7

reset [name] Empty a system with name (default:
main).

9-14

run [num] Run the current system num times
(default: 1).

9-13

schedtime [actual] Print the normalized (default) or un-
normalized current scheduler time.

9-14

schedule Generate and print a schedule (only
valid for some domains).

9-12

seed number Change or print the random number
seed.

9-16

setmemory block namevalue Change the value of memory name of
a block block to value.

9-22

setevent block namevalue Change the value of event name of a
block block to value.

9-23

setparam block name
value

Change the parameter name of a
block block to value.

9-9

setquantity block name dimen-
sion capacity occu-
pancy blocking disci-
pline reject fit

Change the properties of quantity re-
source name of a block block to
value.

9-23

9-5

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

Command Arguments Description Page

setserver block name dimen-
sion servers rate mech-
anism occu-
pancy overhead pre-
empt discipline reject

Change the properties of server re-
source name of a block block to
value.

9-24

source filename No longer valid. See execute. 9-16

stoptime Return the stop time of the current
run.

9-13

systemlist List the names of all defined systems. 9-6

target [newtarget] Change or display the name of the
current target.

9-15

targetparam name [value] Change or display the value of a tar-
get parameter name.

9-15

targets [domain] List targets usable with domain (de-
fault: current domain).

9-15

topblocks [name] List top-level blocks of the block
name (default: current module).

9-18

wrapup Invoke the wrapup method of all the
blocks.

9-13

Table 9.1: Summary of PTCL commands

9.3.1 Creating and deleting Systems
The command

systemlist

will return the list of names of systems that currently exist. The command

newsystem [<name>] [<dom>]

creates a new, empty system named name (default is main) and makes it the current system with
domain dom (default is current domain). Both arguments may be omitted. If there was previously
a system with the same name, it will be overwritten. The previous actual system will not be
affected, unless it had the same name as the new one and will therefore be overwritten. To remove
a system, simply issue the command:

delsystem [<name>]

If no argument is given, this will delete the current system. After this, the current system will be
main. To find out what the current system is, issue the command:

9-6 MLDesigner Version 2.8

9.3 Commands for Defining Simulation

cursystem [<name>]

With no arguments the name of the current system is returned. With one argument the current
system will become name.
A system can be renamed using the syntax

renamesystem [<oldname>] <newname>

With one argument newname, renamesystem renames the current system to newname. With
two arguments, the system named oldname is renamed to newname. Note that any existing
system named newname is deleted.

9.3.2 Setting the domain
MLDesigner supports multiple simulation domains. Before creating a simulation environment and
running it, it is necessary to establish the domain. The interpreter has a current domain which is
initially the default domain SDF. The command

domain [<name>]

changes the current domain. This is only legal when the current module is empty. The argument
name must be the name of a known domain. If the argument name is omitted, the command
domain returns the current domain. It is possible to create wormhole interfaces between domains
by including a domain command inside a module definition. The command

domains

lists the domains that are currently linked to the interpreter.

9.3.3 Creating instances of primitives and modules
The first step towards creating a system is to define the blocks - primitives and modules - to be
used in the system. The command

primitive <name> <class>

creates a new instance of a primitive or module of class class, names it name, and inserts it
into the current module. Any parameters in the primitive or module are created with their default
values. While it is not enforced, the normal naming convention is that names begin with a lower
case letter and classes begin with an upper case letter. This makes it easy to distinguish instances
of a class from the class itself.

9.3.4 Connecting primitives and modules
The next step is to connect the blocks so that they can pass data among themselves using the
connect command. This forms a connection between two primitives or modules by connecting
their portholes. A porthole is specified by giving the primitive or module name followed by the
port name within the primitive. The first porthole must be an output porthole and the second must
be an input porthole. For example:

9-7

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

connect <block1> <port1> <block2> <port2> [<delay>]

The connect command accepts an optional integer delay parameter. For example:

connect myprimitive output yourprimitive input 1

This specifies one delay on the connection. The delay parameter makes sense only for domains
that support it. The delay argument may be an integer expression with variables referring to mod-
ule parameters as well.

One or both of the portholes may really be a MultiPortHole. If so, the effect of doing the
connect is to create a new porthole within the MultiPortHole and connect to that (see also the
numports command).

9.3.4.1 Netlist-style connections

As an alternative to issuing connect commands, which specify point-to-point connections, you
may specify connections in a netlist style. This syntax is used to connect an output to more than
one input. This is called auto-forking. Two commands are provided for this purpose. The node
command creates a node with name:

node <name>

The nodeconnect command connects a porthole port of block block to a node name:

nodeconnect <block> <port> <nodename> [<delay>]

Any number of portholes may be connected to a node, but only one of them can be an output node.

9.3.4.2 Bus connections between multiple portholes

A pair of multiportholes can be connected using a bus connection, meaning that each multiporthole
has N portholes and they all connect in parallel to the corresponding port in the other multiport-
hole. The syntax for creating such connections is

busconnect <block1> <port1> <block2> <port2> <width> [<delay>]

Here, width is an expression specifying the width of the bus (how many portholes in the multi-
porthole); and delay is an optional expression giving the delay on each connection. The other
arguments are identical to those of the connect command.

9.3.5 Connecting internal primitives and modules to the out-
side

When you define a new module there are typically external connections to that module that need to
be connected through to internal blocks. The alias command is used to add a porthole newport
to the current module, and associate it with an input or output porthole blockport of one of
the contained block within the module. The syntax is:

alias <newport> <block> <blockport>

This also works if blockport is a MultiPortHole- the module will then appear to have a
multiporthole as well.

9-8 MLDesigner Version 2.8

9.3 Commands for Defining Simulation

Defining parameters for a module

A parameter is a piece of data that is assigned to a module and can be used to affect its behavior.
Typically the value of a parameter is coupled to the parameter of blocks within the module, allow-
ing you to customize the behavior of blocks within the module. The newparam command adds a
parameter to the current module. The form of the command is

newparam <name> <type> <value>

The name argument is the name to be given to the parameter. The type argument is the type of
parameter. All standard types are supported, see table 3.4 on page 3-47. The value argument is
the default value to be given to the parameter, if the programmer of the module does not change
it using the setparam command described below. The default value specifies the initial value of
the parameter, and can be an arbitrary expression involving constant values and other parameter
names. This expression is evaluated when the simulation starts. The following parameter names
are predefined: YES, NO, TRUE, FALSE, and PI. YES and TRUE have a value of 1; NO and
FALSE have a value of 0; PI has the value 3.14159... Some examples are:

newparam count int 3
newparam level float 1.0
newparam title string "This is a title"
newparam myfreq float modulefreq
newparam angularFreq float "2*PI*$freq"

The full syntax of parameter initial value strings depends on the type of parameter, and is explained
in sec. 3.5 on page 3-11.

9.3.6 Setting the value of parameters
The setparam command is used to change the value of a parameter. It can be used in three
contexts:

• Change the value of a parameter for a primitive within the current module.
• Change the value of a parameter for a module within the current module.
• Change the value of a parameter within the current module.

The latter would normally be used when you want to perform multiple simulations using different
parameter values. The syntax for setparam is:

setparam <block> <parameter> <value>

• argument block is either the name of a primitive or a module in the current module. It
is the block for which the value of the parameter is to be changed. It can also be this
meaning a parameter belonging to the active module itself.

• argument parameter is the name of the parameter you wish to change.
• argument value is the new value for the parameter. The syntax for value is the same as

described in the newparam command. However, the expression for value may refer to the
name of one or more parameters in the current module or an ancestor of the current module.

An example of the use of setparam is given in the section describing the defmodule command
below.

9-9

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.3.7 Setting the number of ports in a primitive
Some primitives in MLDesigner are defined with an unspecified number of multiple ports. The
number of connections is defined by the user of the primitive rather than the primitive itself. The
numports command applies to primitives that contain such MultiPortHoles. It causes a
specified number of PortHoles to be created within the MultiPortHole. The syntax is

numports <block> <port> <n>

where block is the name of a primitive within the current module, port is the name of a
MultiPortHole in the primitive, and n is an integer, representing the number of PortHoles
to be created. After the portholes are created, they may be referred to by appending #i, where
i is an integer, to the multiporthole name, and enclosing the resulting name in quotes. The main
reason for using this command is to allow the portholes to be connected in random order. Here is
an example:

primitive summer Add
numports summer input 2
alias galInput summer "input#1"
connect foo output summer "input#2"

9.3.8 Defining new modules
The defmodule command allows you to define a new class of modules. The syntax is

defmodule <name>
{
command
command
...

}

Here name is the name of the module type you are creating. While it is not required, we sug-
gest that you have the name begin with a capital letter in accordance with our standard nam-
ing convention that class names begin with capital letters. The command lines may be any of
the commands described before, such as primitive, connect, busconnect, node,
nodeconnect, numports, newparam, setparam, or alias. The defined class is
added to the known list, and you can then create instances of it and add them to other modules.
An example is:

reset
domain SDF
defmodule SinGen {
domain SDF
The frequency of the sine wave is a module parameter
newparam freq float "0.05"
Create a primitive instance of class "Ramp" named "ramp"

9-10 MLDesigner Version 2.8

9.4 Showing the Current Status

primitive ramp Ramp
The ramp advances by 2*pi each sample
setparam ramp step "6.283185307179586"
Multiply the ramp by a value, setting the frequency
primitive gain Gain
The multiplier is set to "freq"
setparam gain gain "freq"
Finally the sine generator
primitive sin Sin
connect ramp output gain input
connect gain output sin input
The output of "sin" becomes the modules output
alias output sin output

}

In this example, note the use of parameters to allow the frequency of the sine wave generator to be
changed. For example, we could now run the sine generator, changing its frequency to 0.02, with
the interpreter input:

primitive generator SinGen
setparam generator freq "0.02"
primitive printer Printer
connect generator output printer input
run 100

You may include a domain command within a defmodule command. If the inside domain is
different to the outside domain, an object known as a Wormhole is created. This is an interface
between two domains and is described in a later section.

9.4 Showing the Current Status
The following commands display information about the current state of the interpreter.

9.4.1 Displaying the known classes
The knownlist command returns a list of known classes of primitives and modules that are
usable in the current domain. The syntax is

knownlist

It is also possible to ask for a list of objects available in other domains, e.g., the command

knownlist DE

displays objects available in the DE domain.

9-11

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.4.2 Displaying information on a the current module or other
class

If invoked without an argument, the print command displays information on the current module.
If invoked with an argument, the argument is either the name of a primitive or module contained
in the current module, or the name of a class on the known list. The information is shown about
that primitive or module. The syntax is

print [<name>]

The command

descriptor [<name>]

will print a short description of a block in the current module or on the known list, or of the current
module if name is omitted. The commands

listobjs stars [<name>]
listobjs ports [<name>]
listobjs multiports [<name>]

will list the names of the parameters, ports, or multiportholes associated with the named primitive
or module.

9.5 Running the Simulation
Once a simulation has been constructed using the commands previously described you can use
these commands to run a simulation. (See also the execute command on page 9-16).
In the MLDesigner Command Console cd to the directory where the files are stored and type:

execute <systemname.ptcl>

Via the Shell

An MLDesigner PTcl shell makes it possible to execute PTcl simulations independent of the
MLDesigner GUI. To execute the simulation type:

$MLD/ptclsh -x Systemname.ptcl

It is also possible to run PTcl simulations in batch mode using the at command followed by
$MLD/ptclsh -x SystemName.ptcl.

9.5.1 Creating a schedule
The schedule command generates and returns the order in which primitives are invoked. For
domains such as DE, this command returns a not-implemented message, since there is no ”compile
time” schedule for the DE domains. The syntax is:

schedule

9-12 MLDesigner Version 2.8

9.5 Running the Simulation

9.5.2 Run Length

The run command generates the schedule and runs it n times, where n is the argument. The
argument may be omitted, its default value is then 1. For the DE interpreter, this command runs
the simulation for n time units, and n may be a floating point number. If omitted the default value
is 1.0. If this command is repeated while the simulation is running the simulation is restarted
from the beginning. If animation is enabled, the full name of each primitive will be printed to the
standard output when the primitive fires. The syntax of the command is:

run [<n>]

9.5.3 Continuing a simulation

The cont command continues the simulation for n additional steps, or time units. If the argument
is omitted, the default value of the argument is the value of the last argument given to a run or
cont command or 1.0 if no argument was given. The syntax is

cont [<n>]

Wrapping up a simulation

The wrapup command calls the wrapup method of the current target, which in turn calls the
wrapup method of each primitive, signaling the end of the simulation run. The syntax is

wrapup

9.5.3.1 Interrupting a simulation

The command

halt

requests a halt of the current simulation. Note that the halt does not occur immediately. This
merely registers the request within the scheduler and depends on the type of domain where the
simulation is being executed. The scheduler will halt the simulation on completion of a cycle.
This is especially useful within Tcl primitives.

9.5.3.2 Obtaining the stop time of the current run

The command

stoptime

returns the time until which the current simulation will run. Tcl/Tk primitives can use this com-
mand in their setup or go methods to find out the stop time of the current run.

9-13

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.5.3.3 Obtaining time information from the scheduler

The command

schedtime [actual]

returns the current time from the top-level scheduler of the current system. If the target has a
parameter named schedulePeriod, then the returned time is divided by this value. Using the
schedtime command with argument actual returns the scheduler time without dividing by
schedulePeriod.

In SDF domains, schedtime actual should return the number of iterations. In SDF domain,
schedulePeriod is usually set to 0, since SDF has no notion of time, and to a timed domain,
such as DE, SDF systems appear to fire instantaneously.

9.5.3.4 Animating a simulation

The animation command can be used to display, on the standard output, the name of each
primitive as it runs. The syntax

animation [<on|off>]

Typing animation on enables animation, while animation off disables it. Typing animation
returns whether animation is on or off.

9.6 Undo Commands
The commands in this section remove part or all of the structure you have built with previous
commands.

9.6.1 Resetting the interpreter
The reset command replaces the system main or a named system by an empty system. Any
defmodule definitions you have made are still remembered. The syntax is

reset [<system>]

9.6.2 Removing a primitive
The delprimitive command removes the named primitive from the current module. The
syntax is

delprimitive [<system>]

where name is the name of the primitive.

9-14 MLDesigner Version 2.8

9.7 Targets

9.6.3 Removing a connection
The disconnect command reverses the effect of a previous connect or nodeconnect com-
mand. The syntax is

disconnect <block> <port>

where block and port, taken together, specify one of the two connected portholes. Note that
you can disconnect by specifying either end of a porthole for a point-to-point connection.

9.6.4 Removing a node
The delnode command removes a node from the current module. The syntax is:

delnode <node>

9.7 Targets
MLDesigner uses a structure called a target to control the execution of a simulation, or to con-
trol code generation, compilation, and execution. If you issue no target commands, your target
will have the name default-XXX, where XXX is replaced by the name of the current domain.
Alternative targets for simulation can be used to specify different behavior, for example, to use a
different scheduler or to analyze a schematic rather than running a simulation. For code generation,
the target contains information about the target of compilation, and has methods for downloading
code and starting execution.

9.7.1 Available targets
The command

targets [<domain>]

returns the list of targets available for the current domain or the domain given by the optional
argument.

9.7.2 Changing the target
Using command

target [<name>]

without argument name displays the target for the current system or current module, together with
its parameters. Specifying an argument, changes the target to that one specified by the argument.

9.7.3 Changing target parameters
Target parameters may be queried or changed with the targetparam command. The syntax is

targetparam <name> [<value>]

9-15

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.7.4 Pragmas
MLDesigner can use target pragmas as a generalization of the attribute mechanism to inform the
target of your wishes. The Dynamic Data Flow (DDF) domain uses pragmas to specify the number
of firings of a primitive required in one iteration. The C Code Generation (CGC) domain uses
pragmas to identify any parameters that you would like to change on the command line. Using
command

pragma <block1> <block2> <name> <value>

you can set pragma name to value for block block2 in parent block1. The command

pragmaDefaults target

prints the default values of the pragmas for the target.

9.8 Miscellaneous Commands
This section describes the remaining interpreter commands.

9.8.1 Loading commands from a file
For complicated simulations it is better to store your interpreter commands, at least those defining
the simulation connectivity, in a file rather than typing them into the interpreter directly. This way
you can run your favorite editor in one window and run the interpreter in another window, easily
modifying the simulation and also keeping a permanent record. Two exceptions to this are chang-
ing parameters using the setparam command and running and continuing the simulation using
run and cont, this is normally done interactively with the interpreter.

The command

execute <filename>

reads interpreter commands from the given filename, until the end of the file or until an error
occurs. The # character indicates that the rest of the line is a comment. By convention, files meant
to be read by the execute command should have the extension .ptcl

execute "testfile.ptcl"

Using the tilde notation (∼) for home directories is allowed within filenames.

9.8.2 Changing the seed of random number generation
The seed command changes the seed of the random number generation. The default value is 1.
The syntax is

seed <n>

where n is an unsigned integer.

9-16 MLDesigner Version 2.8

9.8 Miscellaneous Commands

9.8.3 Changing the current directory
The cd command changes the current directory. The syntax is:

cd [<name>]

where name specifies the directory. If the argument is omitted the command cd changes the
current directory to user’s home directory. For example,

cd "$MLD/demo/ptcl/sdf/basic" execute "butterfly.pt"

will load the same file as the example in the previous section. Again, we have assumed that the
environment variable $MLD contains the installation directory of MLDesigner. To see what the
interpreters current directory is, you can type

pwd

9.8.4 Dynamically linking new primitives
The interpreter has the ability to extend itself by linking in outside object files. The object files
in question must define single primitives, they will have the right format if they are produced
from preprocessor input. Unlike using MLDesigner ’s graphical interface, the interpreter will
not automatically run the preprocessor and compiler. It expects to be given object files that have
already been compiled. The syntax is

link <objfile>

Building object files for linking into MLDesigner can be tricky since the command line arguments
to produce the object file depend on the operating system, the compiler, and whether or not shared
libraries are used. $PTOLEMY/mk/userstars.mk includes rules to build the proper object
file for a primitive.

It is also possible to link in several object files at once, or pull in functions from libraries by use of
the multilink command. The syntax is

multilink <opt1> <opt2> <opt3> ...

where the options may be the names of object files or linker options such as -L or -l switches,
etc. These arguments are supplied to the Unix linker along with whatever options are needed to
completely specify the incremental link.

When the above linker commands are used, the linked code has temporary status. Symbols for
it are not entered into the symbol table, meaning that the code cannot be linked against by future
incremental links, and it can be replaced, for example, an error in the loaded modules could be cor-
rected and the link or multilink command could be repeated. There is an alternative linking
command that specifies that the new code is to be considered permanent. It causes a new symbol
table to be produced for use in future links. See the Ptolemy language keyword derivedfrom
item in the MLDesigner Programming Guide on page 13-10 for more information. Such code can-
not be replaced, but it can be linked against by future incremental link commands. The syntax
is

9-17

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

permlink <opt1> <opt2> <opt3> ...

where the options are the same as for the multilink command.

9.8.5 Top-level blocks

The command

topblocks [<name>]

returns the list of top-level blocks in the named block, or in the current module or system, if the
argument is omitted.

9.8.6 Examining parameters

The paramvalue command takes the form

paramvalue <block> <parameter> [<current|initial>]

and returns the current value of the parameter within the block. The command takes an
optional third argument, which may be either current to specify that the current value should
be returned (the default), or initial to specify that the initial value (the parameter value) should
be returned.

9.8.7 Quitting the Interpreter

The exit command exits the interpreter. The syntax is

exit

9.8.8 Getting help

The help command implements a simple help system describing the commands available and
their syntax. It does not provide help for the standard Tcl functions. The syntax is

help [<topic>]

or

help ?

for a list of topics. If the argument is omitted, a short ”help on help” is printed.

9-18 MLDesigner Version 2.8

9.9 The Interface to MATLAB and MATHEMATICA

9.8.9 Registering actions
It is possible to associate a Tcl action with the firing of any primitive. The registerAction
command does this. The syntax is

registerAction <pre|post> command

The first argument specifies whether the action should occur before or after the firing of a primitive.
The second argument is a string giving the first part of a tcl command. Before this command is
invoked, the name of the primitive that triggered the action will be appended as an argument. For
example:

registerAction pre puts

will result in the name of a primitive being printed on the standard output before it is fired. A
typical action resulting from this command would be

puts system_name.module_name.primitive_name

The value returned by registerAction is an action handle, which must be used to cancel
the action using cancelAction. The syntax is:

set action_handle [registerAction pre tcl_command]
cancelAction action_handle

9.9 The Interface to MATLAB and MATHEMATICA
PTCL can control MATLAB [HL96] and MATHEMATICA [Wol91] processes by means of the
matlab and mathematica commands. The commands have a similar syntax:

matlab <command> [<arg1>] [<arg2>]
mathematica <command> [<arg1>] [<arg2>]

The matlab command controls the interaction with a shared MATLAB process. The possible
commands and arguments are summarized in table 9.2.

Command Arguments Description

end terminate a session with MATLAB

eval script evaluate a MATLAB script and print the result

get name script evaluate a MATLAB script and get the named
MATLAB matrix as Tcl lists of numbers

getpairs name script evaluate a MATLAB script and get the named
MATLAB matrix as ordered pairs of numbers

send script evaluate a MATLAB script and suppress the out-
put

set name rows cols real imag set the named MATLAB matrix with real and
imaginary values

9-19

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

Command Arguments Description

start start a new MATLAB session

status return the status of the Tcl/MATLAB connection
(0 means connected, -1 means not initialized, and
1 means error)

unset name unset the named MATLAB matrix

Table 9.2: Commands for the MATLAB interface

The mathematica command controls the interaction with a shared MATHEMATICA process.
The possible commands and arguments are summarized in table 9.3.

Command Arguments Description

end terminate a session with MATHEMATICA

eval script evaluate a MATHEMATICA script and print the
result

get name script evaluate a MATHEMATICA script and get the
named MATHEMATICA variable as a Tcl string

send script evaluate a MATHEMATICA script and suppress
the output

start start a new MATHEMATICA session

status return the status of the Tcl/MATHEMATICA
connection (0 means connected, -1 means not ini-
tialized, and 1 means error)

Table 9.3: Commands for the MATHEMATICA interface

To initiate a connection to a MATLAB and MATHEMATICA process, use

matlab start
mathematica start

To generate a simple plot of a straight line in MATLAB and MATHEMATICA, use

matlab send { plot([0 1 2 3])}
mathematica send { Plot[x, {x, 0, 3}] }

The plsend command suppresses the output normally returned by interacting with the program
using the command interface. The eval command, on the other hand, returns the dialog with the
console interface:

mathematica eval { Plot[x, {x, 0, 3}] }
-Graphics-

9-20 MLDesigner Version 2.8

9.9 The Interface to MATLAB and MATHEMATICA

To terminate the connection, use

matlab end
mathematica end

One can work with matrices as Tcl lists or in MATLAB format. To create a new MATLAB matrix
x that has two rows and three columns, type:

matlab set x 2 3 "1 2 3 4 5 6" "1 1 1 1 1 1"

We can retrieve this MATLAB matrix in the same format:

matlab get x
2 3 {1.0 2.0 3.0 4.0 5.0 6.0} {1.0 1.0 1.0 1.0 1.0 1.0}

We can also retrieve the matrix elements as a Tcl list of complex numbers in an ordered-pair
format:

matlab getpairs x
(1.0,1.0) (2.0,1.0) (3.0,1.0) (4.0,1.0) (5.0,1.0) (6.0,1.0)

Now, matrices can be manipulated in both Tcl and MATLAB. For example, the following code
creates a Tcl list and sends it to MATLAB as a 2x2 matrix, calculates the inverse in MATLAB and
retrieves it back to Tcl as a list and/or pairs. Note that string prompt in the code is only a place
holder that will be replaced with current working directory name in your MLDesigner console
window.

prompt> matlab start
prompt> set a 1
1
prompt> set b 2
2
prompt> set c 3
3
prompt> set d 4
4
prompt>
set e [expr "{$a $b $c $d}"]
1 2 3 4
prompt>
set f [expr "{$a $b $c $d}"]
1 2 3 4
prompt> matlab set matrix $b $b $e $f
prompt> matlab eval {matrix(1,1)}
>>
ans =

1.0000 + 1.0000i

9-21

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

prompt> set inv_matrix [matlab get inverse {inverse =
inv(matrix)}]

2 2 {-1.0 0.5 0.75 -0.25} {1.0 -0.5 -0.75 0.25}
prompt> set inv_matrix [matlab getpairs inverse {inverse =
inv(matrix)}]

(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
prompt> set new $inv_matrix
(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
prompt> lindex $new 0
(-1.0,1.0)
prompt> matlab unset matrix
prompt> matlab eval {matrix(1,1)}
prompt> matlab end

For other examples of the use of the matlab and mathematica PTCL commands, see sec. 3.7.8
on page 3-26.

Limitations of the Interpreter

There should be many more commands returning information on the simulation, to permit better
exploitation of the full power of the Tcl language.

9.10 Definition of Shared Elements
With MLDesigner you can use a number of so-called shared elements to model the functionality of
a component (see ch. 10). Such elements are called shared elements, since they are used to share
information without exchanging data. For that purpose they can be linked over different model
hierarchy levels. Linking means that different model components use the same model element to
manipulate the data. Shared elements are

- memories
- events, and
- resources.

9.10.1 Defining Memories
The command

newmemory <name> <scope> <type> <value>

adds a memory of given type to the current module. The type can be any data structure derived
from Root excluding Ptolemy base types. The scope defines whether the memory is internal
or external. The memory may have an initial value. To set the value of a memory, issue the
command:

setmemory <block> <name> <value> [link]

9-22 MLDesigner Version 2.8

9.10 Definition of Shared Elements

Using this command, you change the initial value of the external memory name of the block
block within the current module to the new value value. In this case you can specify the link
link as the name of a memory of same or derived data structure type to which the memory is
linked.
The command

setmemory this <name> <value>

changes the initial value of the memory name of the current module.

9.10.2 Defining Events
The command

newevent <name> <scope> <type> <value>

adds an event of given type to the current module. The type can be any data structure derived
from Root excluding Ptolemy base types. The scope defines whether the event is internal
or external. The event can have a initial value. To change the value of an event, issue the
command:

setevent <block> <name> <value> [link]

Using this command, you change the initial value of the external event name of the block block
within the current module to the new value value. The command

setevent this <name> <value>

changes the initial value of the event name of the current module.

9.10.3 Defining Resources
The command

newquantity <name> <scope> <indexed|non-indexed>

adds a new quantity resource to the current module. For quantity resources, you have to define
the addressing mode which can be indexed or non-indexed. The scope defines whether the
quantity resource is internal or external. Using command

setquantity <block> <name> <dimension> <capacity> <occupancy>
<blocking> <discipline> <reject> <fit>

you can change the properties of the external quantity resource name of block block. You can
use this as block name to change the properties of the quantity resource name of the current
module. Using

setquatitity <block> <name> <link>

you can link the quantity resource name of block block to a quantity resource of the current
module with same name.
The command

9-23

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

newserver <name> <scope>

adds a new server resource to the current module. The scope defines whether the server resource
is internal or external.
Using command

setserver <block> <name> <dimension> <servers> <rate>
<mechanism> <occupancy> <overhead> <preempt>
<discipline> <reject>

you can change the properties of the external server resource name of block block. You can use
this as block name to change the properties of the server resource name of the current module.
Using command

setquatitity <block> <name> <link>

you can link the server resource name of block block to a server resource of the current module
with same name.

9.11 Definition of Data Structure Types
MLDesigner supports the definition of complex data types. The difference between MLDesigner
data types and the original base types is that you can define arbitrary structure data types as well
as certain special data types, such as enumeration, that were not defined by Ptolemy. For more
detailed information about the structure and the programming of MLDesigner data types, refer to
ch. 14.

NOTE: To distinguish between Ptolemy original types and MLDesigner data types, the latter are�
referred to as “data structures” throughout this document.

9.11.1 Defining Composite Data Structures
Use the command

newds <ds_name> <ds_base>

to create a new data structure of type name derived from the data structure ds base. Parameter
ds name specifies the type name as well the library in which the the new data structure is stored.
Library and data type name are separated by a colon. If the library name is omitted, the new data
structure is created in the library of the parent data structure. For example, the command

newds MyLib:MyPacket Root.Packet

creates a data structure in MyLib that is derived from Root.Packet. The unique name of this
data structure is then MyLib:Root.Packet.MyPacket.

To create a new member of a data structure, use command

9-24 MLDesigner Version 2.8

9.11 Definition of Data Structure Types

newdsmember <ds_name> <member_name> <member_type> [default]
[subrange]

Using this command creates a new member with name member name of type member type
in the data structure given by ds name. It is possible to specify a default value. If the data
structure member is of numerical type, a subrange of values can also be defined with open and
closed intervals. The complete syntax of this command is

newdsmember <ds_name> <member_name> <member_type>
newdsmember <ds_name> <member_name> <member_type> <default>
newdsmember <ds_name> <member_name> <member_type> <default>

’[’or’(’ <min>,<max> ’)’or’]’

For example

newdsmember MyLib:Root.Packet.MyPacket Byte1 Root.Integer 0
[0,256)

creates a new member Byte1 in data structure MyLib:Root.Packet.MyPacket which can
have values between 0 and 255. (Note the ’[’ symbol includes the 0 and the ’)’ symbol excludes
256).

9.11.2 Defining Enumerations
You can use the command

newenum <enum_name> <enum_base>

to create a new enumeration type with name name that is derived from the enumeration type
enum base. Parameter enum name specifies the enumeration name as well the library in which
the new enumeration type is stored. Library and type name are separated by a colon. If the library
name is omitted, the new enumeration type is stored in the library of parent enumeration type. For
example

newds MyLib:MyEnum Root.ENUM

creates an enumeration in MyEnum that is derived from Root.ENUM. The unique name of this
enumeration type then is MyLib:Root.ENUM.MyEnum.
To create a new member of a data structure, use command

newenummember <enum_name> <member_value> [member_index]

Using this command, you can create a new enumeration value with string value member value
and an according index member index. If member index is omitted, the next available index
is used. For example

newenummember MyLib:Root.ENUM.MyEnum Member1 0

creates a new enumeration value for MyLib:Root.ENUM.MyEnum with value Member1 and
member index 0.

9-25

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.11.3 Handling Data Structures
Using command

delds <ds_name>

deletes the data structure or enumeration type with unique name ds name. A unique name con-
sists of the library name and the full type name separated by a colon. For example

delds MyLib:Root.ENUM.MyEnum

deletes the MyEnum enumeration type in library MyLib. Using * for parameter ds name, you
can delete all data structures and enumeration types that were created by you.

delds *

You can use the command

printdsnames

to list the names of all existing data structure types including data structure types that are defined
by the standard type library. Use the command

printds <ds_name>

to print out the default value of a data structure given by the unique name parameter ds name.

9.12 A Wormhole Example
Here is an example of a simulation that contains both an SDF part and a DE part. In this example,
a Poisson process where particles have value 0.0 is sent into an SDF wormhole, where Gaussian
noise is added to the samples. This demo shows how easy it is to use the SDF primitives to
perform computation on DE particles. The overall delay of the SDF wormhole is zero, so the
result is simply Poisson arrivals of Gaussian noise samples.
A wormhole has an outer domain and an inner domain. The outer domain is determined by the
current domain at the time you start the defmodule command to create the wormhole. The inner
domain is determined by the domain command that appears inside the module definition.

proc trysetparam {block param value} {
if [catch {paramvalue $block $param initial} err] then
{
puts stdout "Warning: $err\n"

} else
{
setparam $block $param $value

}
}
proc trytargetparam {param value}

9-26 MLDesigner Version 2.8

9.12 A Wormhole Example

{
if [catch {targetparam $param $value} err] then
{

puts stdout "Warning: $err\n"
} else
{

targetparam $param $value
}

}

reset
domain DE

defmodule wormGuts {
domain SDF

definition of model parameters
newparam stopTime float {$stopTime}
newparam curIter int {$curIter}
newparam absIter int {$absIter}
newparam absSimul int {$absSimul}

definition of model memories

definition of model events

definition of model resources

definition of instances and their properties
instance Add.input=2#1 Add
numports Add.input=2#1 input 2
instance Random#1 Random
trysetparam Random#1 {Distribution} {2}
trysetparam Random#1 {MinOrMeanOrTrials} {0}
trysetparam Random#1 {MaxOrVarianceOrProbability} {1}
trysetparam Random#1 {Seed} {-1}

define the connections
alias out Add.input=2#1 output
alias in Add.input=2#1 input#1
connect Random#1 Output Add.input=2#1 input#2

#create sources and sinks for autoterminated ports
}

9-27

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

defsystem worm
domain DE
define the target and set the target parameters
target default-DE
trytargetparam timeScale {1.0}
trytargetparam syncMode {YES}
trytargetparam usedScheduler {0}

definition of model parameters
newparam {GlobalSeed} {int} {1234567890}
newparam {PTclScript} {string} {}
newparam {RunLength} {int} {40}

definition of model memories

definition of model events

definition of model resources

definition of instances and their properties
instance wormGuts#1 wormGuts SDF
instance Poisson#1 Poisson
trysetparam Poisson#1 {meanTime} {1.0}
trysetparam Poisson#1 {magnitude} {0.0}
instance XMgraph.input=2#1 XMgraph
numports XMgraph.input=2#1 input 2
trysetparam XMgraph.input=2#1 {title} {Noisy Poisson Process}
trysetparam XMgraph.input=2#1 {saveFile} {}
trysetparam XMgraph.input=2#1 {options}

{-P -0 original -1 noisy =800x300+0+0}
trysetparam XMgraph.input=2#1 {Cumulation} {0}

define the connections
node node1
nodeconnect Poisson#1 output node1
nodeconnect wormGuts#1 in node1
nodeconnect XMgraph.input=2#1 input#1 node1
connect wormGuts#1 out XMgraph.input=2#1 input#2

#create sources and sinks for autoterminated ports

execution of iterations
if {[info exists parameterfile] && \

[info exists parameterset] && \
[info exists parameteriter]} {

9-28 MLDesigner Version 2.8

9.12 A Wormhole Example

simulate $parameterfile $parameterset $parameteriter
} else {
puts {Cannot execute simulation without}
puts {specification of the parameter file. }
puts {One possible reason is that you tried }
puts {to simulate the system using "source" }
puts {command. Use "execute" command instead }
puts {to run simulations, see "help execute" }

}
delsystem worm

The result of simulation is shown in fig. 9.2. Figure 9.1 shows the model representation within the
MLDesigner GUI.

wormGuts#1
�

Poisson#1� XMgraph.input=2#1
1

2

Noisy Poisson process

(a) worm system

IIDGaussian#1�

Add.input=2#1�
outin

empty�

empty�

(b) wormGuts module

Figure 9.1: Model of the the wormhole example worm

Figure 9.2: Simulation result of the wormhole example

9-29

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

9.13 PTCL as Simulation Control Language

9.13.1 Creation of PTCL Scripts

Sine_Generator#1 Sine_Modulator#1 XMgraph.input=1#1

Modulation of a sine wave
by another sine wave

(a) sinMod system

Mpy.input=2#1

Sine_Generator#1

Input1 Output1

(b) modulator module

Figure 9.3: Model of the example sinMod

You can use MLDesigner to create an appropriate PTCL script that describes a system model using
commands. For example, if you would like to create a PTCL file that constructs the system model
sinMod, see fig. 9.3, you must do the following:

• select Library View in the MLDesigner tree view
• select system item MLD Libraries/DEMO/SDF DEMO/Basic/sinMod,
• Save this system to $MLD USER We first want to export some instance parameters to the

system level so that these parameters can be altered in the sinMod.param file. Click on
the singen#1 model instance.

• The three Instance Properties RunLength, frequency and phase in radiansmust
be exported to the system level. In the Instance Properties window choose Export from the
context menu.

• Click the Switch to Simulation Mode icon on the toolbar.
• Click and hold the Generate Extern icon and select Generate PTcl from the expanded

menu.
• Enter a filename for the PTCL script file in the Save As dialog.
• Click OK to generate the PTCL script file

MLDesigner creates a the following PTCL file with a .ptcl extension as well as a .param file
with the parameters of the System.

This file was generatd by MLDesigner version 2.3.r03

proc trysetparam {block param value} {
if [catch {paramvalue $block $param initial} err] then {
puts stdout "Warning: $err\n"

} else {
setparam $block $param $value

}

9-30 MLDesigner Version 2.8

9.13 PTCL as Simulation Control Language

}
proc trytargetparam {param value} {

if [catch {targetparam $param $value} err] then {
puts stdout "Warning: $err\n"

} else {
targetparam $param $value

}
}

reset
domain SDF

defmodule singen {
domain SDF

definition of model parameters
newparam stopTime float {$stopTime}
newparam curIter int {$curIter}
newparam absIter int {$absIter}
newparam absSimul int {$absSimul}
newparam {sample_rate} {float} {2*PI}
newparam {frequency} {float} {PI/50}
newparam {phase_in_radians} {float} {0.0}

definition of model memories

definition of model events

definition of model resources

definition of instances and their properties
instance Sin#1 Sin
instance Ramp#1 Ramp
trysetparam Ramp#1 {step} {2*PI*$frequency/$sample_rate}
trysetparam Ramp#1 {value} {$phase_in_radians}

define the connections
connect Ramp#1 output Sin#1 input
alias out Sin#1 output

#create sources and sinks for autoterminated ports
}

defmodule modulator {

9-31

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

domain SDF

definition of model parameters
newparam stopTime float {$stopTime}
newparam curIter int {$curIter}
newparam absIter int {$absIter}
newparam absSimul int {$absSimul}
newparam {freq} {string} {0.062832}

definition of model memories

definition of model events

definition of model resources

definition of instances and their properties
instance Mpy.input=2#1 Mpy
numports Mpy.input=2#1 input 2
instance singen#1 singen
trysetparam singen#1 {sample_rate} {2*PI}
trysetparam singen#1 {frequency} {$freq}
trysetparam singen#1 {phase_in_radians} {0.0}

define the connections
alias in Mpy.input=2#1 input#1
alias out Mpy.input=2#1 output
connect singen#1 out Mpy.input=2#1 input#2

#create sources and sinks for autoterminated ports
}

defsystem sinMod
domain SDF
define the target and set the target parameters
target default-SDF
trytargetparam logFile {}
trytargetparam loopScheduler {DEF #choices: DEF, CLUST,ACYLOOP}
trytargetparam schedulePeriod {0.0}

definition of model parameters
newparam {GlobalSeed} {int} {1234567890}
newparam {PTclScript} {string} {}
newparam {RunLength} {int} {400}

definition of model memories

9-32 MLDesigner Version 2.8

9.13 PTCL as Simulation Control Language

definition of model events

definition of model resources

definition of instances and their properties
instance modulator#1 modulator
trysetparam modulator#1 {freq} {0.2*PI}
instance singen#1 singen
trysetparam singen#1 {sample_rate} {2*PI}
trysetparam singen#1 {frequency} {PI/100}
trysetparam singen#1 {phase_in_radians} {0.0}
instance XMgraph.input=1#1 XMgraph
numports XMgraph.input=1#1 input 1
trysetparam XMgraph.input=1#1 {title} {A modulator demo}
trysetparam XMgraph.input=1#1 {saveFile} {}
trysetparam XMgraph.input=1#1 {options} {=800x400+0+0 -0 x}
trysetparam XMgraph.input=1#1 {ignore} {0}
trysetparam XMgraph.input=1#1 {xUnits} {1.0}
trysetparam XMgraph.input=1#1 {xInit} {0.0}
trysetparam XMgraph.input=1#1 {EndCondition} {FALSE}
trysetparam XMgraph.input=1#1 {NumberOfItems} {1}

define the connections
connect singen#1 out modulator#1 in
connect modulator#1 out XMgraph.input=1#1 input#1

#create sources and sinks for autoterminated ports

execution of iterations
if {[info exists parameterfile] && \

[info exists parameterset] && \
[info exists parameteriter]} {

simulate $parameterfile $parameterset $parameteriter
} else {
puts {Cannot execute simulation without}
puts {specification of the parameter}
puts {file. One of possible reasons is}
puts {that you tried to simulate the}
puts {system using "source" command.}
puts {Use the "execute" command instead to}
puts {run simulations, see "help execute"}

}
delsystem sinMod

9-33

9 Modeling Using PTCL - The Ptolemy TCL Interpreter

This is a PTCL representation of the MLDesigner sinMod model.

9.13.2 Execute the Simulation
You can use the MLDesigner console window to execute the PTCL script using the command

execute <directory>/sinMod.ptcl

where directory specifies the directory where you stored the sinMod PTCL file. If this is a
subdirectory, enter the full path to your file.

Another option is to run the simulation using the built-in ptclsh by entering the following com-
mand in the shell.

$MLD/ptclsh <directory>/sinMod.ptcl

An MLDesigner PTcl shell makes it possible to execute PTcl simulations independent of the
MLDesigner GUI. To execute the simulation type:

$MLD/ptclsh -x Systemname.ptcl

It is also possible to run PTcl simulations in batch mode using the at command followed by
$MLD/ptclsh -x SystemName.ptcl.
You can use the systemlist and cursystem command to get the list of known system models
as well as the current system model.

prompt> systemlist
main sinMod
prompt> cursystem
sinMod

The prompt indicates the current working directory.
To run a simulation of sinMod system model with different waveform frequencies use a text
editor to open the file

<directory>/sinMod.param

Change the file so it looks like:

PARAMETER_SET
{
GlobalSeed : 1234567890
PTclScript :
RunLength : 400
frequency : PI/100
phase_in_radians: for -1.0 to 1.0 step 0.1

}

9-34 MLDesigner Version 2.8

9.13 PTCL as Simulation Control Language

You can now execute the simulation by entering the following command in the commander win-
dow.

execute <directory>/<sinMod.ptcl>

The result will be 21 frequency modulation output graphs.

NOTE: Every PTcl simulation produces a .param.simulationNumber file with the sim- �
ulation parameters for the specific simulation. This file is for record purposes and is not
parsed when the simulation is rerun.

The combination of PTCL and the GUI of MLDesigner is very powerful. The examples shown
above are just some hints on how they can be used together.

9-35

Chapter 10

Shared Model Elements

10.1 Introduction
In this chapter all existing shared elements are explained in detail. For information on how to
instantiate and how to use these shared elements, refer to sec. 3.13.
With MLDesigner you can use a number of so-called shared elements to model the functionality
of a component. Such elements are called shared elements as they are used to share information
without exchanging data. For that purpose they can be linked over different model hierarchy
levels. Linking means that different model components use the same model element to manipulate
the data. Shared elements are

- Memories
- Events, and
- Resources.

These elements are instantiated via the context menu in the module or system Model Editor Win-
dow or by clicking the relevant icons on the toolbar. The advantages of using shared elements is
that it is not necessary to connect modules in order to share the information and it is possible to
share information over different modeling levels.

10.2 Memories
A memory shared element identifies a location in the memory, used to share information between
MLDesigner modules. The information is sent as a Data Structure and consequently every
memory has an associated type.
A memory element with an internal scope is the defining memory. This is where the space for
the data structure is really allocated. An internal memory can have an initial value which is set to
conform with the Data Structure string representation syntax. (See chapter Modeling using
Data Structures). This default value is assigned during the simulation initialization phase, before
any events are executed.

An external block memory element must be linked to a memory element of the same type in the
module which uses the block. External memory shared elements become block memory ele-

10 Shared Model Elements

ments when a module is used as a block. Memories cannot be External in a system module. For
every chain of memories linked together (i.e. sharing the same memory) there is a single memory
that has an Internal scope. The value stored in a memory can change during the course of a
simulation.

Memories can be manipulated using primitives from MemoryAccess libraries in the DE domain.
Generally, memory is modified with ReadMemory and WriteMemory blocks.

Memories having Vector types (VECTOR, IntVector and FloatVector) are initialized by specifying
the initial value and the length of the vector.

10.2.1 Memory Modules
Several primitives are supplied to handle memories. Most of them are located in MemoryAccess
library. There are two types of memories: Local Memory and Shared Memory - memories
that are shared by linking them over several levels of modules.

10.2.2 Local Memory
The memory location used by local memory blocks is accessible only through that instance of
the block. Local memory primitives have one input which writes to the memory when enabled,
and another input as Trigger which causes the memory to be read and its content to be placed
on the output port. Primitives that provide access to the local memory are: LocalMemory,
LocalMemoryInt and LocalMemoryFloat.

10.2.3 Shared Memory
Shared Memory allows access to a single copy of a data structure (a memory location) from many
blocks at arbitrary points in the hierarchical block diagram. Access to the memory value is typi-
cally through the ReadMemory primitive. The WriteMemory primitive allows you to change
the contents of the memory. MLD provides also modules to access memories that operate specif-
ically on vectors. Some of these modules are MemoryAccessVector, MemorySetVector,
MemoryAccessIVector, MemorySetIVector,etc. The WriteMemory primitive also al-
lows access or modification to elements of VECTOR, IntVector and FloatVector base types data
structures stored in memory.

Each of these modules has an external memory argument. The way this shared element is linked
to others affects the way blocks share memory. To allow several instances of a memory block to
share the same memory location, link the memory element of all instances to the same memory.
If the memory they are linked to has a scope of Internal, the memory is not visible at higher levels
in the block diagram. That means that all Read and Write Memory modules whose memories are
explicitly linked together will have access to the same memory. Memory elements are explicitly
linked together when you select link for a memory in the property editor.

Exporting memories allows other modules in the hierarchy to access the memory. However, lo-
calizing memory allocates sufficient space to hold a data structure of the specified type and limits

10-2 MLDesigner Version 2.8

10.3 Events

the scope of the memory to the block diagram where it is localized. Localizing memories involves
providing an initial value which is placed in the memory upon its creation.

Non-local memory is a powerful feature within MLDesigner . Non local memories permit one (or
several) modules to modify the state of another module in non-obvious way (by modifying non-
local memory). To minimize this effect localize memory at the lowest possible level in the block
diagram hierarchy. This restricts the number of modules which can access the non-local memory.

10.2.4 Global Memory
MLDesigner provides two modules GlobalMemoryWrite and GlobalMemoryRead to ac-
cess the global memories. The only parameter of this modules is a String that indicates the name
of the global memory on which the block operates. All global memory modules which reference
to the same String name will operate on the same global memory.

NOTE: The String parameters need not be linked together; they must, however, be spelt the �
same.

10.3 Events
An event shared element is used to indicate that a primitive module can accept asynchronous
events. The Event is used by the timer modules to specify which timer blocks in a system inter-
act with one another. Events provide links to primitives or modules which manage timing events,
such as StartTimer, ServiceTimer and CancelTimer. Events can be used only in timed
domains, such as DE domain and in FSM modules.

To add an event to the model use the tool button Add Event, the menu item Edit - Add Event or
the hot key E. The following elements can be defined for an event:

• the event’s name
• the scope of the event
• the type of the data sent through an event
• the default value of the data (only for Internal events)
• the event’s description.

The scope of an event can be External or Internal. An Event cannot be External in a
system. Primitives which have an event element (either internal or external) have an event entry
point associated with the event. When an event occurs, the code associated with this event is
executed. If you want specific code to run when an event occurs, then you have to put the code in
the defevent item in the primitive source code. A defevent item is generated for every event
element defined in a primitive:

defevent
{
name { EventName }
type { Root }

10-3

10 Shared Model Elements

scope { External }
desc { Event description goes here }
code { User code goes here }

}

The type of the event is a data structure (for more information about data structures see Data
Structures section). You can link an event from a primitive to an event from a module or system
only if the type of the first event is the same as (or a base type for) the type of the second event.
For an external event you can set the default value, and for an internal event you can set the initial
value. The following methods can be used to access the data associated with an event:

Type* readData () const;
void writeData (Type* pValue);
void writeData (int pValue);
void writeData (float pValue);

The events can be used to send data between primitives. In this case you have to set the data using
one of the writeData(...) methods before schedule the event. To schedule an event the method

void emitEvent (double pTime, int pEventID);

should be called, where the arguments represent the time at which the event will occur and the
event ID, respectively. The event ID is used to identify the event, for example you can cancel an
event with a specific ID using the method

void cancel (int pEventID);

which removes, from the queue of events, all entries with this ID. The queue of events contains
the scheduled times at which various events occur and the location in the block diagram where the
execution resumes once the event occurs. Entries in the queue of events are stored in ascending
order by event time, so the first entry in the queue is the next event to occur. Whenever an event
is to be processed, the simulation clock is advanced to the time of occurrence of the event. Using
the method

double getResidualTime (int pEventID);

you get the difference between the time at which the event with this ID should occur and the
current time of the simulation. If there is no entry in the queue of events with this ID, the method
returns -1.

10.4 Resources

10.4.1 Introduction
A Resource can be used to simulate an item that is shared, such as main memory in a com-
puter or the processing power of a CPU. In MLDesigner , resources are divided into Quantity
Resources and Server Resources.

10-4 MLDesigner Version 2.8

10.4 Resources

10.4.1.1 CPU Demo

An excellent example of how Resources work in MLDesigner can be found in $MLD/Exam-
ples/CPU Demo and is called CpuSystem. In this example packets are competing for both Mem-
ory and CPU resources. A packet must first obtain Memory, before it goes to the CPU module
where it is processed. After being processed, the packet releases its memory, which can be allo-
cated to pending packets. The Memory is modeled with a Quantity Resource, called ”MemoryRe-
source”. The CPU is modeled with a Server Resource, called ”CPUResource”.

The example shown in fig. 10.1 shows a linked resource over three levels in a hierarchical model.
See table 10.1 and fig. 10.1.

resource Name Primitive/Block Linked To scope

resource Allocate External

resource Allocate#1 Resource External

Resource AllocateBasic#1 CpuMemory Internal

Table 10.1: The chain of the linked resources in CPU Demo

The Resource of the Allocate#1 primitive named resource with its scope set to external. When
the model instance Allocate#1 is selected, the Instance Properties editor is active indicating a
link to the resource named Resource of the AllocateBasic#1 module. This resource also has its
scope set to External. When the AllocateBasic#1 instance is selected in the system, the Instance
Properties editor shows the resource named Resource is linked to the internal resource named
MemoryResource. In this case the shared model element was instantiated in each level of the
hierarchy.

A quicker way to achieve the same result would be to Export the resource to the next level of the
hierarchy (from Version 2.4 upwards). To export a resource select the instantiated model instance
whose resource needs to be shared with other levels of the system or module and activate the con-
text menu over the resource property in the Instance Properties editor. Choose Export or Export
As if a more descriptive name is required for the resource.

10.4.1.2 Brief Explanation

The packet that leaves the PacketSource has its memory and CPU requirements fields set. Then,
the packet enters the AllocateBasic block to obtain the memory requirement (packet length). When
the required memory is allocated, the packet moves to the CPU block. The packet is processed by
the CPU block based on the priority and CPU requirement. Preemptive is allowed with a switch-
ing overhead of 0.1. There are 10 servers active in the CPU. The mode of operation is based on
dedicated server.

Once the packet processing is completed by the CPU block, the packet invokes FreeBasic block to
return the allocated memory back to the memory pool.

10-5

10 Shared Model Elements

Figure 10.1: CPU Demo Showing Linking of Resource Elements

10-6 MLDesigner Version 2.8

10.4 Resources

StatisticReporter collects and plots various different statistics for the system.

10.4.1.3 Defining Resource Elements

To add a resource to the model use; the tool button Add Resource, the menu item Edit - Add
Resource or the hot key R. Set the field Scope to Internal. In the Resource Properties
window. The following elements can be defined for a resource:

• the resource’s name
• the type of the resource (Quantity or Server)
• the scope of the resource
• the resource’s description
• the attributes of the resource (see table 10.2 and table 10.3).

Resource attributes are settings which affect the overall operation of the resource. They are spec-
ified for the resource whose scope is set to Internal. A Resource cannot be External in a
System. For every chain of Resources linked together (i.e. sharing the same information) there is
a single memory that has an Internal scope.

Attribute Default value

Number of Dimensions 1

Initial Capacity 1

MaximumQueueOccupancy 100

Blocking Mechanism Wait for Resource

Queue Discipline First In First Out

Queue Reject Mechanism Incoming DS Rejected

Addressing Mode NonIndexed

Addressed Fit Policy FirstFit

Table 10.2: Quantity Resource Attributes

Some resource attributes can be varied during simulation. For a Quantity Resource, the
number of resource units can be changed. For a Server Resource, the processing rate multi-
plier (the processing power of each processor) can be modified during simulation. Special blocks
allow the capacity of a Quantity Resource and the processing rate multiplier of a Server
Resource to be changed during execution of a model. The resource attributes for these two
items specify the capacity and service rate multiplier at the beginning of execution.
Resources can be used only in timed domains.

The Quantity Resource represents elements which must be possessed by a transaction (a
data structure). After a transaction receives resource units, it continues through the model, hold-

10-7

10 Shared Model Elements

Attribute Default value

Number of Dimensions 1

Initial Number of Servers 1

Initial Service Rate Multiplier 1.0

Server Mechanism Dedicated Server

Maximum Occupancy 100

Context Switching Overhead 0.0

Preempt Discipline Allow Preemption

Queue Discipline First In First Out

Queue Reject Mechanism Incoming DS Rejected

Table 10.3: Server Resource Attributes

ing the resource units for an arbitrary amount of time. At a later point in the model the resource
units are released and can then be allocated to other transactions. Transactions can be queued to
wait for the release of resource units. A Quantity Resource is passive, that is, it contains
units which must be possessed for a transaction to continue through the model.

On the other hand, a Server Resource is active, that is, it actively processes transactions.
Each transaction requests a certain amount of processing time. The Server Resource ac-
tively allocates processing time to the transactions, and releases transactions which have received
their requested service time. A number of resource attributes control how the resource processes
transactions, such as the number of processors, how processors are shared among transactions, and
the possibility for higher priority transactions to preempt lower priority transactions. The Server
Resource also allows queuing of transactions to wait for service.

10.4.2 Quantity Resources

A Quantity Resource represents discrete elements which are stored in a resource pool when
not in use, and are allocated to MLDesigner data structures as they move through a system. Typ-
ically, a data structure will enter an Allocate block to request resource units. Any quantity
of units can be requested. The Allocate block provides queuing if the resource units cannot
be allocated immediately. When the resource units can be allocated, the data structure exits the
Allocate block and continues its journey through the model. At some later point in the pro-
cessing of the data structure (and usually at a later time), the resource units may be returned to the
resource pool for allocation to other requests.

When using non-addressed resources, units can be identical and indistinguishable, in which case
the resource represents a token pool. On the other hand, the addressed resources are distinguish-

10-8 MLDesigner Version 2.8

10.4 Resources

able and each has an integer address. Requests for an addressed Quantity Resource require
a contiguous block of units, which is allocated using either a first-fit or best-fit policy.

The two fundamental blocks for manipulation of quantity resources are the Allocate and Free
blocks, shown in fig. 10.2. The Allocate block is used to make a request for resource units.
When the units are available, the output ports on the right side of the Allocate block are enabled
to indicate that the resource units have been granted. The Free block is used to release resource
units when they are no longer needed.

Figure 10.2: Allocate and Free blocks

10.4.2.1 General operation

A quantity resource begins a simulation with an initial capacity, the number of resource units in
the pool at the beginning of the simulation. The initial capacity is specified with the Initial
Capacity resource attribute. During simulation, requests for quantities of the resource are made
by enabling all of the inputs of an Allocate block. Input values, which includes one data struc-
ture of any type, are collectively called the transaction. The other inputs specify the attributes of
the transaction. One attribute of the transaction is the number of units of the resource requested. If
there is an unused quantity of the resource greater than or equal to the number of units requested
and there are no transactions with a higher priority waiting in the queue, that number of units of
the resource will be removed from the pool and granted to the transaction.

Any time resource units are granted to a transaction, the outputs of the Allocate block where
the request was made are enabled. One of the outputs is the data structure which is associated with
the transaction. The other outputs are the number of units granted and the starting index if the
resource is addressed. Resource units can then be held for an arbitrary amount of time (as the data
structure is delayed by other blocks in your model). The resource units can be freed by enabling
the inputs of a Free block. One of the inputs specifies the number of units of the resource to free.
Normally, you will need a field in your data structure to store the number of resource units held by
each resource that can be possessed. If you use addressed resources, you may also need a field to
store the starting index.

10.4.2.2 Queuing, blocking and rejecting

There are a few options if the requested quantity of the resource cannot be allocated immediately
when the request is made. The transaction can be put into a queue to wait for the resource accord-
ing to a specified queuing discipline (either FIFO or LIFO), it can be sent out the reject output
without seizing any resource units, or it can take the available resource units. The first possibility is
called Wait for Resource, the second Exit without any Resource Units, the third

10-9

10 Shared Model Elements

Seize Available Units. These are chosen with the Blocking Mechanism resource at-
tribute, which has these three possible values. The default value is Wait for Resource.

If the Blocking Mechanism is Seize Available Units, a transaction seizes its re-
quested number of units or the amount in the pool, whichever is smaller. The Units Granted
output can (and should) be used to determine the number of resource units that were seized. If the
number of units in the pool is zero and the blocking mechanism is Seize Available Units,
the transaction is instead rejected, and the arbitrary data structure associated with the transaction
is sent out the Reject output.

Setting the Blocking Mechanism to Exit without any Resource Units could be
used to model ”blocked calls cleared”, as is the case with the common Erlang B model used
in telephony. Setting the blocking mechanism to this value could also be used to divert transac-
tions to a second resource when the first one is not immediately available, rather than having them
queue and wait for the first resource to become available.

If the Blocking Mechanism is Wait for Resource, a transaction simply waits in the
queue according to the specified queuing discipline until the resources become available. If
the queue is full and the Queue Reject Mechanism is Incoming DS Rejected, then
this transaction exits on the Reject output port. Else, if the Queue Reject Mechanism is
Lowest Priority DS Rejected and there it is another transaction in the queue with lower
priority, then the incoming transaction gets to take its place, otherwise the incoming transaction is
rejected.

There is a single queue maintained for the entire resource (actually one for each dimension as
explained in Multiple Dimensions section), which is ordered first by priority and, within each
priority, either FIFO or LIFO, according to the Queue Discipline resource attribute. When
a transaction is queued, the Allocate block from which the transaction entered the queue is
remembered, so the transaction can be sent out the same block when it is granted resource units
or rejected from the queue. Priorities of transactions are greater than or equal to zero, with zero
being the highest priority.

10.4.2.3 Addressing mode

A quantity resource has two fundamental modes of operation specified by the Addressing
Mechanism resource attribute. The default value is NonIndexed, which makes resource units
indistinguishable from one another. Resource units are viewed simply as tokens. The other pos-
sible setting for this attribute is Indexed. In this mode, each unit of the resource is assigned
an integer index, beginning with zero. The status of each resource unit is maintained and can be
either in use (not in the pool) or idle (in the pool). A request for resource units is then a request
for a contiguous block of resource units. An integer vector, called the Indexed Usage Vector, is
maintained to store the state of each resource unit. In this vector, a 1 indicates that a particular
resource unit is in use, while a 0 means that the resource unit is not in use.

10-10 MLDesigner Version 2.8

10.4 Resources

10.4.2.4 Fit policy

When the Addressing Mode is Indexed, the Addressed Fit Policy resource attribute
controls how the Indexed Usage Vector is searched when a transaction enters an Allocate block.
The possible values for this attribute are FirstFit and Best-Fit. When set to the default
value, FirstFit, the Allocate module begins searching the Indexed Usage Vector at index
zero and stops when it finds a contiguous block of units at least as large as the quantity requested.
If the addressed fit policy is BestFit, the indexed usage vector is searched for the smallest un-
used block of units large enough to satisfy the request.

Setting the addressed fit policy to BestFit may cause longer simulation run times, especially if
the number of resource units is large.

If the Addressing Mode resource attribute is NonIndexed, the value of the Addressed
Fit Policy resource attribute is not used and has no effect on the operation of the resource.

10.4.2.5 Uses of the indexed addressing mode

The indexed addressing mode is useful in a model where the resource units represent items that are
distinguishable. For instance, if the resource represents pages of memory and transactions need
contiguous pages of memory, the indexed addressing mode is appropriate.

Another use of a quantity resource with indexed addressing mode would be for allocation of virtual
circuit numbers in a network. In this case, requests always ask for a single resource unit, and the
index of that unit is the virtual circuit number that can be used.

10.4.2.6 Caveats

When you use the indexed addressing mode, one of the outputs of the Allocate block is the
starting index for the resource units. Store this value (usually in a field of your data structure) and
pass it to the Free block when you release the resource units. The Free block must be told the
number of units to be freed and the starting index of those units if the addressing mechanism is
indexed.

MLDesigner does not limit the number of resource units that can be represented with an indexed
quantity resource. Remember that the state of every resource unit is kept with an integer vector
having one element for each resource unit, so simulating an indexed resource with a large number
of resource units takes longer to execute than if the addressing mode is NonIndexed.

10.4.2.7 Modifying capacity during a simulation

If the Addressing Mechanism is NonIndexed, the capacity of the resource may be in-
creased or decreased during the simulation by using the Change Capacity block. If the
capacity is increased, new resource units are immediately placed in the resource pool, and the
resource queue is checked. If any waiting transactions can be granted their requested number of
units, they are immediately given the requested units.

10-11

10 Shared Model Elements

If the capacity is decreased, the resource units are removed from the pool, provided the pool
contains at least that number of units. If the pool does not contain the number to be removed, all
unused units in the pool are removed, and the remaining units are removed when they become
freed. The capacity of the resource cannot be less than zero. If you attempt to set the capacity
below zero, the capacity of the resource is not changed, the output of the Change Capacity
block is not enabled, but the simulation continues executing.

10.4.2.8 Multiple dimensions

One of the resource attributes, Number of Dimensions, allow a single set of resource blocks
arguments to represent a collection of identical resources distinguished by an integer index, called
the dimension. The Allocate, Free, and other resource models have an input (or parameter)
which is the dimension of the resource to be accessed. The dimension is zero-based, with valid
values between zero, inclusive, and the number of dimensions attribute of the resource, exclusive.

When you use multiple dimensions, separate queues and resource pools are created for each di-
mension. The resource attributes are the same for every dimension.

10.4.2.9 Quantity resource attributes and possible values

The meaning of each resource attribute and the possible values are listed below.

Attribute Description and Possible Values

Number of Dimensions The number of dimensions which can be modeled with each grouping of
resource blocks and arguments.

Initial Capacity The number of resource units in the pool when the simulation starts.

Blocking Mechanism The action to be taken if a transaction cannot be granted the re-
quested number of resource units when it enters the Allocate block.
This attribute must be set to Wait for Resource for the values of
the next three resource attributes to be used (Maximum Occupancy,
Queue Discipline and Queue Reject Mechanism). Pos-
sible values: Wait for Resource, Exit without any Resource Units,
Seize Available Units.

Maximum Occupancy The maximum number of transactions which can wait in the queue at any
one time.

Queue Discipline The ordering of transactions in the queue which have the same priority.
Possible values: First In First Out, Last In First Out.

Queue Reject Mecha-
nism

The way a transaction is chosen for rejection when a new trans-
action would cause the overall occupancy to exceed the Maximum
Occupancy. Possible values: Incoming DS Rejected, Low-
est Priority Rejected.

Addressing Mode This attribute determines whether each resource unit has a unique integer
identifier (Indexed) or if resource units are indistinguishable. Possible
values: Indexed, NonIndexed.

10-12 MLDesigner Version 2.8

10.4 Resources

Attribute Description and Possible Values

Addressed Fit Policy The policy by which available resource units are searched for when the
Addressing Mode is Indexed. The value of this attribute is ignored
if the Addressing Mode is NonIndexed. Possible values: FirstFit,
BestFit.

Table 10.4: Quantity Resource Attributes

10.4.3 Server Resources
A Server Resource is logically the combination of two fundamental components: a queue
and a bank of one or more servers. A data structure enters a Service block to request processing
from the resource. The data structure and several attributes, such as the requested service time,
are together called a transaction. A transaction immediately moves to a server if one is idle, or
may optionally preempt lower priority transactions. While being processed by a server, transac-
tions accumulate service time and they exit the Service block when they received the required
amount of service time. Accumulation of service time is affected by several resource attributes.

If a new transaction cannot immediately move into a server, it is placed in a queue where it waits
for a server to became available. The queue is ordered first by priority, then according to the queu-
ing discipline attribute: either first in first out (FIFO) or last in first out (LIFO).

Each server in a Server Resource is capable of distributing its processing power to more
than one transaction. Server sharing methods are either processor sharing or round robin. When a
server is shared using processor sharing, each transaction receives service at a reduced rate, where
the reduction is proportionate to the number of transactions sharing the server. With round robin
server sharing, each transaction sharing the server receives the full power of the server for a (usu-
ally small) amount of time, its time-slice. Then, the next transaction receives its time-slice, and so
on. Each time a transaction receives its time-slice, its remaining time is reduced by that amount.
When a transaction has received all of its service time, it exits the Service block.

The primary block for accessing a server resource is the Service block, shown in fig. 10.3. The
inputs to this block are the transaction attributes, such as service time needed, priority, and so on.
When a transaction completes service, the data structure which entered the arbitrary data structure
input is placed on the arbitrary data out output port. There are versions of the Service block
which have fewer inputs, where some of the transaction attributes are parameters instead of inputs.

10.4.3.1 General operation

For every resource of type Server Resource and scope Internal, there is one queue and a
bank of servers for every dimension of the resource. The number of servers in the server bank is
specified by the Number of Servers attribute of the resource.

A transaction is a request for some amount of time in a server. Each transaction has attributes
such as its priority, service time, and other attributes needed by the resource. When all inputs of a

10-13

10 Shared Model Elements

Figure 10.3: Service block

Service block are enabled, the combination of all input values makes up a new transaction. One
of the inputs (arbitrary data structure) is a data structure of any type that is kept with the trans-
action. When a transaction has received its requested service time, this data structure is enabled
on the output of the Service block where the transaction originated. If for some reason the
transaction is rejected from the resource, this data structure is instead placed on the reject output
of the block where the transaction originated.

When a new transaction enters the resource, it goes to an idle server or preempts a server currently
processing a lower priority transaction. If it cannot do either, it checks to see if there is a transac-
tion of equal or higher priority waiting in the queue. If so, it is enqueued based on its priority. If
no equal or higher priority transactions are waiting in the queue, the new transaction sees if it can
share a server or servers with other transactions of the same priority. If a server cannot be shared,
the transaction is queued.

If a new transaction preempts a server, the transaction(s) that were being processed by that server
first attempt to share another server. If another server cannot be found that can be shared, the trans-
action(s) that were being processed by the preempted server are said to be preempted, and they are
handled according to the value of their Preempt Response attribute. Preempted transactions
that are to be resumed or restarted move back to the queue and wait until they receive processing
from a server. A preempted transaction can also be discarded, in which case its arbitrary data
structure is sent out the reject output of the Service block where the transaction originated.

When a transaction completes its service, its associated data structure is sent out the arbitrary data
out port at the Service block where the transaction originated. Prior to sending out the data
structure, the server that had been processing the transaction, if it was not being shared, checks the
queue for pending transactions. If there are any, it begins processing the transaction at the head of
the queue, and all others in the queue having the same priority if server sharing is enabled.

10.4.3.2 Queuing

Transactions in the queue are ordered first by priority and then within each priority according to
the Queuing Discipline, which is a resource attribute. Any time a transaction is preempted,
it is placed in the queue and ordered based on its priority and the time it entered the resource
according to the Queuing Discipline. Priorities are greater than or equal to zero, with zero
being the highest priority.

10-14 MLDesigner Version 2.8

10.4 Resources

10.4.3.3 Server Sharing

The Server Mechanism is the resource attribute that determines whether transactions can
share a server. It has three possible values: Dedicated Server, Round Robin and
Processor Sharing. If this is set to Dedicated Server, each server can process only a
single transaction at a time, and server sharing is not enabled.

When the Server Mechanism is set to Round Robin, each server can process several trans-
actions at once, but does so by dedicating service in a round robin fashion. In round robin, each
transaction sharing the server gets a time slice of service each time the server process it. The time
slice given to each eligible transaction is an attribute of the transaction, and can vary from one
transaction to another.

If the Server Mechanism is set to Processor Sharing, all transactions sharing the server
accumulate service time at a rate inversely proportional to the number of transactions sharing the
server and proportional to the number of servers which they are sharing. If the time slice quantum
is small compared to the service time of transactions and the time slice is the same for every trans-
action, Processor Sharing is a good approximation to Round Robin.

A server can be shared only by transactions with equal priorities. Also, a number of servers can
be shared by a number of transactions, as long as all transactions sharing the servers have equal
priority.

10.4.3.4 Processor Sharing

If the Server Sharing resource attribute is set to Processor Sharing, processor sharing
begins at the point where the number of transactions in the server bank of equal priority becomes
greater than the number of servers available to process that priority.
For example, consider a server resource with two servers. If all transactions that request the re-
source have the same priority, then when a third transaction enters the resource while two others
are being processed, the three transactions then share the two servers. If no other transactions
arrive before one of them completes service, the completed transaction exits the resource, and the
two remaining transactions no longer have to share the servers because they each have their own.
If a fourth transaction had entered the resource before one completed, the two servers would then
be shared by four transactions.

When transactions are sharing a server or servers, the rate at which they receive service time is
proportional to the number of servers being shared and inversely proportional to the number of
transactions sharing the server(s).
Going back to the example in whish the resource has two servers, at the time the two servers
become shared by three transactions, each transaction is receiving two-thirds the service time it
would if the server were not shared. If four transactions are sharing two servers, the accumulation
of service time is one-half (2/4) the rate if each transaction had a dedicated server.

If the Context Switching Overhead resource attribute is nonzero, it is applied to each
transaction when it begins being processed by a server. There is no extra service time lost due to

10-15

10 Shared Model Elements

processor sharing.

10.4.3.5 Round Robin

If the Server Sharing resource attribute is set to Round Robin, round robin server sharing
begins when the number of transactions in the server bank of equal priority becomes larger than the
number of servers available to process that priority. At that time, the new transaction is placed in
a round robin wait list (there is a separate list for each priority that is sharing servers round robin).
Then, the transactions in shared servers are checked to see if they have received their time slice
since they most recently received the server. A transaction that had been processed by a dedicated
server that crosses the threshold to round robin sharing is allowed to continue service until its time
slice has completed. If it has received more than its time slice of service time since it received the
server, it is put at the end of the round robin wait list. Then the transaction at the head of the round
robin wait list is moved to that server and remains in the server until it completes its time slice or
its service, whichever comes first. This continues for all shared servers. If a new transaction is to
share a set of servers which are already shared round robin, the transaction is placed at the end of
the round robin wait list.

When a transaction completes its service, the transaction at the head of the round robin wait list
is moved to the server just freed by the completed transaction. If no more transactions are in the
round robin wait list, the server(s) is no longer shared and crosses the threshold back to dedicated
server.

If the Context Switching Overhead resource attribute is nonzero, it is applied each time
a transaction gets a server. Specifically, the context switching overhead is applied at the beginning
of the time slice.

10.4.3.6 Preemption

The Preemption Discipline resource attribute specifies whether a higher priority transac-
tion can preempt a server processing lower priority transactions. This resource attribute has two
possible values: Allow Preemption and Dont Preempt. If preemption is enabled and the
Queue Discipline resource attribute is set to Last In First Out (LIFO), then transac-
tions can preempt other transactions of equal or lower priority. When the Queue Discipline
is First In First Out (FIFO), equal priority transactions cannot be preempted, only strictly
lower priorities will be preempted.

If the number of servers is greater than one, the servers are searched to determine which is process-
ing the lowest priority transaction. If there is only one, it is preempted. If there are more than one,
one server is preempted. When transactions are preempted, if the Server Mechanism is either
Round Robin or Processor Sharing and another server is processing the same priority as
the server that was preempted, the transactions that were being processed by the preempted server
will share the other server(s) processing the same priority.

If preempted transaction(s) cannot share another server, they are dealt with based on their Preempt
Response. The Preempt Response is a transaction attribute that can be Resume, Restart,

10-16 MLDesigner Version 2.8

10.4 Resources

or Discard. Transactions with their preempt response set to Resume are placed back in the
queue with their remaining service time set to their original service time required minus the service
time they accumulated prior to being preempted plus the value of the Resume Overhead trans-
action attribute. The Resume Overhead specifies the wasted service time when a preempted
transaction resumes service. If a preempted transaction’s preempt response attribute is Restart,
the transaction is placed back in the queue, and its remaining service time is set equal to the
original service time required by the transaction. Finally, if the preempt response is Reject, a
rejected transaction’s associated data structure (from the arbitrary data structure input) is sent out
the rejected output at the Service block it originally entered.

10.4.3.7 Accumulation of service time

When a transaction enters the resource, a service time is specified for the transaction. This is the
amount of time needed in a server given that the transaction is the only transaction in the server
and the Service Rate Multiplier (SRM) is 1.0. The Service Rate Multiplier
is a resource attribute that specifies the relative rate at which the servers process transactions.
A higher SRM causes servers to process transactions faster while a lower value makes a server
take a longer amount of time for a transaction to accumulate the same amount of service time.
The actual elapsed time in a server (independent of queuing delay) is dependent on the Server
Mechanism for the resource. The three possibilities for Server Mechanism and the way
service time is computed for each is listed below. Note that the SRM affects all processing times,
including time slice, context switching overhead and resume overhead.

Server Mechanism = Dedicated Server

There is no sharing of servers. Therefore, the elapsed time in the server for a transaction is:

Service T ime

Service Rate Multiplier

Server Mechanism = Processor Sharing

If the Server Mechanism is set to Processor Sharing, the elapsed time for each eligible
transaction in the server is equal to:

Service T ime ∗ Transactions

Service Rate Multiplier ∗ Servers

where Transactions is the number of transactions sharing the server(s) and Servers is the number of
servers being shared. Each time the number of transactions sharing a server changes, or the number
of servers being shared changes, the accumulated service time is computed for each transaction
and then the remaining elapsed time is recomputed.

Server Mechanism = Round Robin

If the Server Mechanism is set to Round Robin, a server being shared by several trans-
actions processes them one at a time in succession, giving each its slice of service time before
moving to the next. The time period allotted to each transaction is dependent on the time slice

10-17

10 Shared Model Elements

attribute of the transaction, which may vary from one transaction to another. The accumulated
service time for a transaction each time it receives the server is equal to its time slice attribute.
The elapsed time for this to occur is:

Time Slice

Service Rate Multiplier

10.4.3.8 Context switching overhead

There is an optional overhead associated with switching from one transaction to another. Context
Switching Overhead is a resource attribute that specifies the amount of service time wasted
when a server switches from one transaction to another. Except during processor sharing, the
elapsed time wasted is the Context Switching Overhead divided by the Service Rate
Multiplier. During processor sharing, the Context Switching Overhead is assessed
to each transaction at the beginning of its service. The elapsed time for the Context Switching
Overhead to occur during processor sharing when T transactions are sharing S servers is:

Context Switching Overhead ∗ T

Service Rate Multiplier ∗ S

The Context Switching Overhead is also applied to each transaction when it begins ser-
vice after being preempted. If a server begins processing a transaction but is preempted before the
context switching overhead has completed, the remaining service time of the transaction remains
unchanged.

10.4.3.9 Maximum Occupancy and Queue Reject Mechanism.

The Maximum Occupancy attribute specifies the maximum number of transactions that can be
anywhere in the resource. This includes those waiting in the queue, transactions in a server and
transactions in a round robin wait list. Whenever accepting a new transaction would cause the oc-
cupancy of the resource to exceed this value, either the new transaction or the transaction at the tail
of the queue is rejected. The method of determining which transaction is rejected is specified by
the Queue Reject Mechanism, which has two possible values: Incoming DS Rejected
or Lowest Priority Rejected. If it is set to Incoming DS Rejected, the new transac-
tion is rejected whenever the maximum occupancy would be exceeded. If it is set to
Lowest Priority Rejected and there is at least one transaction in the wait queue, the new
transaction is accepted and processed in the normal manner, and then the transaction at the tail of
the queue is removed from the queue and its arbitrary data structure sent out the reject output. If
the wait queue is empty, the incoming request is always rejected.

10.4.3.10 Multiple dimensions

One of the resource attributes, Number of Dimensions, allows a single grouping of resource
models and resource elements to represent a collection of independent and identical resources
which are distinguished by an integer index, called the dimension. Each dimension is isolated
from all other dimensions. The dimension values are zero based, with valid values between zero,
inclusive, and the number of dimensions attribute of the resource, exclusive.

10-18 MLDesigner Version 2.8

10.4 Resources

10.4.3.11 Modifying the Service Rate Multiplier during simulation execu-
tion

The Service Rate Multiplier (SRM) can be varied during the course of simulation. The
Modify SRM block can be used to set the service rate multiplier for a given dimension of the
resource. This block is illustrated in fig. 10.4.

Figure 10.4: Modify SRM block

The Modify SRM block has two inputs: the new SRM and the dimension. When both inputs
are enabled, this block executes, checks for valid input values and sets the SRM for the given
dimension of the resource to the specified value. If there are no errors, the output port is enabled.
This block allows you to set the SRM differently for each dimension of the resource.

10.4.3.12 Server resource attributes and possible values

The meaning of each resource attribute and the possible values are listed below.

Attribute Description and Possible Values

Number of Dimensions The number of dimensions which can be modeled with each grouping of
resource models and shared elements.

Initial Number of
Servers

The number of servers in the server bank. This value cannot be changed
during simulation.

Initial Service Rate
Multiplier

The Service Rate Multiplier (SRM) at the beginning of the
simulation.

Server Mechanism The method by which a server can be shared by several transactions of
the same priority. Possible values: Dedicated Server, Round Robin, Pro-
cessor Sharing.

Maximum Occupancy The maximum number of transactions which may be in the resource at a
single time. This includes transactions which are in the queue, a server,
and in a round robin wait list.

Context Switching
Overhead

The service time which is wasted each time a server switches from pro-
cessing one transaction to another.

Preempt Discipline Controls whenever a transaction can preempt another transaction to get a
server. Possible values: Dont Preempt, Allow Preemption.

Queue Discipline The ordering of transactions in the queue which have the same priority.
Possible values: First In First Out, Last In First Out.

10-19

10 Shared Model Elements

Attribute Description and Possible Values

Queue Reject Mecha-
nism

The way a transaction is chosen for rejection when a new trans-
action would cause the overall occupancy to exceed the Maximum
Occupancy. Possible values: Incoming DS Rejected, Low-
est Priority Rejected.

Table 10.5: Server Resource Attributes

10-20 MLDesigner Version 2.8

Chapter 11

Import/Conversion of Models

11.1 Converting OCT Models

11.1.1 Supported Oct types
If you have existing Oct libraries you wish to convert to XML, you can locate them by expanding
the Root directory in the Tree View of the MLDesigner GUI.

NOTE: You must have write permission to convert Oct Libraries to XML �

11.1.2 How to start conversion
The converter is developed to do its work recursively making it possible to convert an entire Oct
library, module, or system. To do so select the directory you wish to convert in the tree view
window and activate the context menu by clicking the right mouse. Select Convert to Xml to
begin conversion.
This option is only available in the File View.

11.1.3 Estimated time vs. estimated number of models
After selecting Convert to Xml the converter counts all systems, modules and models in the
directory you wish to convert. If you select a single primitive, counting and conversion will last
one or two seconds. If you chose a system containing a lot of primitives and modules, counting
can take a while. Thereafter the conversion starts and a dialog will display the path and filename
of the Oct model currently being converted. A progress bar indicates how long the conversion will
take.

11.1.4 Models that will be converted
Oct to XML conversions work recursively meaning that all sub-libraries and models that are con-
tained in the chosen Oct library or module will also be converted. If any item in the selected library
or module has been converted previously, and therefore has an associated .mml file, the item will
not be converted. The context menu option Convert to XML will not be available for models,
modules, or libraries with associated .mml files as these have already been converted.

11 Import/Conversion of Models

11.1.5 Converting or not
At any time the conversion can be interrupted by pressing the cancel button. If the converter
has already finished counting all models in the library, a skeleton .mml file is created for all
models and primitives. In this case you must delete the .mml files of models or primitives before
attempting to convert them again. The presence of the .mml file in the library leads the interpreter
to believe that the Oct model has already been converted to XML.

11.1.6 Layout of converted models
Coordinates in Oct and Xml

One of the most obvious things you will see after conversion is that your converted model is
smaller. The reason for this is the different coordinate system in Xml.

Alignment of ports

With Oct, there is no way to set the alignment of ports. This results in problems with port align-
ment in the XML model. An algorithm was found that works in most cases but still has some
limitations. It is possible that ports of instances may have changed position.

This will happen if your instance, in the original Oct system, was rotated 90 degrees and mirrored.
While this does not affect the functionality of the module or system it creates a confusing block
diagram. Solving this in larger modules or systems can be time consuming.

11.1.7 Changes
There are some syntax changes for parameters that cannot be evaluated during conversion. This
affects especially linked parameters and parameters using tcl expressions.

Linked parameters

Because of differences in syntax it is necessary to redo the links for all instances after conversion
to XML.
This is because the parameter linked parameter has not been converted to the new syntax
for XML. You need to change the parameter to $linked parameter in the Property Editor.
An alternative is to select the option link to from the context menu in the Property Editor.

Expressions

The 2nd difference concerning parameter syntax is a change in evaluating tcl expressions and
formulas to compute numeric values.These changes are

• The variables get a $ and always loose their curly braces, except in special function calls for
matlab.

• The exclamation mark (!) has been replaced by “tcl” e.g., !”expression” has changed to
tcl(expression).

11-2 MLDesigner Version 2.8

11.1 Converting OCT Models

• System wide constants such as PI do not need a $ if they are used in a formula that computes
a numeric type value (e.g. float, int). A $ is only necessary to identify such a constant inside
a string expression.

Old Syntax:

i) !" expr { variable_1 } * PI "
or
ii) { variable }

New Syntax:

i) tcl(expr\$variable_1 * $PI)
or
ii) {$variable}

11.1.8 Parameter list
You will find some new parameters in Xml modules and systems, such as new target parameters,
and some parameters of primitives will no longer appear in the Property Editor. Parameters that
are not editable for example in their .pl files will not be displayed in the property editor.

11.1.9 Inconsistencies in Oct
Oct connections or a net of connections sometimes have inconsistencies, but there is no way to
exactly specify where they can be found in your design. In most cases conversion works but you
probably cannot open the model. This is most likely a problem with edges of the net object in Oct.
During conversion, some of these edges could not be determined and some values in the .mml file
probably contain faulty data. In this case you have to redraw the connections in the special Oct
model and convert again. Remember to delete the .mml file before converting a second time.

11.1.10 Missing interface facets of modules
It is possible that some of the models you like to convert do not have an interface facet file. You can
identify these models by their grey icon in the tree view of MLDesigner . After conversion these
models will no longer have a gray icon because missing interface information port definitions of
modules is allowed in XML libraries. This, however, means that output ports of a module will be
changed to input ports by default. All other parameters stay the same but you must change the port
type from input to output or inmulti to outmulti after conversion.

11.1.11 New library structure in MLDesigner
Some modules and primitives in the standard library, such as the DE domain, have been moved to
a different location inside this domain, e.g. some number generators, sources and older versions of
vector operation primitives. It is possible that you will see red bounding boxes, indicating broken
references, if you open an Oct models created with an older version of MLDesigner .

11-3

11 Import/Conversion of Models

During conversion a mapper file is used to redefine the new location and will correct this in the
newly created Xml model. That is why all missing instances in your Oct model can be found in
the Xml again.

11-4 MLDesigner Version 2.8

11.2 Converting BONeS Models

11.2 Converting BONeS Models

11.2.1 Conversion Conventions
General Conventions

The BONeS Model Conversion Tool in MLDesigner has been designed to convert BONeS Ver-
sion 4.0 models or later. If you wish to convert models from earlier versions you must first convert
them to Version 4.* using BONeS Designer before attempting to convert to MLDesigner .

This chapter contains:

• Conversion conventions
• How to Convert BONeS models to MLDesigner types
• Tips on troubleshooting
• Error messages, their causes and possible solutions
• Two tables containing lists of BONeS primitives with their MLDesigner equivalents. The

first table is sorted by category and the second alphabetically.

There are some general conversion conventions to be noted:

• Due to the different naming conventions of MLDesigner and BONeS Designer some changes
have to be made to the names of the models: Every character or whitespace which is not
a letter or number is replaced by an underscore ” ”. The original name is stored as the
”Logical Name”.

• Descriptions are imported without restrictions.
• The logical structure of the BONeS library (grouping) is not imported (see sec. 11.2.5).

11.2.2 Conversion Conventions For Models
General Conventions

A model is converted to a system, a module or a primitive depending on the simulation flag and
the chosen implementation. Where the simulation flag is set to System, a system is generated
in MLDesigner. There is no implementation allowed for systems so the only way to convert a
system is as a model. Where the simulation flag is set to ”Component” a module or a primitive
is generated depending on the implementation. Where the implementation is set to Standard
Primitive, a primitive is generated and where None is set, a Module is generated.

FSMs, input requirements for modules and primitives, symbols, and backgrounds are not im-
ported.

Conversion Conventions For Items Of A Model

• Instances are placed in the same positions as in the model of the BONeS Designer. They
get an internal instance name which is generated automatically. The instance labels and the
port alignments are set to the values of the BONeS Designer. Some changes are made to the
values of the instance parameters. In front of references to other parameters a $n is placed.

11-5

11 Import/Conversion of Models

The graphical representations of the instances normally differ in size to those of BONeS
Designer. This is especially noticeable when an instance in the BONeS Designer model had
a different symbol to the normal block. Because of this the relations between ports may
loose their orthogonal style.

• Ports are placed at the same positions as in the model of the BONeS Designer. Instance
labels, alignments, and auto terminations have the same values as in BONeS Designer.
Bidirectional ports are split into one input and one output port. Data flows and deferred
properties are not imported.

• Arguments are imported as parameters, memories, events and resources according to their
”Class” properties. The data types for TRIGGER, ROOT-OBJECT and COMPOSITE are
set to Root. Others data types are set to the equivalent type as in MLDesigner. Scopes and
subranges are set to the values as in BONeS Designer. For parameters the scope is stored in
the Attributes property (internal = A NONSETTABLE, external = A SETTABLE). Grouping
elements are not imported.

• Text nodes are placed at the same positions as in the model of the BONeS Designer. The
size is not imported.

11.2.3 Conversion Conventions For Data Structures
Some changes are made to the parent data structures since some types do not exist in MLDesigner.
So the data structures TRIGGER, ROOT-OBJECT and COMPOSITE are mapped to the Root data
structure of MLDesigner.
The fields are converted to data structure members. The naming conventions are the same as for
models. The data types are subject to the conditions of the parent data structures. Scopes and
subranges are set to the values as in BONeS Designer.
The members are imported as enumeration values. The single values are subject to other naming
conditions. Whitespaces are replaced with underscore ” ” and any other character which is not a
letter or a number is deleted.

11.2.4 BONeS Conversion Assistant
To convert a BONeS library (or parts of it) into MLDesigner:

• Select the menu entry Convert BONeS... from the File menu. Click the folder icon to the
right of the text field in the Convert Bones Model dialog.

• Select the directory containing the BONeS library you wish to convert, or type the path in
the BONeS Library Path field. The directory is scanned and a dialog is displayed showing
all convertible models (systems, modules, primitives and data structures). An error will be
displayed if an incompatible directory is chosen.

• Next you must determine the MLDesigner library directory where you would like to save the
BONeS library. You can either use the default directory which is generated automatically
$MLD USER/LibraryName or choose a new one (either per dialog by clicking on the
button to the right of the MLDesigner Library Path text field or typing the path directly
into the field).

• Select the models you want to convert by mouse click. The dependencies between the
system,models, and data structures are observed. All modules and data structures contained

11-6 MLDesigner Version 2.8

11.2 Converting BONeS Models

in the selected system are selected with a single mouse-click.
• You can select or deselect components by using the relevant buttons or by using a combina-

tion of 〈Shift〉 and Mouse-click.
• The two radio buttons Existing Models are set to Keep by default. This means that all exist-

ing BONeS Modules or Data Structures with the same name as those about to be converted,
will not be Overwritten.

• Click the Convert button at the bottom of the dialog. A progress bar indicates the approx-
imate duration of the convert process as a percentage. After completing the conversion a
warning/error summary is displayed. You can leave this dialog open while checking the
results of the conversion.

• You can cancel the conversion at any stage by clicking the Cancel button. The conversion
process is stopped. All components converted up to this point are saved in the directory you
selected.

Figure 11.1: Convert BONeS Model Dialog

11.2.5 Troubleshooting
• References to other user libraries:

If the library to be imported uses models or data structures from other user libraries, you will
get a ”Missing dependency to ...” error in the final warning dialog of the BONeS Converter.
One solution would be to merge the libraries in the BONeS Designer as it is not possible to
import more than one library at a time.

• Relations between bidirectional ports:
Bidirectional ports are split to one input and one output port. In the BONeS Designer there
is only one connection between bidirectional ports. So the input and the output port are
connected together. This leads to completely different simulation results. The Solution is to
delete the connections between these ports and connect them again in the appropriate way.

11-7

11 Import/Conversion of Models

• Simulations:
Since only the associated systems and not the simulation itself is imported the system pa-
rameters are not set for a simulation. You must set them manually before you can run the
simulation. You must also make some changes in order to see the results of the simulation.
Because we have no probing mechanism you must connect output models to the ports from
which you want to see results. These models you can find in the Sinks or TclTk category
of the DE domain of the MLDesigner libraries.

• Primitives:
For user defined primitives a .pl file is generated. Vectors, base type data structures,
strings, ports, and memories are converted to MLDesigner types. Where problems could
arise is in primitives containing composite data structures and where resources or events are
present.

11.2.6 Error Messages
The following tables show common error messages encountered after conversion of BONeS mod-
els and their possible causes with solutions.

Error Dialog Cause Solution

... cannot contain any formal
ports/ connections

The conversion utility found model
with formal ports or connections that
could not be converted for MLDe-
signer. (e.g. in BONeS Designer it is
possible to add ports to a system and
save it without verification. After try-
ing to convert such a system you will
get this error message).

All components of the
model were imported ex-
cept for the formal ports.
To avoid this message
you can set the simula-
tion flag to ’Component’
in BONeS Designer or
remove the ports com-
pletely and then convert
the model again.

... has an unknown position/la-
bel format.

Despite the error message, the model
has been converted properly. Only
some graphical information was lost.
For example, an object was moved to
position (0, 0) because the original po-
sition could not be read or the instance
label was lost. You will see the instance
name instead of this.

The system will run prop-
erly in spite of this. You
can move the model in-
stance or set the label
manually .

11-8 MLDesigner Version 2.8

11.2 Converting BONeS Models

Error Dialog Cause Solution

Bi-Directional port ... in ... is
split into one input and one out-
put port.

This is only a warning message that is
self explanatory.

Hand correction is needed
to properly convert bi-
directional ports from
BONeS Designer files.
Because MLDesigner
does not currently sup-
port bi-directional ports,
these connections must be
converted to two unidirec-
tional port connections.
Today this must be done
manually; future versions
of the conversion utility
will do this automatically.

Component found in ... has no
entry in association table of the
library.

An entry in the association table of the
library was not found. This happened
while attempting to create an instance
and searching for the model entry in the
association table of BONeS Designer.
This is a very unusual case because ev-
ery time you add something from an-
other library an entry is created in the
association table.

You must add the instance
manually to the associa-
tion table, set the argu-
ment values and connect
the ports or make sure
that every model is saved
and verified in the BONeS
Designer and convert the
model again.

Conflicts in association tables of
two libraries...

This message is a warning and rarely
leads to problems during conversion.
You will get more errors/warnings be-
side this one. Possible causes for this
error message:

• you are trying to convert more
than one library which were cre-
ated with different versions of
BONeS Designer or

• one of the converted libraries
was created with an older version
of BONeS Designer and then
touched again with a newer ver-
sion.

You must upgrade all li-
braries to at least BONeS
Designer version 4.0.

11-9

11 Import/Conversion of Models

Error Dialog Cause Solution

Could not access ... file... A file needed for the conversion of a
model could not be found. May happen
during model conversion from older
versions of BONeS Designer, if the
file architecture was different to ver-
sion 4.*.

You must upgrade your li-
braries to at least BONeS
Designer version 4.0.

Could not add instance of type ... The converter tried to create an in-
stance of a model and an error oc-
curred during the operation in MLDe-
signer. The model for the instance was
found, but the instance could not be
added. Different from the error mes-
sage ’Could not find an MLDesigner
primitive/ module...’. There is no spe-
cial reason for this case because you
can create an instance of every model
and so this error should normally not
appear.

You must add the instance
manually, set the argu-
ment values and connect
the ports in the MLDe-
signer.

Could not connect a port of ... A port which was part of a connection
was not found in MLDesigner . This
can be a formal port or a port of an in-
stance. Possible causes for this error
message are:

• the model of the instance is a
user defined model and there
were problems creating the miss-
ing port. In this case you will
get another error message for the
port that could not be created or

• the instance belongs to a model
which had conflicts in the asso-
ciation table.As a result, there
were two different models with
the same internal id but different
interfaces.

You must create the miss-
ing port manually and
connect it in the instance.

11-10 MLDesigner Version 2.8

11.2 Converting BONeS Models

Error Dialog Cause Solution

Could not find ... in instance ... A parameter, memory, event, resource
or port was not found in an instance
even if it is referenced in the model def-
inition file. Possible cases for this error
message are:

• the model of the instance is a
user defined model and there
were problems creating the miss-
ing argument or port. In this case
you will get another error mes-
sage for the argument or port that
could not be created, or

• the instance belongs to a model
which had conflicts in the asso-
ciation table. So there were two
different models with the same
internal id and they had a differ-
ent interface.

You must create the miss-
ing argument or port man-
ually and set the value
of the instance or connect
the port in the instance.

Could not find a member of ... A member of a the composite data
structure was not found during the at-
tempt to set it’s value (e.g. in an in-
ternal memory).The reason could be
a data structure member of a user-
defined data structure could not be cre-
ated. There will be another error mes-
sage for this member in this case.

The user has to add the
missing data structure
member and set the value
after this.

11-11

11 Import/Conversion of Models

Error Dialog Cause Solution

Could not find an MLDesigner
primitive/module for the BONeS
primitive/module ... in ...

The conversion utility could not find
an MLDesigner model corresponding
to an entry in the association table of
the library. This may happen in two
cases:

• there were dependencies to other
libraries and the path of at least
one of these libraries was not
set properly so the models there
could not be found or

• a primitive or module from the
BONeS core primitives or mod-
ules was used which is not now
implemented in MLDesigner.

This error occurs if the converter tries
to create an instance of this primitive
or module.

For the first case you
must convert again with
properly set library paths.
In the second case you
must convert this core
primitive or module di-
rectly from the particular
BONeS core library, then
add the instance manu-
ally, set the argument val-
ues and connect the in-
stance ports.

Could not find parent data struc-
ture...

The parent of a data structure was not
found during the creation of a child
data structure. This might indicate that
conversion of the required parent data
structure was unsuccessful. (In this
case, there will be another error mes-
sage about the parent.)

Could not find type of... The type of a port, memory, data struc-
ture member, parameter... could not be
found in MLDesigner. This can hap-
pen if a data structure could not be cre-
ated and the particular element is of
this type.

The user has to set the
type of the particular el-
ement manually in the
MLDesigner after creat-
ing the data structure.

Could not read source file of
primitive ...

The primitive source file (.c or .cc) of
the BONeS Designer primitive could
not be found. This may happen with
older versions of the BONeS Designer.

You must make sure that
the primitive source files
are in the same direc-
tory as the model defi-
nition files (as is normal
in BONeS Designer) or
upgrade your libraries to
at least BONeS Designer
version 4.0.

11-12 MLDesigner Version 2.8

11.2 Converting BONeS Models

Error Dialog Cause Solution

Could not set parameter ... of in-
ternal resource ...

A parameter of an internal resource
could not be found or the value of it
could not be set. This may happen in
two cases:

• the parameter was not found in
the resource (maybe in older ver-
sions of BONeS Designer the re-
sources had different definitions)
or

• the value specified for this pa-
rameter in the BONeS Designer
is not valid.

The best solution for the
first case is to upgrade the
models to at least BONeS
Designer 4.0 and convert
the models again. For
the second case make sure
that the value specified in
the BONeS Designer is
valid and convert again or
change the value manu-
ally in the MLDesigner.

Could not set value of data struc-
ture member ... - ... is not in
Enum ...

The default value for a data structure
member of type enumeration could not
be set because the specified value was
not found in enumeration. A wrong
default value in the BONeS Designer
should be the reason.

You must set the default
value manually or cor-
rect the BONeS Designer
data structure and convert
again.

Data structure ... in library ...
can not contain any enumeration
values

This error message appears if there is
a composite data structure with an enu-
meration value as member. This is nor-
mally not possible in BONeS Designer
so this error message should not ap-
pear. Normally MLDesigner decides
from the parent of the data structure if
you can add members or enumeration
values. If both are present this error
message appears.

You must decide whether
you want a composite
or an enumeration data
structure. Correct the
BONeS Designer model
and convert again or
change the data structure
in MLDesigner.

Error in reading pl file of primi-
tive ...

The converted primitive had already a
pl file which contained errors and so
it could not be parsed by the MLDe-
signer.

You must correct the
existing pl file of the
primitive and convert
the BONeS Designer
primitive again or convert
the code manually.

FSM primitives (...) are not con-
verted (until now)

Primitives implemented with an FSM
are not converted until now. Anyway
the interface is created with an empty
implementation and instances of the
model are created.

No solution.

11-13

11 Import/Conversion of Models

Error Dialog Cause Solution

Incorrect syntax of... A section of code in the .mdef file can-
not be parsed because of unrecognized
syntax. Different error messages re-
sult depending on where the incorrect
code is located. This should only hap-
pen when converting models created
with BONeS Designer older than ver-
sion 4.0.

You must upgrade all li-
braries to at least ver-
sion 4.0 of BONeS De-
signer. If this is not
possible you must correct
the converted models in
MLDesigner. The error
message will indicate in
which part of the code the
error is located so you can
correct it.

Missing ... before/after See Unexpected/missing...

No event entries found in pl file
of primitive ...

There may be events in the primitive in-
terface definition, but there are no en-
tries for them in the primitive source
file. They are used to place code there
if the event is received.

The primitive source file
may not be up to date. In
this case you must modify
and save the model. This
should create the event
entries. Rerun the file
conversion utility on the
revised source file.

One or more of the the following
models have an open edit win-
dow...

The user wants to convert a model
which is still opened by an edit window
in the MLDesigner.

The user has to close all
edit windows that belong
to models he wants to
convert.

Only one deferred input port al-
lowed. Ignoring port ...

In MLDesigner you can set the type
of one or more output ports directly to
the type of one of the inputs by set-
ting the type to =input name. In
BONeS Designer you only have the de-
ferred property. If more than one input
port has this property set to true the
converter can not decide which input to
take if an output has this property en-
abled. So the first input found with de-
ferred property set to true is taken for
all output ports.

You must correct the
types of the output ports
where necessary.

Parse Error in code file of primi-
tive...

See Unexpected/missing...

11-14 MLDesigner Version 2.8

11.2 Converting BONeS Models

Error Dialog Cause Solution

Seed parameter in instance ... ig-
nored

Because there is only one global seed
for all random number generators in
MLDesigner a special parameter would
have no use.

Nothing can be done.

Unexpected end of ... The model definition file ends before
the parser has read all closing brackets.

You must ensure that the
models are saved prop-
erly by BONeS Designer.
Probably an older version
of BONeS Designer is the
reason.

Unexpected/missing token/end
of expression before/after ...

The BONeS Designer primitive file
could not be parsed. The conversion
of primitive code files is not finished.
This may be caused by several prob-
lems (e.g. user defined macros are used
in the code,...).

You must convert the code
manually.

Unknown ... type in ... The parser of the converter expects a
special tag (or tags) at some point in
the model definition files. If there is
an unexpected tag, this error message
is created. Sections that are lead by un-
known tags are ignored leading to lost
information. The tags of the BONeS
Designer 4.* are known by the parser
and problems of this kind should only
appear with older BONeS versions.

You must upgrade your li-
braries to at least version
4.0 of BONeS Designer.

Table 11.1: Common Errors after BONeS Model Conversion

11-15

11 Import/Conversion of Models

11.2.7 BONeS Categories
The following section shows a list of BONeS components and their MLDesigner equivalents if one
exists. These tables are sorted by category. For a complete list in alphabetical order see sec. 11.2.8.

Address Mapping

BONeS Primitive MLD Primitive MLD Category

Address = Name ? AddressEName AddressMapping

Address in List (Param) ? AddressInListMatchingParam AddressMapping

Address List (No Error) AddressListNoError AddressMapping

Address List Matching Param AddressListMatchingParam AddressMapping

Check For Duplicate Name CheckDuplicateName AddressMapping

Get Address Table Length LengthOfAddressTable AddressMapping

Multiple Name to Address NameToAddressMultiple AddressMapping

Name to Address NameToAddress AddressMapping

Name to Address (File) NameToAddressFile AddressMapping

Random Address RandomAddress AddressMapping

Write Address Table to Info DisplayAddressTable AddressMapping

Table 11.2: Address Mapping

Arithmetic

BONeS Primitive MLD Primitive MLD Category

10-Input Expression InputExpression Arithmetic

1-Input Expression InputExpression Arithmetic

2-Input Expression InputExpression Arithmetic

3-Input Expression InputExpression Arithmetic

4-Input Expression InputExpression Arithmetic

5-Input Expression InputExpression Arithmetic

Expression Expression Arithmetic

Table 11.3: Arithmetic

Arithmetic> Integer

11-16 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

1+ PlusConstInt Arithmetic

1- PlusConstInt Arithmetic

I- SubInt Arithmetic

I* MultiplyInt Arithmetic

I+ AddInt Arithmetic

I/ DivInt Arithmetic

I/ IMod ModInt Arithmetic

I/ Protect DivProtectInt Arithmetic

Iabs Val AbsInt Arithmetic

Ichs ChangeSignInt Arithmetic

Igain GainInt Arithmetic

Ilimiter LimiterInt Arithmetic

Imax MaxInt Arithmetic

Imin MinInt Arithmetic

Imod ModNInt Arithmetic

Table 11.4: Arithmetic> Integer

Arithmetic> Real

BONeS Primitive MLD Primitive MLD Category

1/R InvertFloat Arithmetic

Bessel (x) BesselFloat Arithmetic

cos(x) Cos Arithmetic

exp (x) ExpFloat Arithmetic

ln (x) LogFloat Arithmetic

R- MinusFloat Arithmetic

R* MultiplyFloat Arithmetic

R+ AddFloat Arithmetic

R/ DivFloat Arithmetic

R/ Protect DivProtectFloat Arithmetic

Rabs Val AbsFloat Arithmetic

Rchs ChangeSignFloat Arithmetic

11-17

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Rgain GainFloat Arithmetic

Rlimiter LimiterFloat Arithmetic

Rmax MaxFloat Arithmetic

Rmin MinFloat Arithmetic

Rsqrt SqrtFloat Arithmetic

sin(x) Sin Arithmetic

tan(x) Tan Arithmetic

XˆI PowInt Arithmetic

X ˆ Iconst PowConstInt Arithmetic

XˆY PowFloat Arithmetic

Table 11.5: Arithmetic> Real

Bitwise Operations> Integer

BONeS Primitive MLD Primitive MLD Category

Bitwise And AndBit BitwiseOperations

Bitwise Left Shift LeftShiftBit BitwiseOperations

Bitwise One’s Complement OnesComplementBit BitwiseOperations

Bitwise Or OrBit BitwiseOperations

Bitwise Right Shift RightShiftBit BitwiseOperations

Bitwise Xor XorBit BitwiseOperations

Table 11.6: Bitwise Operations> Integer

Comparison

BONeS Primitive MLD Primitive MLD Category

Even Even Comparison

I< LtInt Comparison

I<= LeInt Comparison

I> GtInt Comparison

I>= GeInt Comparison

I== EqInt Comparison

11-18 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Odd Odd Comparison

R< LtFloat Comparison

R<= LeFloat Comparison

R> GtFloat Comparison

R>= GeFloat Comparison

R== EqFloat Comparison

Str< LtString Comparison

Str<= LeString Comparison

Str> GtString Comparison

Str>= GeString Comparison

Str== EqString Comparison

Table 11.7: Comparison

Conversions

BONeS Primitive MLD Primitive MLD Category

Int to Real IntToFloat Conversion

Round FloatRoundToInt Conversion

Truncate FloatFloor Conversion

Table 11.8: Conversions

Counters

BONeS Primitive MLD Primitive MLD Category

Accumulator FloatAccumulator Counters

Circular Counter CircularAccumulator Counters

Counter Counter Counters

Int Accumulator IntAccumulator Counters

Simple Counter SimpleCounter Counters

Up/Down Counter UDCounter Counters

Up/Down Counter -Change
Value

VarUDCounter Counters

Table 11.9: Counters

11-19

11 Import/Conversion of Models

DS Access/Modify

BONeS Primitive MLD Primitive MLD Category

Add to Field AddToFieldValueDS DSHandling

Add to Field - Param AddFieldParamDS DSHandling

Coerce DS CoerceDS DSHandling

Create DS CreateDS DSHandling

Create DS - Param CreateParamDS DSHandling

Declare DS DeclareDS DSHandling

Insert Field InsertFieldDS DSHandling

Insert Field - Param InsertFieldParamDS DSHandling

Insert Field - TNow InsertFieldTNowDS DSHandling

Select Field SelectFieldDS DSHandling

Type Switch TypeSwitchDS DSHandling

Table 11.10: DS Access/Modify

DS TYPE Operations

BONeS Primitive MLD Primitive MLD Category

T== TypeIsEqual DSHandling

Type Compatible TypeIsCompatible DSHandling

TYPE Const TypeConst DSHandling

Table 11.11: DS TYPE Operations

Delays

BONeS Primitive MLD Primitive MLD Category

Abs Delay VarAndDelay Delays

Fixed Abs Delay Delay Delays

Table 11.12: Delays

Execution Control

11-20 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Execute In Order ExecuteInOrder Control

Execute In Order 3 ExecuteInOrder Control

Execute In Order 4 ExecuteInOrder Control

Gate GateTrigger Control

Gate - On/Off GateOnOff Control

Gate - Clearable GateWithReset Control

Gate - Trigger First GateTriggerFirst Control

Init Init Control

Merge Merge Control

One Way OneWay Control

One Pulse OnePulse Control

Synchronize 2InOutSynchronize Control

Terminate Simulation TerminateSimulation Control

WrapUp WrapUp Control

Table 11.13: Execution Control

File Access

BONeS Primitive MLD Primitive MLD Category

Close File FileClose FileHandling

Open File (APPEND) FileOpenAppendConst FileHandling

Open File (READ) FileOpenReadConst FileHandling

Open File (WRITE) FileOpenWriteConst FileHandling

Open File w/ String Input (APPEND) FileOpenAppend FileHandling

Open File w/ String Input (READ) FileOpenRead FileHandling

Open File w/ String Input (WRITE) FileOpenWrite FileHandling

Read File (INTEGER) FileReadInt FileHandling

Read File (REAL) FileReadFloat FileHandling

Read File (STRING Line) FileReadString FileHandling

Write Error (NUMERIC) WriteErrorFloat FileHandling

Write Error (STRING) WriteErrorString FileHandling

Write Error (STRING) - Param WriteErrorStringConst FileHandling

11-21

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Write File (INTEGER) FileWriteInt FileHandling

Write File (REAL) FileWriteFloat FileHandling

Write File (ROOT-OBJECT) FileWriteDS FileHandling

Write File (STRING) FileWriteString FileHandling

Write File (STRING) - Param FileWriteStringConst FileHandling

Write Info (NUMERIC) WriteInfoFloat FileHandling

Write Info (STRING) WriteInfoString FileHandling

Write Info (STRING) - Param WriteInfoStringConst FileHandling

Write Warning (NUMERIC) WriteWarningFloat FileHandling

Write Warning (STRING) WriteWarningString FileHandling

Write Warning (STRING) - Param WriteWarningStringConst FileHandling

Table 11.14: File Access

11-22 MLDesigner Version 2.8

11.2 Converting BONeS Models

Goto Blocks> Global Scope

BONeS Primitive MLD Primitive MLD Category

Goto Named Location GotoLocationByName GotoGroup

Goto Numbered Location GotoLocationByNumber GotoGroup

Named Location (multiple) LocationByNameMultiple GotoGroup

Named Location (single) LocationByNameSingle GotoGroup

Numbered Location (multiple, replace-
ment)

LocationByNumberMultipleReplacement GotoGroup

Numbered Location (single) LocationByNumberSingle GotoGroup

Numbered Location (variable) LocationByNumberVariable GotoGroup

Table 11.15: GotoGroup

Goto Blocks> Linked with Memory

BONeS Primitive MLD Primitive MLD Category

Goto Numbered Location (linked) LinkedGotoLocationByNumber GotoGroup

Numbered Location (linked, multiple,
replacement)

LinkedLocByNumMultipleReplacement GotoGroup

Numbered Location (linked, single) LinkedLocationByNumberSingle GotoGroup

Numbered Location (linked, variable) LinkedLocationByNumberVariable GotoGroup

Table 11.16: GotoGroup

Logical

BONeS Primitive MLD Primitive MLD Category

False LogicFalse Logic

True LogicTrue Logic

And Logic Logic

Nand Logic Logic

Nor Logic Logic

Not Logic Logic

Nxor Logic Logic

Or Logic Logic

11-23

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Xor Logic Logic

Table 11.17: Logical

Loops

BONeS Primitive MLD Primitive MLD Category

Int Do DoLoopVarInt Loops

Int Do (0,N-1) Do0n 1LoopInt Loops

Int Do (1,N) Do1NLoopInt Loops

Int Do - Param DoLoopInt Loops

Real Do DoLoopVarFloat Loops

Real Do - Param DoLoopFloat Loops

Table 11.18: Loops

Memory Access> Global Memory

BONeS Primitive MLD Primitive MLD Category

Global Mem Reporter? GlobalMemoryReporter MemoryAccess

Read Global Memory GlobalMemoryRead MemoryAccess

Write Global Memory GlobalMemoryWrite MemoryAccess

Table 11.19: Memory Access> Global Memory

Memory Access> Linked Memory

BONeS Primitive MLD Primitive MLD Category

Active Read Memory MemoryActiveRead MemoryAccess

Mem + 1 MemoryInc1 MemoryAccess

Mem - 1 MemoryDec1 MemoryAccess

Mem Insert Field MemoryInsertField MemoryAccess

Memory Initialized? MemoryIsInitialized MemoryAccess

Mem Select Field MemorySelectField MemoryAccess

Read Memory MemoryRead MemoryAccess

11-24 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Write Memory MemoryWrite MemoryAccess

Table 11.20: Memory Access> Linked Memory

Memory Access> Local Memory

BONeS Primitive MLD Primitive MLD Category

Int Local Mem LocalMemoryInt MemoryAccess

Local Mem LocalMemory MemoryAccess

Multiple Buffers MemoryMultipleBuffers MemoryAccess

Real Local Mem LocalMemory MemoryAccess

Table 11.21: Memory Access> Local Memory

Miscellaneous

BONeS Primitive MLD Primitive MLD Category

Add Hash AddHash Miscellaneous

Dijkstra Dijkstra Miscellaneous

Get Hash GetHash Miscellaneous

Make New Timing Packet NewTimingPacket Miscellaneous

Remove Hash RemoveHash Miscellaneous

Search Hash SearchHash Miscellaneous

Sink BlackHole Sinks

Table Lookup TableLookup Miscellaneous

Time Between Triggers TimeBetweenTriggers Miscellaneous

Table 11.22: Miscellaneous

Number Generators

BONeS Primitive MLD Primitive MLD Category

Iconst GenIntConst NumberGenerators

Iteration Iteration NumberGenerators

Rconst GenFloatConst NumberGenerators

11-25

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

TNow TNow NumberGenerators

TStop StopTimeGen NumberGenerators

Table 11.23: Number Generators

Number Generators> Random

BONeS Primitive MLD Primitive MLD Category

Bernoulli Rangen BernoulliInt NumberGenerators

Bernoulli Rangen - Param BernoulliIntConst NumberGenerators

Binomial Rangen BinomialInt NumberGenerators

Binomial Rangen - Param BinomialIntConst NumberGenerators

Erlang Rangen - Param ErlangFloat NumberGenerators

Expon Rangen ExponentialFloat NumberGenerators

Expon Rangen - Param ExponentialFloatConst NumberGenerators

Gamma Rangen GammaFloat NumberGenerators

Gamma Rangen - Param GammaFloatConst NumberGenerators

Geometric Rangen GeometricInt NumberGenerators

Geometric Rangen - Param GeometricIntConst NumberGenerators

IU[0,N-1] Uniform0ToNInt NumberGenerators

IU[0,N-1] != C Uniform0ToNNotCInt NumberGenerators

IU[0,N-1] - Param Uniform0ToNNotCIntConst NumberGenerators

IU[Min,Max] IntMinMaxFloat NumberGenerators

IU[Min,Max] - Param IntMinMaxFloatConst NumberGenerators

N(0,1) Rangen Normal01Float NumberGenerators

Normal Rangen NormalFloat NumberGenerators

Normal Rangen - Param NormalFloatConst NumberGenerators

Poisson Rangen PoissonFloat NumberGenerators

Poisson Rangen - Param PoissonFloatConst NumberGenerators

Rayleigh Rangen RayleighFloat NumberGenerators

Rice Rangen RiceFloatConst NumberGenerators

Triangle (a,b,c) Rangen TriangleFloat NumberGenerators

Triangle (a,b,c) Rangen - Param TriangleFloatConst NumberGenerators

11-26 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

U[0,1) Rangen Uniform01Rangen NumberGenerators

Uniform Rangen UniformFloat NumberGenerators

Uniform Rangen - Param UniformFloatConst NumberGenerators

User CDF RanGen CDFFloat NumberGenerators

Table 11.24: Number Generators> Random

Quantity-Shared Resource

BONeS Primitive MLD Primitive MLD Category

Allocate Allocate QuantityResources

Allocate (Basic) AllocateBasic QuantityResources

Allocate (Param) AllocateParam QuantityResources

Allocate (Priority) AllocatePriority QuantityResources

Change Capacity ChangeCap QuantityResources

Consume Resource Units ConsumeUnits QuantityResources

Free Free QuantityResources

Free (Basic) FreeBasic QuantityResources

Free (Param) FreeParam QuantityResources

Migrate Resource Units MigrateUnits QuantityResources

Table 11.25: Quantity-Shared Resource

Quantity-Shared Resource> *Internals*

BONeS Primitive MLD Primitive MLD Category

Active Read Q-Resource ActiveReadQuantityResource QuantityResources/Internals

QR State of Dimension QrStateOfDimension QuantityResources/Internals

QR State of Modified Dimen-
sion

QrStateOfModifiedDimension QuantityResources/Internals

QSR Last Dimension Modified QrLastDimensionModified QuantityResources/Internals

QSRState QrState QuantityResources/Internals

Read Q-Shared Resource ReadQuantityResource QuantityResources/Internals

Table 11.26: Quantity-Shared Resource> *Internals*

11-27

11 Import/Conversion of Models

Queues

BONeS Primitive MLD Primitive MLD Category

FIFO Priority FIFOPriority Queues

FIFO Priority w/Length FIFOPriorityWithLength Queues

FIFO Priority w/Peek FIFOPriorityWithPeek Queues

FIFO Priority w/Reject FIFOPriorityWithReject Queues

FIFO w/Peek FIFOWithPeek Queues

FIFO w/Reject FIFOWithReject Queues

FIFO w/Reset FIFOPriorityWithReset Queues

LIFO Priority LIFOPriority Queues

Multiple Priority Queues
w/Peek

MultiplePriorityQueuesWithPeek Queues

Multiple Queues MultipleQueues Queues

Multiple Queues w/Peek MultipleQueuesWithPeek Queues

Simple FIFO SimpleFIFO Queues

Simple LIFO SimpleLIFO Queues

Table 11.27: Queues

Queues> Components

BONeS Primitive MLD Primitive MLD Category

Clear Queue ClearQueue Queues/Internals

FIFO Priority w/Stats FIFOPriorityWithStats Queues/Internals

Final Queue Statistics FinalQueueStatistics Queues/Internals

General Queue Internals GeneralQueueInternals Queues/Internals

Get Queue Length GetQueueLength Queues/Internals

Get Queue Length (Priority) GetQueueLengthPriority Queues/Internals

Get Queue Statistics GetQueueStatistics Queues/Internals

Insert (Position) InsertPosition Queues/Internals

Insert (Priority) InsertPriority Queues/Internals

Peek (Position) PeekPosition Queues/Internals

Peek (Priority) PeekPriority Queues/Internals

Peek (Tag) PeekTag Queues/Internals

11-28 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Queue Num Check QueueNumCheck Queues/Internals

Queue Overflow Reporter QueueOverflowReporter Queues/Internals

Read Active Queue Statistics ReadActiveQueueStats Queues/Internals

Remove (Position) RemovePosition Queues/Internals

Remove (Priority) RemovePriority Queues/Internals

Remove (Tag) RemoveTag Queues/Internals

Reset Stats ResetStats Queues/Internals

Update Stats UpdateStats Queues/Internals

Table 11.28: Queues> Components

Queues & Servers

BONeS Primitive MLD Primitive MLD Category

FIFO w/Servers FIFOWithServers QueuesAndServer

Multiple Servers MultipleServers QueuesAndServer

Table 11.29: Queues & Servers

Queues & Servers> *Internals*

BONeS Primitive MLD Primitive MLD Category

FIFO w/Servers Stats FIFOWithServerStats QueuesAndServer

FIFO w/Servers FIFOWithServer QueuesAndServer

Multiple Servers MultipleServers QueuesAndServers

Parallel Queues ParallelQueues QueuesAndServer

Table 11.30: Queues & Servers> *Internals*

SET Operations

BONeS Primitive MLD Primitive MLD Category

INTEGER to SET IntegerToEnum EnumOperations

S== EnumIsEqual EnumOperations

S == Switch EnumIsEqualSwitch EnumOperations

11-29

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Sconst EnumConst EnumOperations

SET Rangen EnumRanGen EnumOperations

SET to INTEGER EnumToInteger EnumOperations

Table 11.31: SET Operations

Server Resource

BONeS Primitive MLD Primitive MLD Category

get SRM GetSRM ServerResources

Modify SRM ModifySRM ServerResources

Service Service ServerResources

Service (Basic) ServiceBasic ServerResources

Service (Dimensioned) ServiceDimensioned ServerResources

Service (Priority) ServicePriority ServerResources

Table 11.32: Server Resource

Server Resource> *Internals*

BONeS Primitive MLD Primitive MLD Category

Active Read S-Resource ActiveReadServerResource ServerResources/Internals

Read Server Resource ReadServerResource ServerResources/Internals

SR Last Dimension Modified SrLastDimensionModifies No MLD Category found !

SR State SrState ServerResources/Internals

SR State of Dimension SrStateOfDimension ServerResources/Internals

SR State of Modified Dimension SrStateOfModifiedDimension ServerResources/Internals

Table 11.33: Server Resource> *Internals*

Statistical> Batch

BONeS Primitive MLD Primitive MLD Category

Batch Mean BatchMean Statistics

Batch Rmax BatchRMax Statistics

Batch Rmin BatchRMin Statistics

11-30 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Batch Statistics BatchStatistics Statistics

Batch Timing BatchTiming Statistics

Table 11.34: Statistical> Batch

Statistical> General

BONeS Primitive MLD Primitive MLD Category

Average Average Statistics

Dimensioned Ensemble Average DimEnsembleAverage Statistics

Dimensioned Ensemble Avg w/
Min and Max

DimEnsembleAvgMinMax Statistics

Dimensioned Time Average DimensionedTimeAverage Statistics

Dimensioned Time Avg w/ Min
and Max

DimensionedTimeAvgMinMax Statistics

General N-th Moment GeneralNthMoment Statistics

Mean & Variance MeanAndVariance Statistics

Throughput Throughput Statistics

Time Average TimeAverage Statistics

Weighted General Moments WeightedGeneralMoments Statistics

Weighted Mean and Variance WeightedMeanAndVariance Statistics

Table 11.35: Statistical> General

Statistical> Histogram

BONeS Primitive MLD Primitive MLD Category

Histogram Histogram Statistics

Table 11.36: Statistical> Histogram

11-31

11 Import/Conversion of Models

Statistical> Histogram> *Internals*

BONeS Primitive MLD Primitive MLD Category

Find Bin Number FindBinNumber Statistics

Report Histogram ReportHistogram Statistics

Table 11.37: Statistical> Histogram> *Internals*

Statistical> Misc

BONeS Primitive MLD Primitive MLD Category

Construct Dimensioned Basic
Statistics

ConstructDimensionedBasicStatistics Statistics

Construct Dimensioned Basic Stats
- all fields

ConstructDimensionedBasicStatsAllFields Statistics

Construct TA Stats w/Priorities ConstructTAStatsWithPriority Statistics

Construct Time-Average Statistics ConstructTimeAverageStatistics Statistics

Construct Time-Avg Stats - all
fields

ConstructTimeAvgStatsAllFields Statistics

Table 11.38: Statistical> Misc

String Operations

BONeS Primitive MLD Primitive MLD Category

Extract String XtractString StringOperations

Int to String ConvertToString StringOperations

Real to String ConvertToString StringOperations

Split String SplitString StringOperations

String Concat ConcatString StringOperations

String Constant ConstStringGen StringOperations

String Length StringLength StringOperations

String Search FindOccurrence StringOperations

String to Int StringToInt StringOperations

String to Real StringToFloat StringOperations

Table 11.39: String Operations

11-32 MLDesigner Version 2.8

11.2 Converting BONeS Models

Switches

BONeS Primitive MLD Primitive MLD Category

1-Input Expression Switch InputExpressionSwitch Switches

Expression Switch ExpressionSwitch Switches

I <= C ? IntLeThresh Switches

I < C ? IntLtThresh Switches

I >= C ? IntGeThresh Switches

I > C ? IntGtThresh Switches

I == C ? IntEqThresh Switches

Memory Switch MemorySwitch Switches

R <= C ? FloatLeThresh Switches

R < C ? FloatLtThresh Switches

R >= C ? FloatGeThresh Switches

R > C ? FloatGtThresh Switches

R == C ? FloatEqThresh Switches

Random Switch VarProbSwitch Switches

Random Switch - Param ProbSwitch Switches

Real Within Boundaries ? FloatWithinRange Switches

Str == C ? StringEqualsConst Switches

Switch Switch Switches

Switch 4-Way 4WaySwitchConst Switches

T > Startup ? TNowGtStartup Switches

TNow >= Param ? TNowGeStartup Switches

True N Times TrueNTimesConst Switches

Table 11.40: Switches

Timers

BONeS Primitive MLD Primitive MLD Category

Alarm Active AlarmActive Timers

Cancel Alarm CancelAlarm Timers

Cancel Timer CancelTimer Timers

Residual Time ResidualTime Timers

11-33

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Restart Alarm RestartAlarm Timers

Restart Timer RestartTimer Timers

Service Timer ServiceTimer Timers

Set Alarm SetAlarm Timers

Start Timer StartTimer Timers

Table 11.41: Timers

Traffic Generators

BONeS Primitive MLD Primitive MLD Category

Arbitrary Pulse Train ArbitraryPulseTrain Sources

Bursty Pulse Train (Ex-
pon,Geom)

BurstyPulseTrainExponGeom Sources

Poisson Pulse Train PoissonPulseTrain Sources

Poisson Pulse Train (variable
Inter-Pulse Time)

PoissonPulseTrainVarInterPulseTime Sources

Poisson Pulse Train -Hier PoissonPulseTrainHier Sources

Uniform Pulse Train UniformPulseTrain Sources

Uniform Pulse Train (variable
Inter-Pulse Time)

UniformPulseTrainVarInterPulseTime Sources

Table 11.42: Traffic Generators

Vector Operations> General

BONeS Primitive MLD Primitive MLD Category

Vector Access Element AccessElementVector VectorOperations/General

Vector Change Length ChangeLengthVector VectorOperations/General

Vector Create CreateVector VectorOperations/General

Vector Length LengthOfVector VectorOperations/General

Vector Mem Access MemoryAccessVector VectorOperations/General

Vector Mem Init MemoryInitVector VectorOperations/General

Vector Mem Length MemoryLengthVector VectorOperations/General

Vector Mem Set MemorySetVector VectorOperations/General

11-34 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Vector Set Element SetElementVector VectorOperations/General

Table 11.43: Vector Operations> General

Vector Operations> Int Matrix

BONeS Primitive MLD Primitive MLD Category

IMatrix Access Element AccessElementIMatrix MatrixOperations/IntMatrix

IMatrix Create CreateIMatrix MatrixOperations/IntMatrix

IMatrix Dimensions DimensionsIMatrix MatrixOperations/IntMatrix

IMatrix Mem Access MemoryAccessIMatrix MatrixOperations/IntMatrix

IMatrix Mem Set MemorySetIMatrix MatrixOperations/IntMatrix

IMatrix Read File ReadFileIMatrix MatrixOperations/IntMatrix

IMatrix Set Element SetElementIMatrix MatrixOperations/IntMatrix

IMatrix Write File WriteFileIMatrix MatrixOperations/IntMatrix

IMatrix Write File (tabular) WriteFileTabIMatrix MatrixOperations/IntMatrix

STRING to IMatrix StringToIMatrix MatrixOperations/IntMatrix

Table 11.44: Vector Operations> Int Matrix

Vector Operations> Int Vector

BONeS Primitive MLD Primitive MLD Category

IVect Access Element AccessElementIVector VectorOperations/IntVector

IVect Create CreateIVector VectorOperations/IntVector

IVect Index of Value IndexOfValueIVector VectorOperations/IntVector

IVect Length LengthOfIVector VectorOperations/IntVector

IVect Mem +/- MemoryAddIVector VectorOperations/IntVector

IVect Mem +/- With Integer Out-
put

MemoryAddIVectorWithIntOut VectorOperations/IntVector

IVect Mem Access MemoryAccessIVector VectorOperations/IntVector

IVect Mem Change Length MemoryChangeLengthIVector VectorOperations/IntVector

IVect Mem Init MemoryInitIVector VectorOperations/IntVector

IVect Mem Largest in Range MemoryLargestInRangeIVector VectorOperations/IntVector

11-35

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

IVect Mem Length MemoryLengthIVector VectorOperations/IntVector

IVect Mem Set MemorySetIVector VectorOperations/IntVector

IVect Mem Smallest in Range MemorySmallestInRangeIVector VectorOperations/IntVector

IVect Read File ReadFileIVector VectorOperations/IntVector

IVect Set Element SetElementIVector VectorOperations/IntVector

IVect Write File WriteFileIVector VectorOperations/IntVector

STRING to IVect StringToIVector VectorOperations/IntVector

Table 11.45: Vector Operations> Int Vector

Vector Operations> Real Matrix

BONeS Primitive MLD Primitive MLD Category

RMatrix Access Element AccessElementFMatrix MatrixOperations/FloatMatrix

RMatrix Create CreateFMatrix MatrixOperations/FloatMatrix

RMatrix Dimensions DimensionsFMatrix MatrixOperations/FloatMatrix

RMatrix Mem Access MemoryAccessFMatrix MatrixOperations/FloatMatrix

RMatrix Mem Set MemorySetFMatrix MatrixOperations/FloatMatrix

RMatrix Read File ReadFileFMatrix MatrixOperations/FloatMatrix

RMatrix Set Element SetElementFMatrix MatrixOperations/FloatMatrix

RMatrix Write File WriteFileFMatrix MatrixOperations/FloatMatrix

RMatrix Write File (tabular) WriteFileTabFMatrix MatrixOperations/FloatMatrix

STRING to RMatrix StringToFMatrix MatrixOperations/FloatMatrix

Table 11.46: Vector Operations> Real Matrix

Vector Operations> Real Vector

BONeS Primitive MLD Primitive MLD Category

RVect Access Element AccessElementFVector VectorOperations/FloatVector

RVect Create CreateFVector VectorOperations/FloatVector

RVect Length LengthOfFVector VectorOperations/FloatVector

RVect Mem +/- MemoryAddFVector VectorOperations/FloatVector

11-36 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

RVect Mem +/- With Real Out-
put

MemoryAddFVectorWithFloatOut VectorOperations/FloatVector

RVect Mem Access MemoryAccessFVector VectorOperations/FloatVector

RVect Mem Change Length MemoryChangeLengthFVector VectorOperations/FloatVector

RVect Mem Init MemoryInitFVector VectorOperations/FloatVector

RVect Mem Largest in Range MemoryLargestInRangeFVector VectorOperations/FloatVector

RVect Mem Length MemoryLengthFVector VectorOperations/FloatVector

RVect Mem Set MemorySetFVector VectorOperations/FloatVector

RVect Mem Smallest in Range MemorySmallestInRangeFVector VectorOperations/FloatVector

RVect Read File ReadFileFVector VectorOperations/FloatVector

RVect Set Element SetElementFVector VectorOperations/FloatVector

RVect Write File WriteFileFVector VectorOperations/FloatVector

STRING to RVect StringToFVector VectorOperations/FloatVector

Table 11.47: Vector Operations> Real Vector

11.2.8 BONeS Primitives
This is a list of all BONeS primitives with MLDesigner equivalents in alphabetical order.

BONeS Primitive MLD Primitive MLD Category

1+ PlusConstInt Arithmetic

1- PlusConstInt Arithmetic

1-Input Expression InputExpression Arithmetic

1-Input Expression Switch InputExpressionSwitch Switches

1/R InvertFloat Arithmetic

10-Input Expression InputExpression Arithmetic

2-Input Expression InputExpression Arithmetic

3-Input Expression InputExpression Arithmetic

4-Input Expression InputExpression Arithmetic

5-Input Expression InputExpression Arithmetic

Abs Delay VarAndDelay Delays

Accumulator FloatAccumulator Counters

Active Read Memory MemoryActiveRead MemoryAccess

11-37

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Active Read Q-Resource ActiveReadQuantityResource QuantityResources/Internals

Active Read S-Resource ActiveReadServerResource ServerResources/Internals

Add Hash AddHash Miscellaneous

Add to Field AddToFieldValueDS DSHandling

Add to Field - Param AddFieldParamDS DSHandling

Address = Name ? AddressEName AddressMapping

Address in List (Param) ? AddressInListMatchingParam AddressMapping

Address List (No Error) AddressListNoError AddressMapping

Address List Matching
Param

AddressListMatchingParam AddressMapping

Alarm Active AlarmActive Timers

Allocate Allocate QuantityResources

Allocate (Basic) AllocateBasic QuantityResources

Allocate (Param) AllocateParam QuantityResources

Allocate (Priority) AllocatePriority QuantityResources

And Logic Logic

Arbitrary Pulse Train ArbitraryPulseTrain Sources

Average Average Statistics

Batch Mean BatchMean Statistics

Batch Rmax BatchRMax Statistics

Batch Rmin BatchRMin Statistics

Batch Statistics BatchStatistics Statistics

Batch Timing BatchTiming Statistics

Bernoulli Rangen BernoulliRangen NumberGenerators

Bernoulli Rangen - Param BernoulliRangenConst NumberGenerators

Bessel (x) BesselFloat Arithmetic

Binomial Rangen BinomialRangen NumberGenerators

Binomial Rangen - Param BinomialRangenConst NumberGenerators

Bitwise And AndBit BitwiseOperations

Bitwise Left Shift LeftShiftBit BitwiseOperations

Bitwise One’s Complement OnesComplementBit BitwiseOperations

Bitwise Or OrBit BitwiseOperations

11-38 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Bitwise Right Shift RightShiftBit BitwiseOperations

Bitwise Xor XorBit BitwiseOperations

Bursty Pulse Train (Ex-
pon,Geom)

BurstyPulseTrainExponGeom Sources

Cancel Alarm CancelAlarm Timers

Cancel Timer CancelTimer Timers

Change Capacity ChangeCap QuantityResources

Check For Duplicate Name CheckDuplicateName AddressMapping

Circular Counter CircularAccumulator Counters

Clear Queue ClearQueue Queues/Internals

Close File FileClose FileHandling

Coerce DS CoerceDS DSHandling

Construct Dimensioned Ba-
sic Statistics

ConstructDimensionedBasicStatistics Statistics

Construct Dimensioned Ba-
sic Stats - all fields

ConstructDimensionedBasicStatsAllFields Statistics

Construct TA Stats w/Priori-
ties

ConstructTAStatsWithPriority Statistics

Construct Time-Average
Statistics

ConstructTimeAverageStatistics Statistics

Construct Time-Avg Stats -
all fields

ConstructTimeAvgStatsAllFields Statistics

Consume Resource Units ConsumeUnits QuantityResources

cos(x) Cos Arithmetic

Counter Counter Counters

Create DS CreateDS DSHandling

Create DS - Param CreateParamDS DSHandling

Declare DS DeclareDS DSHandling

Dijkstra Dijkstra Miscellaneous

Dimensioned Ensemble Av-
erage

DimEnsembleAverage Statistics

Dimensioned Ensemble Avg
w/ Min and Max

DimEnsembleAvgMinMax Statistics

Dimensioned Time Average DimensionedTimeAverage Statistics

11-39

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Dimensioned Time Avg w/
Min and Max

DimensionedTimeAvgMinMax Statistics

Erlang Rangen - Param ErlangRangen NumberGenerators

Even Even Comparison

Execute In Order ExecuteInOrder Control

Execute In Order 3 ExecuteInOrder Control

Execute In Order 4 ExecuteInOrder Control

exp (x) ExpFloat Arithmetic

Expon Rangen ExpRangen NumberGenerators

Expon Rangen - Param ExpRangenConst NumberGenerators

Expression Expression Arithmetic

Expression Switch ExpressionSwitch Switches

Extract String XtractString StringOperations

False LogicFalse Logic

FIFO Priority w/Stats FIFOPriorityWithStats Queues/Internals

FIFO Priority FIFOPriority Queues

FIFO Priority w/Length FIFOPriorityWithLength Queues

FIFO Priority w/Peek FIFOPriorityWithPeek Queues

FIFO Priority w/Reject FIFOPriorityWithReject Queues

FIFO w/Peek FIFOWithPeek Queues

FIFO w/Reject FIFOWithReject Queues

FIFO w/Reset FIFOPriorityWithReset Queues

FIFO w/Servers FIFOWithServers QueuesAndServer

FIFO w/Servers Stats FIFOWithServerStats QueuesAndServer

Final Queue Statistics FinalQueueStatistics Queues/Internals

Find Bin Number FindBinNumber Statistics

Fixed Abs Delay Delay Delays

Free Free QuantityResources

Free (Basic) FreeBasic QuantityResources

Free (Param) FreeParam QuantityResources

Gamma Rangen GammaRangen NumberGenerators

Gamma Rangen - Param GammaRangenConst NumberGenerators

11-40 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Gate GateTrigger Control

Gate - On/Off GateOnOff Control

Gate - Clearable GateWithReset Control

Gate - Trigger First GateTriggerFirst Control

Get Address Table Length LengthOfAddressTable AddressMapping

General N-th Moment GeneralNthMoment Statistics

General Queue GeneralQueue Queues

General Queue Internals GeneralQueueInternals Queues/Internals

Geometric Rangen GeometricRangen NumberGenerators

Geometric Rangen - Param GeometricRangenConst NumberGenerators

Get Hash GetHash Miscellaneous

Get Queue Length GetQueueLength Queues/Internals

Get Queue Length (Priority) GetQueueLengthPriority Queues/Internals

Get Queue Statistics GetQueueStatistics Queues/Internals

get SRM GetSRM ServerResources

Global Mem Reporter? GlobalMemoryReporter MemoryAccess

Goto Named Location GotoLocationByName GotoGroup

Goto Numbered Location GotoLocationByNumber GotoGroup

Goto Numbered Location
(linked)

LinkedGotoLocationByNumber GotoGroup

Histogram Histogram Statistics

I < C ? IntLtThresh Switches

I <= C ? IntLeThresh Switches

I > C ? IntGtThresh Switches

I >= C ? IntGeThresh Switches

I == C ? IntEqThresh Switches

I< LtInt Comparison

I<= LeInt Comparison

I> GtInt Comparison

I>= GeInt Comparison

I* MultiplyInt Arithmetic

I+ AddInt Arithmetic

11-41

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

I- SubInt Arithmetic

I/ DivInt Arithmetic

I/ IMod ModInt Arithmetic

I/ Protect DivProtectInt Arithmetic

I== EqInt Comparison

Iabs Val AbsInt Arithmetic

Ichs ChangeSignInt Arithmetic

Iconst GenIntConst NumberGenerators

Igain GainInt Arithmetic

Ilimiter LimiterInt Arithmetic

IMatrix Access Element AccessElementIMatrix MatrixOperations/IntMatrix

IMatrix Create CreateIMatrix MatrixOperations/IntMatrix

IMatrix Dimensions DimensionsIMatrix MatrixOperations/IntMatrix

IMatrix Mem Access MemoryAccessIMatrix MatrixOperations/IntMatrix

IMatrix Mem Set MemorySetIMatrix MatrixOperations/IntMatrix

IMatrix Read File ReadFileIMatrix MatrixOperations/IntMatrix

IMatrix Set Element SetElementIMatrix MatrixOperations/IntMatrix

IMatrix Write File WriteFileIMatrix MatrixOperations/IntMatrix

IMatrix Write File (tabular) WriteFileTabIMatrix MatrixOperations/IntMatrix

Imax MaxInt Arithmetic

Imin MinInt Arithmetic

Imod ModNInt Arithmetic

Init Init Control

Insert (Position) InsertPosition Queues/Internals

Insert (Priority) InsertPriority Queues/Internals

Insert Field InsertFieldDS DSHandling

Insert Field - Param InsertFieldParamDS DSHandling

Insert Field - TNow InsertFieldTNowDS DSHandling

Int Accumulator IntAccumulator Counters

Int Do DoLoopVarInt Loops

Int Do (0,N-1) Do0n 1LoopInt Loops

11-42 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Int Do (1,N) Do1NLoopInt Loops

Int Do - Param DoLoopInt Loops

Int Local Mem LocalMemoryInt MemoryAccess

Int to Real IntToFloat Conversion

Int to String ConvertToString StringOperations

INTEGER to SET IntegerToEnum EnumOperations

Iteration Iteration NumberGenerators

IU[0,N-1] Int0NRangen NumberGenerators

IU[0,N-1] != C Int0NNotCRangen NumberGenerators

IU[0,N-1] - Param Int0NRangenConst NumberGenerators

IU[Min,Max] IntMinMaxRangen NumberGenerators

IU[Min,Max] - Param IntMinMaxRangenConst NumberGenerators

IVect Access Element AccessElementIVector VectorOperations/IntVector

IVect Create CreateIVector VectorOperations/IntVector

IVect Index of Value IndexOfValueIVector VectorOperations/IntVector

IVect Length LengthOfIVector VectorOperations/IntVector

IVect Mem +/- MemoryAddIVector VectorOperations/IntVector

IVect Mem +/- With Integer
Output

MemoryAddIVectorWithIntOut VectorOperations/IntVector

IVect Mem Access MemoryAccessIVector VectorOperations/IntVector

IVect Mem Change Length MemoryChangeLengthIVector VectorOperations/IntVector

IVect Mem Init MemoryInitIVector VectorOperations/IntVector

IVect Mem Largest in Range MemoryLargestInRangeIVector VectorOperations/IntVector

IVect Mem Length MemoryLengthIVector VectorOperations/IntVector

IVect Mem Set MemorySetIVector VectorOperations/IntVector

IVect Mem Smallest in
Range

MemorySmallestInRangeIVector VectorOperations/IntVector

IVect Read File ReadFileIVector VectorOperations/IntVector

IVect Set Element SetElementIVector VectorOperations/IntVector

IVect Write File WriteFileIVector VectorOperations/IntVector

LIFO Priority LIFOPriority Queues

ln (x) LogFloat Arithmetic

11-43

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Local Mem LocalMemory MemoryAccess

Make New Timing Packet NewTimingPacket Miscellaneous

Mean & Variance MeanAndVariance Statistics

Mem + 1 MemoryInc1 MemoryAccess

Mem - 1 MemoryDec1 MemoryAccess

Mem Insert Field MemoryInsertField MemoryAccess

Mem Select Field MemorySelectField MemoryAccess

Memory Initialized? MemoryIsInitialized MemoryAccess

Memory Switch MemorySwitch Switches

Merge Merge Control

Migrate Resource Units MigrateUnits QuantityResources

Modify SRM ModifySRM ServerResources

Multiple Buffers MemoryMultipleBuffers MemoryAccess

Multiple Name to Address NameToAddressMultiple AddressMapping

Multiple Priority Queues
w/Peek

MultiplePriorityQueuesWithPeek Queues

Multiple Queues MultipleQueues Queues

Multiple Queues w/Peek MultipleQueuesWithPeek Queues

Multiple Servers MultipleServers QueuesAndServer

N(0,1) Rangen NormalMean0Var1Rangen NumberGenerators

Name to Address NameToAddress AddressMapping

Name to Address (File) NameToAddressFile AddressMapping

Nand Logic Logic

Nor Logic Logic

Normal Rangen NormalRangen NumberGenerators

Normal Rangen - Param NormalRangenConst NumberGenerators

Not Logic Logic

Named Location (multiple) LocationByNameMultiple GotoGroup

Named Location (single) LocationByNameSingle GotoGroup

Numbered Location (linked,
multiple, replacement)

LinkedLocByNumMultipleReplacement GotoGroup

11-44 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Numbered Location (linked,
single)

LinkedLocationByNumberSingle GotoGroup

Numbered Location (linked,
variable)

LinkedLocationByNumberVariable GotoGroup

Numbered Location (multi-
ple, replacement)

LocationByNumberMultipleReplacement GotoGroup

Numbered Location (single) LocationByNumberSingle GotoGroup

Numbered Location (vari-
able)

LocationByNumberVariable GotoGroup

Nxor Logic Logic

Odd Odd Comparison

One Pulse OnePulse Control

One Way OneWay Control

Open File (APPEND) FileOpenAppendConst FileHandling

Open File (READ) FileOpenReadConst FileHandling

Open File (WRITE) FileOpenWriteConst FileHandling

Open File w/ String Input
(APPEND)

FileOpenAppend FileHandling

Open File w/ String Input
(READ)

FileOpenRead FileHandling

Open File w/ String Input
(WRITE)

FileOpenWrite FileHandling

Or Logic Logic

Parallel Queues ParallelQueues QueuesAndServer

Peek (Position) PeekPosition Queues/Internals

Peek (Priority) PeekPriority Queues/Internals

Peek (Tag) PeekTag Queues/Internals

Poisson Pulse Train PoissonPulseTrain Sources

Poisson Pulse Train (variable
Inter-Pulse Time)

PoissonPulseTrainVarInterPulseTime Sources

Poisson Pulse Train -Hier PoissonPulseTrainHier Sources

Poisson Rangen PoissonRangen NumberGenerators

Poisson Rangen - Param PoissonRangenConst NumberGenerators

QR State of Dimension QrStateOfDimension QuantityResources/Internals

11-45

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

QR State of Modified Di-
mension

QrStateOfModifiedDimension QuantityResources/Internals

QSR Last Dimension Modi-
fied

QrLastDimensionModified QuantityResources/Internals

QSRState QrState QuantityResources/Internals

Queue Num Check QueueNumCheck Queues/Internals

Queue Overflow Reporter QueueOverflowReporter Queues/Internals

R < C ? FloatLtThresh Switches

R <= C ? FloatLeThresh Switches

R > C ? FloatGtThresh Switches

R >= C ? FloatGeThresh Switches

R == C ? FloatEqThresh Switches

R< LtFloat Comparison

R<= LeFloat Comparison

R> GtFloat Comparison

R>= GeFloat Comparison

R* MultiplyFloat Arithmetic

R+ AddFloat Arithmetic

R- MinusFloat Arithmetic

R/ DivFloat Arithmetic

R/ Protect DivProtectFloat Arithmetic

R== EqFloat Comparison

Rabs Val AbsFloat Arithmetic

Random Address RandomAddress AddressMapping

Random Switch VarProbSwitch Switches

Random Switch - Param ProbSwitch Switches

Rayleigh Rangen RayleighRangen NumberGenerators

Rchs ChangeSignFloat Arithmetic

Rconst GenFloatConst NumberGenerators

Read Active Queue Statistics ReadActiveQueueStats Queues/Internals

Read File (INTEGER) FileReadInt FileHandling

Read File (REAL) FileReadFloat FileHandling

11-46 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Read File (STRING Line) FileReadString FileHandling

Read Global Memory GlobalMemoryRead MemoryAccess

Read Memory MemoryRead MemoryAccess

Read Q-Shared Resource ReadQuantityResource QuantityResources/Internals

Read Server Resource ReadServerResource ServerResources/Internals

Real Do DoLoopVarFloat Loops

Real Do - Param DoLoopFloat Loops

Real Local Mem LocalMemory MemoryAccess

Real to String ConvertToString StringOperations

Real Within Boundaries ? FloatWithinRange Switches

Remove (Position) RemovePosition Queues/Internals

Remove (Priority) RemovePriority Queues/Internals

Remove (Tag) RemoveTag Queues/Internals

Remove Hash RemoveHash Miscellaneous

Report Histogram ReportHistogram Statistics

Reset Stats ResetStats Queues/Internals

Residual Time ResidualTime Timers

Restart Alarm RestartAlarm Timers

Restart Timer RestartTimer Timers

Rgain GainFloat Arithmetic

Rice Rangen RiceRangen NumberGenerators

Rlimiter LimiterFloat Arithmetic

RMatrix Access Element AccessElementFMatrix MatrixOperations/FloatMatrix

RMatrix Create CreateFMatrix MatrixOperations/FloatMatrix

RMatrix Dimensions DimensionsFMatrix MatrixOperations/FloatMatrix

RMatrix Mem Access MemoryAccessFMatrix MatrixOperations/FloatMatrix

RMatrix Mem Set MemorySetFMatrix MatrixOperations/FloatMatrix

RMatrix Read File ReadFileFMatrix MatrixOperations/FloatMatrix

RMatrix Set Element SetElementFMatrix MatrixOperations/FloatMatrix

RMatrix Write File WriteFileFMatrix MatrixOperations/FloatMatrix

RMatrix Write File (tabular) WriteFileTabFMatrix MatrixOperations/FloatMatrix

11-47

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Rmax MaxFloat Arithmetic

Rmin MinFloat Arithmetic

Round FloatRoundToInt Conversion

Rsqrt SqrtFloat Arithmetic

RVect Access Element AccessElementFVector VectorOperations/FloatVector

RVect Create CreateFVector VectorOperations/FloatVector

RVect Length LengthOfFVector VectorOperations/FloatVector

RVect Mem +/- MemoryAddFVector VectorOperations/FloatVector

RVect Mem +/- With Real
Output

MemoryAddFVectorWithFloatOut VectorOperations/FloatVector

RVect Mem Access MemoryAccessFVector VectorOperations/FloatVector

RVect Mem Change Length MemoryChangeLengthFVector VectorOperations/FloatVector

RVect Mem Init MemoryInitFVector VectorOperations/FloatVector

RVect Mem Largest in Range MemoryLargestInRangeFVector VectorOperations/FloatVector

RVect Mem Length MemoryLengthFVector VectorOperations/FloatVector

RVect Mem Set MemorySetFVector VectorOperations/FloatVector

RVect Mem Smallest in
Range

MemorySmallestInRangeFVector VectorOperations/FloatVector

RVect Read File ReadFileFVector VectorOperations/FloatVector

RVect Set Element SetElementFVector VectorOperations/FloatVector

RVect Write File WriteFileFVector VectorOperations/FloatVector

S == Switch EnumIsEqualSwitch EnumOperations

S== EnumIsEqual EnumOperations

Sconst EnumConst EnumOperations

Search Hash SearchHash Miscellaneous

Select Field SelectFieldDS DSHandling

Service Service ServerResources

Service (Basic) ServiceBasic ServerResources

Service (Dimensioned) ServiceDimensioned ServerResources

Service (Priority) ServicePriority ServerResources

Service Timer ServiceTimer Timers

Set Alarm SetAlarm Timers

11-48 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

SET Rangen EnumRanGen EnumOperations

SET to INTEGER EnumToInteger EnumOperations

Simple Counter SimpleCounter Counters

Simple FIFO SimpleFIFO Queues

Simple LIFO SimpleLIFO Queues

sin(x) Sin Arithmetic

Sink BlackHole Sinks

Split String SplitString StringOperations

SR Last Dimension Modified SrLastDimensionModifies No MLD Category found !

SR State SrState ServerResources/Internals

SR State of Dimension SrStateOfDimension ServerResources/Internals

SR State of Modified Dimen-
sion

SrStateOfModifiedDimension ServerResources/Internals

Start Timer StartTimer Timers

Str == C ? StringEqualsConst Switches

Str< LtString Comparison

Str<= LeString Comparison

Str> GtString Comparison

Str>= GeString Comparison

Str== EqString Comparison

String Concat ConcatString StringOperations

String Constant ConstStringGen StringOperations

String Length StringLength StringOperations

String Search FindOccurrence StringOperations

STRING to IMatrix StringToIMatrix MatrixOperations/IntMatrix

String to Int StringToInt StringOperations

STRING to IVect StringToIVector VectorOperations/IntVector

String to Real StringToFloat StringOperations

STRING to RMatrix StringToFMatrix MatrixOperations/FloatMatrix

STRING to RVect StringToFVector VectorOperations/FloatVector

Switch Switch Switches

Switch 4-Way 4WaySwitchConst Switches

11-49

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

Synchronize 2InOutSynchronize Control

T > Startup ? TNowGtStartup Switches

T== TypeIsEqual DSHandling

Table Lookup TableLookup Miscellaneous

tan(x) Tan Arithmetic

Terminate Simulation TerminateSimulation Control

Throughput Throughput Statistics

Time Average TimeAverage Statistics

Time Between Triggers TimeBetweenTriggers Miscellaneous

TNow TNow NumberGenerators

TNow >= Param ? TNowGeStartup Switches

Triangle (a,b,c) Rangen TriangleRangen NumberGenerators

Triangle (a,b,c) Rangen -
Param

TriangleRangenConst NumberGenerators

TRUE LogicTrue Logic

True N Times TrueNTimesConst Switches

Truncate FloatFloor Conversion

TStop StopTimeGen NumberGenerators

Type Compatible TypeIsCompatible DSHandling

TYPE Const TypeConst DSHandling

Type Switch TypeSwitchDS DSHandling

Uniform Pulse Train UniformPulseTrain Sources

Uniform Pulse Train (vari-
able Inter-Pulse Time)

UniformPulseTrainVarInterPulseTime Sources

Uniform Rangen UniformRangen NumberGenerators

Uniform Rangen - Param UniformRangenConst NumberGenerators

Up/Down Counter UDCounter Counters

Up/Down Counter -Change
Value

VarUDCounter Counters

Update Stats UpdateStats Queues/Internals

User CDF RanGen UserCDFRangen NumberGenerators

U[0,1) Rangen UniformGe0L1Rangen NumberGenerators

11-50 MLDesigner Version 2.8

11.2 Converting BONeS Models

BONeS Primitive MLD Primitive MLD Category

Vector Access Element AccessElementVector VectorOperations/General

Vector Change Length ChangeLengthVector VectorOperations/General

Vector Create CreateVector VectorOperations/General

Vector Length LengthOfVector VectorOperations/General

Vector Mem Access MemoryAccessVector VectorOperations/General

Vector Mem Init MemoryInitVector VectorOperations/General

Vector Mem Length MemoryLengthVector VectorOperations/General

Vector Mem Set MemorySetVector VectorOperations/General

Vector Set Element SetElementVector VectorOperations/General

Weighted General Moments WeightedGeneralMoments Statistics

Weighted Mean and Variance WeightedMeanAndVariance Statistics

WrapUp WrapUp Control

Write Address Table to Info DisplayAddressTable AddressMapping

Write Error (NUMERIC) WriteErrorFloat FileHandling

Write Error (STRING) WriteErrorString FileHandling

Write Error (STRING) -
Param

WriteErrorStringConst FileHandling

Write File (INTEGER) FileWriteInt FileHandling

Write File (REAL) FileWriteFloat FileHandling

Write File (ROOT-OBJECT) FileWriteDS Filehandling

Write File (STRING) FileWriteString FileHandling

Write File (STRING) -
Param

FileWriteStringConst FileHandling

Write Global Memory GlobalMemoryWrite MemoryAccess

Write Info (NUMERIC) WriteInfoFloat FileHandling

Write Info (STRING) WriteInfoString FileHandling

Write Info (STRING) -
Param

WriteInfoStringConst FileHandling

Write Memory MemoryWrite MemoryAccess

Write Warning (NUMERIC) WriteWarningFloat FileHandling

Write Warning (STRING) WriteWarningString FileHandling

Write Warning (STRING) -
Param

WriteWarningStringConst FileHandling

11-51

11 Import/Conversion of Models

BONeS Primitive MLD Primitive MLD Category

X ˆ Iconst PowConstInt Arithmetic

Xor Logic Logic

XˆI PowInt Arithmetic

XˆY PowFloat Arithmetic

Table 11.48: Table of BONeS primitives in alphabetical order

11-52 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

11.3 COSSAP Conversion Tool

MLDesign Technologies, Inc. realized that many users want interoperability with other tools and
need to convert design Intellectual Property (IP) such as primitives, modules, models and data
files they have developed using other tools, to a format compatible with MLDesigner. Because
MLDesigner does not have the ability to execute these models in their legacy format, or perform
conversions during simulation runs, we developed a tool to convert existing project libraries, de-
veloped for use with other tools, to MLDesigner types enabling the incorporation of these elements
into MLDesigner systems and simulations.

Using the Convert COSSAP tool, found in the main File menu, you can convert block diagrams,
generic C++, generic C, C primitive files developed using COSSAP to the Synchronous Data
Flow (SDF) domain in MLDesigner. With version 2.2 Fortran to C (FtoC) conversion is also
possible. The code is first converted to C and then imported. This process can be done on a central
computer and the converted libraries can then be copied to all work stations with a licensed version
of MLDesigner. This is possible without an installed version of COSSAP on the computer where
the conversion is being performed. All models in the project library are converted to MLDesigner
format i.e., XML and .pl and all naming conventions are standardized to MLDesigner types (if
one exists). In cases where an equivalent type does not exist in MLDesigner, you will be prompted
to provide an equivalent primitive.

NOTE: MLDesign Technologies, Inc. makes no claims about the accuracy of the conversion �
utilities. We recommend that users validate converted files before using them in critical
simulations. We also recommend the individual responsible for the conversion process
be skilled and capable of performing the validation.

11.3.1 Prerequisites and Limitations

Our file conversion utilities do not produce 100% results all the time and are provided with the
following disclaimers:

• It is possible that some user input or intervention may be required. We recommend that
individuals performing file conversion be skilled in system modeling and that they have
access to complete documentation of the files to be converted.

• MLDesign Technologies, Inc. does not guarantee the accuracy of the file conversion utili-
ties. Users must validate all converted files before using them in sensitive systems.

• Not all blocks available in the legacy tool are available in MLDesigner. Not all the blocks
in a legacy model may be available in MLDesigner libraries.

11.3.2 How to Convert COSSAP Project Libraries

To start the conversion process you need a COSSAP project archive and MLDesigner installed on
your system. Expand the File menu and select Convert COSSAP to open the Convert COSSAP
Model dialog (see fig. 11.2).

11-53

11 Import/Conversion of Models

11.3.3 The User Mapper File
The first time a project is converted an entry is made in the user mapper file if there is no equiva-
lent entry in the import.mapper file found in $MLD/import/COSSAP. The user mapper file
is located in ∼/.mld and lists the user models as well as their location.

If a project to be converted contains models which are listed in the user mapper you have the
choice of whether to use the existing model or to re-convert the model. Check the Prefer user
mapper entries check box to use previously converted items. The decision to use the user mapped
entries must be made before the library is read. If you change your decision after the project has
been read, be sure to reload the project by clicking the double arrow icon.

11.3.4 Prefer User Mapper Entries and Overwrite Existing Files
Using both the Prefer user mapper entries and Overwrite existing file options simultaneously
only makes sense where previously converted models have changed outside the MLDesigner en-
vironment.

Figure 11.2: Convert COSSAP Dialog

The button labeled with the single arrow is used to revert the file models.ltbl found in the
directory d to its original state. This file is modified during conversion to include references to
missing libraries if there are any. This is explained in more detail later.

NOTE: The file is not removed if it did not exist prior to conversion; only the contents of the�

11-54 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

file are deleted. This should not cause any problems as an empty file does not cause any
overhead when the conversion tool is reading a project directory.

11.3.5 Reading Process
While a project is being read a log entry is created in the conversion dialog. This entry reads

Reading <Project name ...>

If a + is in front of this entry with an exclamation mark, you must expand the entry to read the
errors or warnings generated during the reading process (see fig. 11.3). In front of each entry is
either a yellow or a red exclamation mark. The yellow exclamation mark represents a warning that
is unlikely to cause problems, and can normally be ignored. Log entries with a red exclamation
mark, however, indicate that the error must be addressed if the system or module is to be functional
after conversion.

NOTE: Dependency checking is only possible with project libraries and not with standard COS- �
SAP libraries. This is due to the structure of the library. A project library has a .mtbl
file in the d directory which describes where all modules are saved.

Often a red exclamation mark refers to missing dependencies. A module or primitive needed for a
system or module to function is stored in another location and not in the directory you are presently
converting. These log entries read

There are some models referring to other Libraries

Double click this entry to open the dialog where all missing dependencies are displayed. Next to
each entry is a check box showing the library name with the missing model in parenthesis.

Figure 11.3: Log Entries after Reading a Project

To add a library to the list to be converted, check the corresponding check box (see fig. 11.4) and
click the folder icon to the right of the input box. A dialog displays with the title bar set to the name
of the file that needs to be included. The file has the extension .mtbl. Once all libraries you
wish to include are selected click the Accept button. The file models.ltbl found in directory
d is modified to include references to the missing libraries.

NOTE: You must have write permission for the directory otherwise the models.ltbl file �
cannot be modified. If the file does not exist then it is created.

Pressing the Accept button reloads the project and missing dependencies or warnings - if there
are any errors - are once again generated in the log window. It is possible to repeat the procedure
described here until you are satisfied that all modules or primitives needed are included.

11-55

11 Import/Conversion of Models

Figure 11.4: Missing Libraries Dialog

All items in the project folder as well as dependent libraries are now displayed in the Library
window of the dialog. The System Schematics are listed in the left window of the dialog. A
single click on the Select All button ensures that all elements and dependent libraries, needed for
the System Schematics to run, are converted. To convert all modules in the project directory you
must click in the box next to the All Libraries entry in the Libraries window. You will notice the
amount of items read differs to the amount of items selected.

NOTE: There are some limitations regarding the deselection of items in the System Schematics�
window. Deselection is performed from the top down and items selected in the Libraries
window are not deselected when the System Schematic is deselected.

Click the Convert button to begin the conversion process. A progress bar shows the status of the
conversion process.

11.3.5.1 Recommendation

We recommend you convert projects that contain all modules and primitives needed for the system
schematic to run. This ensures the libraries have their own root entry in $MLD USER. A partial
conversion on the other hand leads to permanent model searching once the conversion process is
over.

11.3.5.2 Log Entries

For every warning a yellow “!” and for every error a red “!” is displayed in the conversion log
window. The yellow exclamation marks can usually be ignored; the red ones will mostly lead to
incomplete models that cannot be executed after conversion.
After closing the conversion dialog, all log entries are also visible in the MLDesigner Log window.

11-56 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

NOTE: The amount of errors and warnings displayed depends on the Settings/Console/View �
configuration. If Show errors and Show warnings are checked, all log entries will be
visible.

A click on a log entry in the MLDesigner Log window after conversion will open the relevant item
in the Model Editor Window. If the entry refers to a primitive or a module the relevant item is
highlighted in the Model Editor Window. If the log entry refers to a system the system will be
opened in the Model Editor Window. The same behavior applies to the Convert COSSAP model
dialog Log window.
You can convert the entire library by clicking the All libraries check box. The following compo-
nents are converted or generated by MLDesigner.

• System schematics
• User-defined libraries
• Hierarchical models
• Primitives.

11.3.6 Conversion Process

There are two mapper files that contain a list of all COSSAP primitives and models that have
MLDesigner equivalents. The import.mapper file located in $MLD/import/COSSAP is
write protected and must not be altered. Located in your directory, ∼/.mld is a file called cos-
sap.mapper. When importing a COSSAP module, all primitives called or referenced in the module
are parsed and compared with those listed in the mapper file. If there are primitives that are not
listed in the mapper file, an entry is created and the primitive is imported.
If there are inconsistencies regarding port names a warning message is displayed. If a referenced
primitive is not listed in the mapper file, or it is not located in the project directory, an error
message will be displayed.

11.3.7 Conversion of Schematics.

There are two types of schematic in COSSAP. They are converted to MLDesigner types as fol-
lows:

• System schematics, converted to MLDesigner systems;
• Hierarchical models, converted to MLDesigner modules.

The conversion process is achieved using a mapper file containing a list of COSSAP models
and available MLDesigner equivalents. This mapper file contains entries of most of the models in
DSP, MOD63, COD MOD and MATRIX COSSAP libraries. Every instance of a model which
is included in the mapper file is converted to the corresponding MLDesigner model type.

The following sub-headings describe elements that are converted to MLDesigner types on import.

11-57

11 Import/Conversion of Models

11.3.7.1 Parameters

Parameters in schematic files have a type and a default value.
Types are:

• Integer,
• Real, or
• String.

Parameters in the .sch file are parsed prior to conversion and compared with those in the .mdef
file. If their types differ, a warning message is displayed.

11.3.7.2 Expressions

Mathematical expressions and functions used as default values.

+ - * /

11.3.7.3 Functions

** power function;
sqrt(x) square root of x;
real(x) typecasting from integer to real, like (float)x;
sqr (x) x squared;
log (x) logarithm with base 10;
int (x) typecasting to integer, like (int)x;
min (x,y) minimum value of x and y;
max (x,y) maximim value of x and y;
abs (x) absolute value of x;
sign(x) sign of x;
sin (x) sine function of x;
cos (x) cosine function of x;

11.3.7.4 Variables

Specified as follows:

$Variable1
$Variable2

11.3.7.5 Ports

The following items are specified for ports

• Function of the port- input/output, multiple or single.
• Name of the port.

The type of port is also defined as:

11-58 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

INTEGER
DOUBLE INTEGER
REAL
COMPLEX
DOUBLE

Models with multiple input and output ports are converted to MLDesigner special models.

11.3.7.6 Model Instances

The imported schematic file includes the entire model or system and describes the position of the
ports, parameters and their relations. This information is represented as an XML file with the
extension .mml for all graphical representations of primitives, modules and systems.

11.3.7.7 Nodes

COSSAP schematic files contain descriptions of Nodes which are equivalent to MLDesigner rela-
tions.

11.3.7.8 Assignment Files

Assignment Files which are used for specifying values for the parameters of system schematics
(system parameters) are also supported. An assignment file is divided into one or more separate
sections. Each section contains information for different sets of values for system parameters.
Assignment files are converted to MLDesigner system parameters including parameters specified
as dataset identifiers.

11.3.8 Model Definition File

This file is an inseparable part of every COSSAP model. It is a text file containing specific infor-
mation describing the appearance of the COSSAP model. The MLDesigner import module parses
the entire .mdef file collecting all available information.

The sections which can be converted into equivalent MLDesigner items are described here.

11.3.8.1 NAME

Defines the name of the model.

11.3.8.2 DESCRIPTION and SHORT DESCRIPTION

Provide a comprehensive description and one-line description of the model. These are also used
to generate online documentation in HTML format as well as for the generation of tool tip text.

11-59

11 Import/Conversion of Models

11.3.8.3 IMPLEMENTATIONS

Defines the names of available implementations for the current model. Each implementation is
written in a separate file. There are two main groups:

• BLOCK DIAGRAM - specifies a hierarchical model, schematic;
• Other types - specifying primitive models.

Current version converts the following implementations:

• block diagram (.sch)
• generic C (.gc) and generic C++ (.gcc)
• primitives defined with C implementation (.c)

Import module allows only one implementation of a given model to be selected. You can either
choose the C code or the C++ instance. This is done by expanding the model directory in the
Libraries panel in the Physical View. You can choose between C and generic C. We recommend
you stay with the default setting which always select the generic C code in favor of normal C code
implementations.

11.3.8.4 PARAMETERS

Defines the parameters of the model. Each parameter has a name and type. It can also have a
default value.
Supported Types are in C/C++ :

(I) INTEGER int
(R) REAL float
(S) STRING const char *

Every parameter can have a description of multiple lines.

11.3.8.5 INPUT PORTS and OUTPUT PORTS

These sections define the input/output ports of the model.
Supported port types are:

INTEGER
DOUBLE INTEGER
REAL
COMPLEX
DOUBLE

For input ports there is also an optional value that specifies the input data rate for a DSP or VHDL
model. This applies only to SDF models and can be an integer value or expression of parameters.
A model can have either fixed or variable number of I/O ports. Each I/O port can have a description
of multiple lines.

11-60 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

11.3.9 History
The .mdef file contains the following information. This information is available in the converted
primitive.

• Release and version number
• Date
• Author

11.3.10 Declarations
Support for keywords:

INPUT_PORT
OUTPUT_PORT
RATE
PARAMETER
INPUT_DATASET
LENGTH
STATE
CONST
BLOCKFACTOR
INCLUDE

11.3.11 Functional code
This section is parsed and converted into an MLDesigner primitive file with a .pl extension. The
user defined error codes described in the .mdef file are supported also.

11.3.12 Dataset Handling Library
This is a special dynamic library included in the kernel of SDF domain. It provides the interface
between MLDesigner primitive modules and dataset files. It can also be used for developing new
primitives using standard COSSAP dataset file formats. Input and output datasets of the following
type are supported:

REAL - float
INTEGER - long int; int
STRING - char **
BIT_VECTOR - long int; int (B(n downto m)) (Motorola Convention)

11.3.13 Dataset Parameters
Generic C files use only input datasets. You can use parameters for every dataset to specify the
filename and file format. All ASCII formats are supported. The dataset files are copied during
conversion to the corresponding MLDesigner library. The dataset file type is passed directly to
the corresponding primitive. For every model containing datasets the following parameters are

11-61

11 Import/Conversion of Models

included: Identifier, ChartFormat, ReadMode (Implicit/Explicit), FileType, and FileName.

The following dataset parameters are imported:

11.3.13.1 DS NAME

It is the dataset’s name.

11.3.13.2 Input/Output Datasets

These parameters start with ids (input dataset) or ods (output dataset) followed by

• FileName - this is the full path to the input/output dataset’s filename, from which you want
to read (input dataset) or to which you want to write (output dataset).

• Identifier - this is set automatically during import. It is used for internal purposes and is
normally set to zero.

• ChartFormat - this displays the format of the plot you want to use for your dataset. This
is generally used by COSSAP and currently not supported by MLDesigner , because most
imported models have as plotting primitive our re-implemented Dump primitive (DmpInt,
DmpFloat) that has its own FORMAT parameter. Usually the value of ChartFormat is 0,
otherwise it is set during import.

• ReadMode/WriteMode - 1 for implicit and 0 for explicit (see sec. 11.3.14).
• FileType - the following data formats are supported:

ASCII ascii format
ASCII_MATRIX ascii format for matrices
ASCII_LF_EOR ascii line feed end of record
ASCII_BL_EOR ascii blanck line end of record
RAW_8BIT raw binary 8 bit
RAW_16BIT raw binary 16 bit
RAW_32BIT raw binary 32 bint
RAW_U8BIT unsigned raw 8 bit
RAW_U16BIT unsigned raw 16 bit
RAW_U32BIT unsigned raw 32 bit

11.3.14 EXIT FLAG

We now support the EXIT FLAG specified in the .mdef file of primitives. An additional param-
eter called EndCondition for the appropriate primitive is generated. The parameter values in
the Model Properties Editor show this parameter as a boolean of type int with the value set to
Yes/No. A new line in the .pl file’s setup method will be generated
if ((bool)EndCondition) willRequestEnd();
as interface to the kernel.

11-62 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

Readmode and Writemode

When you click on a dump primitive in a system, you have the option to set the output mode to
explicit (0) or implicit (1). Setting the ReadMode to 0 results in a file containing the results of
the last simulation being saved in the location specified in the input field of the parameter [P]
ods OUT DATA FileName.

To do this click the icon to the right of the [P] ods OUT DATA ReadMode input field in the
Instance Properties Window and set the value to 0. Make sure you have write permission for the
selected directory. MLDesigner will only be able to generate the file if the directories in the path
you entered exist.

11.3.15 Unsupported Features
The following are object code file tables parsed by the converter, but not supported by MLDe-
signer.

11.3.15.1 Graphical elements

Arc - defined with coordinates beginning and center;
Line - defined with coordinates beginning and end;
Circle - defined with coordinates center and radius;
Rectangle - defined with coordinates top left and bottom right.

11.3.15.2 Symbol files

Files .sym are not parsed at the moment. Each symbol file provide the appearance of the model.
The same graphical elements used in schematic files (lines, arcs a.s.o.) are used there. The symbol
file also contains the parameters of the model, datasets, ports a.s.o.

11.3.16 Parsing Model Definition File
11.3.16.1 CLASSES

This is a list of classes to which a model belongs. COSSAP models are organized in a structure of
classes. Each model can be a member of one or more classes. If the class name is not specified it
is assumed as the model library name.

11.3.16.2 INPUT PORTS and OUTPUT PORTS

Port Type BIT VECTOR - can be

• (B(n downto m)) - Motorola convention
• (B(m to n)) - Intel convention.

Variable number of input ports - an arbitrary number of input ports (at least 1), with an identical
number of output ports. Variable number of output ports - an arbitrary number of output ports (at
least 1), with an identical number of input ports.

11-63

11 Import/Conversion of Models

11.3.16.3 HDL INPUT PORTS

This section defines the CLOCK and RESET ports of an HDL model. This information is required
only by the HDL Code Generator (VCG). These ports are of type STD LOGIC. A model can have
only one RESET and one CLOCK input port. This section is part of STD LOGIC which is not
supported currently by MLDesigner.

11.3.16.4 Dataset

Output Dataset Chart Type:

LINE2 Line chart;
BAR_15, BAR_1 Bar chart, positive values only;
BAR_28, BAR_2 Bar chart, positive and negative values;
HISTOGRAM_16, HISTOGRAM_1 Histogram, positive values only;
HISTOGRAM_29, HISTOGRAM_2 Histogram, positive and negative values;
STA TISTICS7 Text;
TOWER10 Tower chart;
SCATTER11 Scatter diagram;
EYE_PATTERN12 Eye pattern diagram;
STAIRCASE13 Staircase diagram;
DIGITAL_32_BIT14 Up to 32-bit digital diagram;

For each chart format, text strings can be defined to label the dataset in the graphics output. The
number of text strings depends on the chart type and the model.

11.3.17 Conversion of Primitive Models
The following languages are not supported (with corresponding filename extensions):

• C ++ implementation (.cc)
• VHDL IEEE 1076 (.vhdl)
• Verilog (.v)

These implementations are not selectable in the Import COSSAP Model dialog.

Dataset Handling Library

The following binary format is not supported.

BINARY - binary format;

11.3.18 Limitations with COSSAP Project Conversion
If a primitive or model is not included in both the mapper file and the COSSAP project folder, its
instance is not created. A warning is displayed to keep you informed. This error normally occurs
when a primitive referenced or called by a system or module is located in an external directory
and the directory path is no longer valid.

11-64 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

11.3.18.1 Error Handling

Error Handling for imported systems are problematic because the errors often refer to Kernel
internal functions of the COSSAP kernel. This normally arises where the switch init is as
follows:

switch(init) if(init==1)

System error codes are specified with negative values, e.g.

ExitOnError (-1)

There are some COSSAP internal errors handled by MLDesigner. All known COSSAP errors
have negative values. Unknown errors display the default error message "Unknown error in
’ExitOnError’ ".

11.3.18.2 C Code Limitations

It is not possible to import COSSAP internal header files unless you have physically copied the
file to your Project library or you have COSSAP installed on your system. This topic is untested
and could lead to segmentation Faults.

11.3.19 Input Dataset File Formats
This section explains the ASCII* dataset formats in case it is necessary to write the file by hand.

11.3.19.1 ASCII

A record header indicates the start of a record and also the end of the previous record. The header
specifies the number and the type of the record elements. The last record in the dataset ends with
a generic header in which the number of elements is set to -1.
The following example shows an input dataset that contains floating point values grouped in two
records:

10 (R)
0.00000000000000e+00
1.00000000000000e+00
2.00000000000000e+00
3.00000000000000e+00
4.00000000000000e+00
5.00000000000000e+00

10 (R)
0.00000000000000e+00
-1.00000000000000e+00
-2.00000000000000e+00
-3.00000000000000e+00
-4.00000000000000e+00
-5.00000000000000e+00

11-65

11 Import/Conversion of Models

-6.00000000000000e+00
-7.00000000000000e+00
-1 (I)

11.3.19.2 ASCII MATRIX

The matrix size is given by the number of lines and columns in the record, while the records are
delimited by a blank line.
In this example the dataset contains two floating point matrices of sizes 4x2 and 3x3 respectively:

0.00000000000000e+00 1.00000000000000e+00
2.00000000000000e+00 3.00000000000000e+00
4.00000000000000e+00 5.00000000000000e+00
6.00000000000000e+00 7.00000000000000e+00

0.00000000000000e+00 -1.00000000000000e+00 -2.00000000000000e+00
-3.00000000000000e+00 -4.00000000000000e+00 -5.00000000000000e+00
-6.00000000000000e+00 -7.00000000000000e+00 -8.00000000000000e+00

11.3.19.3 ASCII LF EOR

In this dataset format, each line represents a record because the record separator is an LF character.
The following example lists an input dataset with floating point values placed in three records of
three, one and two elements, respectively:

1.00000000000000e+00 -2.00000000000000e+00 3.00000000000000e+00
4.00000000000000e+00

-5.00000000000000e+00 6.00000000000000e+00

11.3.19.4 ASCII BL EOR

The records are separated by a blank line in this dataset format and each line contains only one
value.
Here is listed a dataset with three records containing floating point values:

1.00000000000000e+00
2.00000000000000e+00
3.00000000000000e+00

4.00000000000000e+00
5.00000000000000e+00
6.00000000000000e+00
7.00000000000000e+00

8.00000000000000e+00
9.00000000000000e+00

11-66 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

11.3.20 Troubleshooting Guide for Cossap Model Converter
This section contains a list of possible error and warning messages that may display during or after
conversion and how to avoid or deal with them.

11.3.20.1 Errors During Conversion.

This table contains a list of possible errors and warnings generated while converting COSSAP
models.

Error Dialog Cause Action

Directory ”DIR” is miss-
ing

The directory doesn’t contain the following
structure

projectdir
-c

- symbol
- schematic
-d
- symbol
- schematic
- dspgeneric

Warning can be ignored
as long as directories con-
tain .mdef files. If no
.mdef file is included
they are unreadable.

No valid implementations Appears when f2c conversion fails if a
function name was specified in the .mdef
file (implementation) and isn’t used in the
corresponding source file e.g.:
.IMPLEMENTATIONS
1 SOURCE CODE GC myFileName
(myFuncName)
In the .gc file the names of the functions are
now
init func1()
func1()
post func1()

func1 and myFuncName
differ->error message if
NO function name was
specified, the function
used in implementation
file (c, gc) has to be the
same as the filename.
This also happens if:

• gc code is used in a
c file

• schematic files
have an unsup-
ported format

• implementation file
was not found (gc,
c, F, sch)

Cannot open file. . . File not found or no read permissions

11-67

11 Import/Conversion of Models

Error Dialog Cause Action

WARNING!
Port name/Parameter
name differs ...

These names are identified by their index
numbers so if the same index number has dif-
ferent names in source and .mdef file, this
message appears.

Names defined in the
.mdef file have higher pri-
ority and replace names
in converted source code.
Name replacement may
lead to inconsistencies
if names were modified
only in source file and
additional states/members
are implemented with the
names specified in .mdef
file.
USUALLY this warning
can be ignored!

Unable to find include file included files will be copied to imported li-
brary directory cossap includes will be ig-
nored

files don’t exist include
files need to be found in
mdef directory or source
file directory

WARNING! Mismatched
library of schematic

Usually in line 2 of .sch file the library name
is not specified or differs from the library di-
rectory name where the schematic file is situ-
ated. If names differ, they will be ignored, but
this may lead to an incorrect mapper entry in
/.mld/cossap.mapper for this model

USUALLY this can be ig-
nored, but it’s better for
consistency to correct this
name or copy the model
to the correct library (the
one specified in the .sch
file)

Schematic file has unsup-
ported format -> unde-
clared node

There seems to be an unconnected port/node
in this model or a missing or wrong netobject
for a specific port
example: p portname ”” ”” ”” 0
correct: p portname ”” SIG X ”” 0 (SIG X is
the netobject the port belongs to)

If there are more such er-
rors in the same file, only
the 1st one will be re-
ported

Library table “d mod-
els.ltbl” file has unsup-
ported format in line:

There is probably an empty line or linefeed at
the end of the specified file

This is only a warning and
can be ignored

Unknown parameter type
in schematic

The type of the parameter is undefined in the
schematic. This happens when a placeholder
is used ? instead of I,R or S example:parm
myParamName ? ”” correct:parm myParam-
Name I ””

The ? as a placeholder for
anytype is not supported

11-68 MLDesigner Version 2.8

11.3 COSSAP Conversion Tool

Error Dialog Cause Action

Model definition file has
unsupported format or is
corrupted in line...

After a tag the listed items (parameters, ports,
implementations ...) need to be numbered.
Example:
.CLASSES
myclass1
myclass2
Correct format:
.CLASSES
1 myclass1
2 myclass2

Table 11.49: Possible Errors During COSSAP Model Conversion

11-69

11 Import/Conversion of Models

11.3.20.2 Messages After Conversion

Once the conversion process is completed, the following errors or warnings may be encountered.

Error Dialog Cause Solution

Corresponding port
PORTNAME to in-
stance MXXX in module
MODULE of library
RFMODEL cannot be
found. Before making

In the schematic file MODULE, the instance
MXXX has a port name called PORTNAME,
but the port names of the corresponding
model (usually a primitive) differ from the
used one. Probably there are some addi-
tional port name specifications in a file called
MODULENAME.v arc or MODULE.v ent,
that COSSAP can evaluate and therefore
doesn’t display any warning.

This is definitely an in-
consistency and needs to
be fixed. Either change
the name in the MOD-
ULENAME.sch or in the
MXXX.mdef file. In the
latter case, the MXXX
model needs to be con-
verted again before con-
verting the MODULE

Warning! There is a port
naming inconsistency ...
In cossap, ports are iden-
tified by index numbers.

The port names of a converted primitive/mod-
ule and it’s instance in a system or module dif-
fer.
Example: primitive Add has port name
output (as specified in .mdef file). The
module’s schematic or .v arc file has prob-
ably been modified and the port was renamed
to out put.
This message appears after conversion, so
take a look at the converted model and check
all connections. If all ports are connected,
the converter was able to determine the cor-
rect ports, so there are no problems anymore.
Prior to conversion, a message like "model
is not up to date", is displayed dur-
ing simulation of system using COSSAP.

Re-generate the model’s
schematic and .v arc file
so that the names of the
instance are equal to the
port names of the prim-
itive/module (nearly 100
% chance to reconvert
without any problems de-
pending on port name in-
consistencies)

Table 11.50: Common Errors after COSSAP Model Conversion

11-70 MLDesigner Version 2.8

Chapter 12

Data Structure Management

12.1 Managing Data Structures

MLDesigner supports the definition of complex data types. The difference between MLDesigner
data types and the original base types is that you can define arbitrary structured data types as well
as special user defined data types, such as enumerations. For more detailed information about the
structure and programming of MLDesigner data structures refer to the Programming Guide/Using
Data Types.

NOTE: To differentiate between base data types and MLDesigner data types, the latter are prin- �
cipally called Data Structures(DS).

Data structure types are managed in the Data Editor found in the top right corner of the MLDe-
signer user interface. The data type editor can be blended in or out using the Data Type View
On/Off tool button in the standard toolbar.

The structure of the data type editor is shown in fig. 12.1. A tree in the upper region shows the
hierarchy of data structures. The window below displays members or enumeration elements of
the currently selected data structure. The type of data structure is indicated by different icons for
structured types and base types. The icon color indicates whether they are editable or not.

A green icon means that a data structure is editable, i.e., it is defined in a writable library. Red
icons indicate read-only data structures.

NOTE: User-defined Data Structures are defined as part of a library and are only available when �
the library in which they were created is open in the Model Editor Window.

You will notice three logical items in the data structure tree. These are expandable items with only
a + and no red or green icon. These items serve to group structures of the same type as indicated
by the name of the folder or sub-folder. These types are:

• Base Types - groups base type data structures such as Float and Integer
• Vector groups Vector data structures

12 Data Structure Management

Figure 12.1: Data Type Editor structure

• Base Vectors - a subdirectory of Vectors groups built-in base vectors such as IntVector
or StringVector.

The context menu in the tree view of the Data Editor, offers some standard menu items for navi-
gating the tree such as Expand, Collapse, Expand All and Collapse All. Other options are create
New data structure, Edit existing structure or base type, view, and delete items (depending on
permissions).

12.1.1 Creating Data Structures
To create a new DS Activate the context menu in the Data Structure tree view or click on the
Create New Data Structure icon on the toolbar. If at least one editable library is open in the
design area the context menu item New Data Structure is enabled. Select it to open the Data
Structure Editor dialog (see fig. 12.7). This dialog is used to create and edit data structures of
type:

- composite structures
- enumerations
- vectors.

The data structure type can be selected from the drop-down menu Kind. On selecting a type
from the drop-down list, certain input fields change dynamically. Refer to sec. 12.3.1.2 through
sec. 12.3.3 for details on the differing elements. The Name, Library and Description fields are
common for all data structures with description being the only optional field. The Name must be a
valid identifier. The library combo box lists all open editable libraries. Choose a location to create

12-2 MLDesigner Version 2.8

12.1 Managing Data Structures

the new data structure in. Once the data structure properties are defined, click the Save button.

12.1.2 Adding Composite Members

To add a new member to a composite data structure, open the context menu by right-clicking
anywhere in the lower section while the data structure is selected in the upper sections tree and
choose Add Member.

NOTE: Note that this menu item, just like the delete item, will only appear if the data structure �
is editable.

Figure 12.2: Add Member dialog

The blank member editor dialog will open (see fig. 12.2). Fill in a name (must be a valid iden-
tifier) and give a description for the new member (optional). By default, Root is set as the type
of a new member. This can be changed by choosing from a tree of data structures using the tool
button next to the type name field. If a base type is chosen as member type, the Default Value field
becomes editable, and only if a numeric base type is used as member type, the Subrange field is
activated. The subrange field is used to define an interval of valid values for numeric members,
given in the usual mathematical notation with the keyword Inf (case insensitive) meaning infinity.

Examples:

(-Inf,2) an interval with no bottom limit and the upper limit being 2, excluding 2 itself
(-Inf,4] an interval with no bottom limit and the upper limit being 4, including 4
[3.45, 9.3) 3.45 is included, 9.3 is excluded

From the drop-down menu in the Subrange field, you can select an entry from a list of commonly
used subranges. After all fields are filled, click the Save button to save the new member in the
library defining the parent data structure.

12-3

12 Data Structure Management

12.1.3 Editing Composite Members

To edit a composite data structure member click with the right mouse button on the member to
open the context menu fig. 12.3). Choose Edit to open the member editor shown in fig. 12.4 for
this member.

Figure 12.3: Data structure member context menu

NOTE: If the data structure is not editable, only a View item will be available which opens the�
same editor without editing capabilities.

NOTE: Since elements can only be edited in the composite data structure of their origin, inher-�
ited elements are not editable and have a grey background in the Add Member dialog.

Figure 12.4: Data Structure Member editor

12.1.4 Deleting Composite Members

If the permissions allow for modifying the parent data structure, you can delete composite data
structure member using the item Delete of the context menu for members as shown in fig. 12.3.
After confirming a warning message, the member is removed.

NOTE: Note that the library is saved immediately and there is no way to undo deleting a member�

12-4 MLDesigner Version 2.8

12.2 Managing Enumeration Elements

12.2 Managing Enumeration Elements
To view or edit elements of an EnumType, use the lower section of the data structure view.
Here elements will be listed when an EnumType is selected in the data structure tree. Since
elements can only be edited in the EnumType originally defining them, inherited elements are
not editable and shown with a grey background. Managing enumeration elements works very
similar to managing members of composite data structure members in that it is done through the
context menu in the lower section. Right-click in the list to open it.

12.2.1 Adding Enumeration Elements
To add a new element to an editable EnumType, open the context menu anywhere in the lower
section while the EnumType is selected in the tree of data structures. Choose Add Element to
open the element editor, see fig. 12.4. The Index field defaults to the next available index, but
it can be set to any positive whole number including 0. The Value field must be set to a valid
identifier. Click the save button to add the new element. If an element with this index or value
already exists in the EnumType, you will now be asked to confirm overwriting of the existing
element(s).

12.2.2 Editing Enumeration Elements
Open the context menu by right-clicking on the element in the list and choose Edit. The element
editor will be shown. For details on this editor, see sec. 12.2.1.

NOTE: The editor will open but will be inactive if the Library where the element is saved is �
write protected.

12.2.3 Deleting Enumeration Elements
To delete an element, right-click on it in the list and choose Delete from the context menu. This
item will only be available for editable enumeration types. When the warning dialog is confirmed,
the element will be removed.

NOTE: The library is saved immediately and there is no way to undo deleting an element. �

12.3 Data Structure Handling Mechanism
A number of changes have been made to the way MLDesigner handles data structures significantly
improving the performance of systems that use them. From Version 2.3 data structures consume
much less memory and execution is much faster. Here is a brief look at some of the changes.

• Data structure member values can now be defined by expressions.
• Data structures cannot be renamed if they have derivatives.
• Data structure classes have been split into two classes

Type - value of the data structure
TypeClass - descriptor for a data structure.

12-5

12 Data Structure Management

• Data structure primitive methods have been modified.
• The operator [] in Vector returns a clone. This could lead to possible memory leak in old

code.
• Cast and assignment operators have been added in Memories. It is now possible to assign a

memory directly to a data structure TypeRef, or a data structure to a memory.
• List data structures are now supported.
• A new library called ListOperations has been added in the DE Domain.

The sections of this chapter which have CHANGED or are NEW with Version 2.3 are marked with
an icon as seen here.

12.3.1 Overview of Data Structures
Data structures are entities for manipulating data in and between modules. If you want to define
and use complex data structures, scalar types might not provide sufficient functionality. The Data
structure window is a complex of classes which tries to simulate as best as possible the variety of
data types. The need for them arises when you want to send complex data structures over input
and output ports. These mechanisms are also used by Memories and Events to store data and to
read new values from and write new values to them.

There are libraries of useful primitives that can handle data structures. These libraries are de-
scribed briefly in sec. 12.4.

You can declare both input and output ports as well as parameters as type datastruct.

Figure 12.5: Data Type Selection for Input/Output Ports

The Data Structure property is visible in the the Port Properties editor for ports defined as type
Datastruct. A click on the green icon in the input field opens the Select Data Structure dialog.
Here the parent type for the data structure must be selected. It is possible to add new members to

12-6 MLDesigner Version 2.8

12.3 Data Structure Handling Mechanism

a data structure if there is no suitable type for your purposes. This is done in the Add Members
window (bottom right) via the appropriate context menu option.

Figure 12.6: Data Structure Selection for Input/Output Ports

12.3.1.1 Type Checking

When you connect the ports of primitives and modules you should be careful because MLDesigner
provides only a basic checking mechanism concerning compatability of datastruct types. No er-
ror will appear when you connect incompatible Datastruct ports. You must take care to connect
ports that output and receive the same data structure. To keep compatibility with the scalar type,
connecting a datastruct port with an integer port or a float float port is allowed. It is, however,
necessary to check if the datastruct port type outputs or receives a data structure of type Integer
or Float.

12.3.1.2 Creating a Composite Data Structure

When selecting Composite as the kind to be created, the parent type must be specified. The
default is Root. If this is unchanged a top-level data structure will be created. To create a sub-
directory of an existing data structure, click the button to the right of the Parent Type input field
and select a data structure from which the new data structure should inherit certain properties.

12.3.2 Creating an Enumeration
Enumeration types are similar to composite types in that they have a parent. By default, this parent
is Root.ENUM. To change this, open the list of existing enumerations by clicking the button next

12-7

12 Data Structure Management

Figure 12.7: Data Structure Editor dialog

to the Parent Enum field and select an enumeration from which the new Enumeration should
inherit.

12.3.3 Creating a Vector
Vectors have no parent, instead it is required that you set their element types. Click the tool button
next to the right of the Vector Type field and choose a data structure from the hierarchy.

12.3.4 Editing Existing Data Structures
To make changes to an existing data structure, open the context menu over that data structure in
the tree. The uppermost menu item will be ”View or Edit, depending on whether or not that data
structure, or more precisely, the library the data structure is defined in, is editable. Both items
open the data structure editor which allows the data structures properties to be viewed or edited
(see sec. 12.1.1).

12.3.4.1 Deleting Data Structures

To delete a data structure, again open the context menu over it and choose Delete. Note that this
item is enabled only if file permissions allow deleting. A warning message will appear asking to
confirm the action, and a click on Delete will now remove the data structure from the library. Note
that the library is saved immediately and there is no way to undo deleting a data structure!

12.3.4.2 Managing Composite Members

To create, edit and delete members of a composite data structure, use the lower region of the data
structure view. When a composite data structure is selected in the upper tree region, the lower
region displays a list of members defined for that data structure. Members can only be edited in
the data structure they are originally defined in. Thus inherited members are shown in the upper

12-8 MLDesigner Version 2.8

12.3 Data Structure Handling Mechanism

region, with a grey background, indicating they are not editable. Similar to management of the
data structures themselves, members are edited using the context menu. Right-click the mouse in
the lower region to open the context menu.

12.3.5 Import Libraries
Every data structure belongs to an XML Library. There are non editable system libraries which
are loaded every time you start MLDesigner and it is possible to define new libraries and add your
own defined data structures to a library.

The Import Libraries parameter field is normally filled in automatically and is a reference
to the location where data structures or shared model instances such as memories or events used
in a particular system are stored.

NOTE: These user defined data structures are only visible and available while the library within �
which they were defined is open in the Model Editor Window.

A major change in the way MLDesigner handles data structures was introduced with version 2.3.
The data structure mechanism splits each of the old data structure classes in two different classes.
The first class describes its type information such as name and inheritance. The other class is
specific to the data structure instance and contains the value information.

The name of the type information class always ends with the class suffix (ex.: DataStructureClass,
VectorClass...). Objects of this class can be changed during the design phase and these changes
modify the structure of data structures. During the simulation phase no changes over instances
of this kind are allowed. The other type of classes represents the value part of a data structure.
Instances of this classes are used in simulation process.

Every data structure value object holds a reference to its class object which should be unique for
each defined data structure. This brings improvements in two directions: it uses less memory,
putting all the common information in a single instance and it brings also speed improvements:
duplicating a value object takes less time due to its smaller size and less member variables that
needs to be copied.

A third type of data structure class that represents a reference to a value object exists. This is the
TypeRef class, the base class for all data structure references, and it defines almost all the methods
different data structures can implement. More specific reference classes have the letter R as the
last letter in their name. Their purpose is to handle the creation, copying and releasing of data
structure values that are to be used in simulation. These classes save you from all the overheads
of cloning and dieing data structure, making primitives programming much easier.

Data structures are organized in a hierarchy with Root as the parent of all data structures. Every
data structure must have a parent, and this can be Root or another data structure of the same type.
You can extend a composite data structure from Root or from another composite data structure
and this means that all its members will be inherited by the newly created data structure (see dia-
gram 12.8). The same is also true for enumerations, in which case the enumeration will inherit all

12-9

12 Data Structure Management

elements from its parent.

The data types Integer and Float and the classes Matrix and Complex are included under
MLDesigner Data Structures here for compatability reasons.

Generic vector

ROOT

Base Types

Root.Integer Root.Float

Composites Enumerations Vectors

Matrix ComplexInteger Float

[Data Structures]

[Data Types]

MLDesigner Data Structures

String

Int vector

Float vector

Figure 12.8: Data Structure Hierarchy

For information on creating new data structures see sec. 12.1.1.

12.3.6 Data Structure string representation

Every data structure is characterized by a Name, a Full Name and a Unique Name.
Name is simply the name of the data structure (ex.: TCPProtocol).
Full Name consists of the parents’ names and the data structure name separated by periods.
(ex.: Root.NetworkProtocol.TCPProtocol).
The Unique Name is composed of Library Name and Full Name separated by colon
(ex.: SystemDS:Root.NetworkProtocol.TCPProtocol).

It is possible to save and to set values of a data structure from a string. This is called the string
representation of a data structure. The syntax of this is composed of the UniqueName and a string
that represents its value between curly braces. This value string differs depending on the type of
the data structure, and will be described separately for each data structure. Based on this string
representation it is possible to set default values for parameters of Data Structure types, Memories
and Events.

12-10 MLDesigner Version 2.8

12.3 Data Structure Handling Mechanism

12.3.7 Data Structure Types
Data Structure types in MLDesigner are grouped by their functionality in three branches as fol-
lows:

• Base data structures
• Vector data structures
• Composite data structures

12.3.7.1 Base Data Types

These data structures are used for operations with integers, floats or strings. If you want to use
these types you must consider that they are classes which simulate scalar type, and systems which
use them run slower compared to those that use only scalar types. Using them makes sense only
if they are part of a system which contains complex data structures.

The following data structures are provided as basic types. The class name is in parenthesis:

• Integer (IntType) - used to manipulate integer scalar type
• Float (FloatType) - used to manipulate float scalar type
• String (StringType) - used to manipulate strings
• ENUM (EnumType) - for operations that use enumerations.
• List (ListType) - represents a list of data structures
• BitVector (BitVector) - this data structure is a vector of bits. The elements can take

values only 0 and 1.
• MVL4BitVector (MVL4BitVector) - data structure to represent the multi valued logic

standard. Elements can have values 0, 1, X, Z.

Numerical data structures (integer and float) support base mathematical operations such as addi-
tion, subtraction, multiplication and division. In Enumerations values are saved as strings, and
as elements they have a special class that contains index and value for each element. That’s why
EnumType provides various methods to get it’s elements as strings or as element objects.

Value as string for a base data structure in the string representation is composed of its value sur-
rounded by curly braces (ex.: Root.Integer{123}).

12.3.7.2 Vector Data Structures

For Vectors two kinds of data structures exist: Numeric and Generic Vectors. For every vector you
can set or change the length. The generic Vector can hold any kind of MLDesigner data structures
but if you need to save only scalar values it is much faster to use numeric vectors, as they are
optimized for this usage (see fig. 12.9).

12.3.7.3 Numeric Vectors

• IntVector - a vector of integer values
• FloatVector - a vector of float values

12-11

12 Data Structure Management

For the vectors that hold numerical values it is possible to set a default value that all elements will
hold on initialization.

Figure 12.9: Select Data Structure dialog

For Numeric Vector types String value must contain the length followed by a colon and the
vector’s elements. If an element is repeated consecutively times you can specify between [] how
many times is repeated. The last value in the string is multiplied as a default value for all the
elements that remained unset.
Example:

{Root.IntVector{10:123}}

vector with 10 elements all elements set to 123 .

{Root.IntVector{10:8[4] 4 23}}

will create the vector

8 8 8 8 4 23 23 23 23 23

12.3.7.4 Generic VECTOR

This is a vector of data structures. This generic Vector is implemented as a vector of pointers to
data structure objects, so you can store any type of data structures. On initialization, this vector
has all elements set to NULL, and you have to set every element one by one.

It is possible to derive the generic vector which means you define a new vector that at initialization
has all elements set to the defaults of a data structure previously specified. As a string representa-
tion it is possible for a generic vector to specify a vector’s length together with the data structure

12-12 MLDesigner Version 2.8

12.4 Data Structure Libraries

name to initialize all elements.

Example:

Root.VECTOR{10:SystemDS:Root.NetworkProtocol.TCPProtocol
{Name,{192,168,0,1},{192,168,0,2},110,110}}

means a vector of ten TCPProtocol elements.

12.3.7.5 Composite data structure

This type of data structure can be used to model complex data and it can have any kind of data
structure types as members. Working with this might not be so intuitive. If you want to access a
member you first have to search for it by its name, and then get the data inside.

In case of composite data structures, values for members are listed in the order they exist in the
data structure, separated by commas. This applies recursively to composite data members.

Example:

SystemDS:Root.NetworkProtocol.TCPProtocol{Name,
{192,168,0,1},{192,168,0,2},110,110}

It is important to preserve the members’ order in this string representation, because the values are
assigned based on this order. For more information on how to use composite data structures see
sec. 15.2.

12.4 Data Structure Libraries

MLDesigner provides three libraries containing primitives for handling or manipulating data struc-
tures. These are:

• DSHandling (DE and SDF)
• EnumOperations (DE only) and
• VectorOperations (DE only)

Operations performed on data structure might include

• Access or Modify modules
• Create pre-defined data structures
• Extract and insert values of fields, and
• Coerce data structure to another type.

12-13

12 Data Structure Management

12.4.1 DSHandling Library

The following primitives are found in the DE and SDF domain library. A brief description of their
function is here but you can find out more by looking at the online documentation or the source
code of each primitive.

• AddFieldParamDS/AddFieldValueDS
Increment/decrement a particular field of the Input data structure. The field must be of a
numerical type.

• CoerceDS
Coerce a data structure coming on the input to another specified type.

• CreateDS
Primitive used to instantiate a data structure.

• CreateParamDS
Instantiate a data structure with the values specified in the parameter.

• DSToFloat
Converts a Float base data structure to a scalar type float.

• DSToInt
Converts an Integer base data structure to an integer scalar type.

• DSToString
Converts a base data structure to a string.

• DeclareDS
Tests if an input data structure is of a specified type.

• InsertFieldDS
A data structure arriving on an input port gets inserted as a field into a composite data
structure.

• InsertFieldParamDS Inserts a data structure specified in a datastruct parameter as a
field into a composite data structure.

• PrintDS
Primitive used to print on the standard output the values of a data structure.

• SelectFieldDS
Selects a field from a composite data structure and outputs it on a port.

• SetFieldValueDS
Primitive to set the value of a field of a data structure. The field must be of a base type, and
the field name and the value are provided by the dsFieldName, and dsFieldValue parameters.

The following primitive is found in the library DE domain/DSHandling only. As the name of the
primitive implies, this primitive outputs a time. The SDF domain has no notion of time so this
primitive has no place in the SDF domain.

• InsertFieldTNowDS
Sets a selected field of the Input data structure with the current execution time and then
places the modified data structure on the Output port.

The Data Structure Type Operations primitives check the types of data structures. You can use
these to differentiate between data structures of different types, so that MLDesigner can operate
on them separately. Type compatibility checks can also be performed.

12-14 MLDesigner Version 2.8

12.4 Data Structure Libraries

• TypeConst
Puts on the output port a specified data structure.

• TypeIsCompatible
Tests if two incoming data structures are compatible.

• TypeIsEqual
Tests if two incoming data structures are equal.

• TypeSwitchDS
The incoming data structure is placed on one of the two outputs depending on its compati-
bility with the specified type.

12.4.2 EnumOperations Library
Primitives in the EnumOperations directory perform operations on data structures of type enumer-
ation.

• EnumConst
Generates an enumeration data structure with a user provided value.

• EnumIsEqual
Tests if two incoming data structures of enumeration type are equal or not.

• EnumIsEqualSwitch
Switch an incoming data structure between two output ports base on the values of an enu-
meration.

• EnumRanGen
Generates an enumeration with a random set value.

• EnumToInteger
Takes an enumeration coming on the input port and outputs the index of its value.

• EnumToString
Takes an enumeration coming on the input port and outputs the value as a string.

• IntegerToEnum
Generates an enumeration data structure. The name is specified as parameter and the value
is the index coming on the input port.

12.4.3 VectorOperations Library
The Vector Operations primitives provide access to vectors and matrices. Three kinds of vector
primitives are available for handling:

• integer vectors
• float vectors and
• generic vectors.

Integer and Float vectors can only contain integers and floats respectively. For generic vectors
you can insert as elements, any data structure type including vectors, to simulate matrix opera-
tions. Provided are also primitives to write to and access vectors and elements of vectors that are
stored in memories.

Operations you can execute using vectors and primitives are:

12-15

12 Data Structure Management

• AccessElementVector
outputs the element at the specified position in the vector coming on the input port.

• CreateVector
creates a vector data structure with the specified length.

• IndexOfValueVector
search for a specified value in a range of elements in vector and returns the index of the first
occurrence.

• LengthOfVector
outputs the length of the vector.

• MemoryAccessVector
outputs the element at the specified position in a vector stored in a Memory

• MemoryAddVector
increments by one an element at the specified index in an Integer or Float Vector

• MemoryAddVectorWithIntOut
increments by one an element at the specified index in an Integer or Float Vector and the
new value is placed on the output port.

• MemoryChangeLengthVector
change the length of a vector stored in a Memory.

• MemoryLargestInRangeVector
outputs the element with the greatest value in an Integer or Float vector that is stored in a
Memory.

• MemoryLengthVector
outputs the length of a vector stored in a Memory.

• MemorySetVector
sets an element at the specified index in a vector stored in a Memory.

• MemorySmallestInRangeVector
outputs the element with the lowest value in an Integer or Float vector that is stored in a
Memory.

• ReadFileVector
reads a vector from a file and places it on the output port.

• SetElementVector
sets an element at the specified index in a vector coming on the input port.

• StringToVector
given a string of integer or float values, constructs a corresponding Integer or Float vector
and places it on the output port.

• WriteFileVector
writes the incoming vector to a specified file.

12-16 MLDesigner Version 2.8

Part II

Programming Guide

MLDesigner Programming Guide

Version 2.8

February 26, 2010

MLDesign Technologies, Inc.
2130 Hanover St
Palo Alto, CA 94306

support : www.mldesigner.com/support
http : www.mldesigner.com

http://www.mldesigner.com/support.php
http://www.mldesigner.com

12-3

Chapter 13

Designing Primitives

13.1 Introduction
Before reading this section you must be familiar with the Graphical User Interface (GUI) and
know how to create libraries, models and model components. These topics are covered in detail in
Modeling with MLDesigner sec. 2.3.
There are different ways to create models or model components using MLDesigner.

• By building a model hierarchically from existing modules using the Model editor. Such a
model is called hierarchical module or simply module.

• By creating a Finite State Machine (FSM) representation of the model using the FSM editor.
Such a model is called FSM module or simply FSM.

• By defining the external interface of the model using the Model editor and defining the
functionality using the Source code editor. Such models are called primitive modules or
simply primitives.

NOTE: The Ptolemy language is a preprocessor language that allows the designer to use C++ �
code to define the functionality of primitives. Files written in the Ptolemy language have
the extension .pl and contain primitive source code .

The Ptolemy vocabulary differs from that of MLDesigner. The definitions and differences in
terminology can be seen in table 13.1. The advantages of each class of models are shown in
table 13.2.
Comprehensive libraries of primitive models for the more mature domains are supplied with
MLDesigner. These primitives were designed to be as generic as possible and many complex
functions can be realized using primitives contained in these libraries. There will, however, al-
ways be a need to develop new primitives. You can link the new primitives dynamically or (if
the primitives use shared variables) add them to the list of compiled-in primitives by selecting the
Load Mode as permanent.
The following steps are necessary when defining a primitive:

1. create the primitive,
2. define the external interface of the primitive using the standard Model editor,
3. define the primitive functionality using the Ptolemy language ptlang, and
4. compile and load the primitive (dynamic or permanent).

13 Designing Primitives

MLDesigner type Description Ptolemy type

Primitive The lowest level model in MLDesigner, with
functionality defined in the Ptolemy language.
Contains C++ code fragments.

Star

Module A model made up of connected primitives and/or
embedded modules, with input and/or output
ports.

Galaxy

System A combination of primitives and modules with
connected ports within a model. A complete sys-
tem that can be executed/simulated.

Universe

Parameter Interface element for definition of initial values.
In primitives parameters can be used to remem-
ber values.

State

Domain The model of computation, which defines the be-
havior of a network of models. In code genera-
tion, a domain also corresponds to single target
language.

Domain

Table 13.1: Definition of models in MLDesigner

13.2 Definition of Primitive Interfaces
After creating a new primitive, MLDesigner automatically opens a Model Editor Window con-
taining the empty interface model of the primitive. However, if the primitive was created as a copy
of an existing one, you must explicitly open it in a Model Editor Window. See ch. 3 for more
detail on how to open a model within a Model Editor Window. Now, you can use the Model
Editor Window to define the primitive interface. The toolbar for defining the primitive interface
can be seen in fig. 13.1. The external interface model of a primitive consists of

• model property definitions;
• input/output port definitions;
• parameter definitions;
• annotations or text labels.

Figure 13.1: Toolbar for primitive interface models

13-2 MLDesigner Version 2.8

13.2 Definition of Primitive Interfaces

Modules FSM models Primitives

- no knowledge of C/C++
required

- automatic consistency / er-
ror checking

- understandable

- self-documenting

- easy to modify and extend

- built-in debugging tools
can be used

- well suited to controller
design and protocol speci-
fication

- suited to certain levels of
design abstraction

- easier to create than primi-
tives

- required for fundamental
operations

- often more efficient

- preexisting C++ simula-
tion modules can be used

Table 13.2: Advantages of Modules, FSM models, and Primitives

13.2.1 Model Property Definitions

As with all hierarchical modules, you can define common model properties of a primitive using
the Property Editor Window (fig. 13.2). You can define the following model properties

• Logical Name,
• Load Mode,
• Description,
• Documentation,
• Copyright, and
• Version

For each model property, MLDesigner creates an item entry in the primitive source file. The Log-
ical Name is used to identify the model component in the Library View. The Logical Name is
shown in the headline of the Model Editor Window and is a free text string.

13.2.2 Load Mode

The Load Mode property determines whether a primitive is loaded dynamically or permanent. If
a primitive is loaded dynamically, a shared library is created that is linked dynamically to MLDe-
signer. Dynamically linked primitives can be replaced or reloaded anytime. If a primitive is
loaded permanent, the primitive is linked statically to MLDesigner. Such primitives are handled
like built-in primitives and are added to the built-in primitive list.
Linking a primitive permanently is necessary if the primitive defines resources like variables or
functions that are shared with other primitives. To ensure that all symbols of shared resources
are known at link time, primitives which define the shared resources have to be loaded before
primitives which use these resources. To ensure this prerequisite, you have to set the load mode

13-3

13 Designing Primitives

Figure 13.2: Property Editor for primitive example

for these primitives to permanent. If you open a hierarchical model that contains instances of
primitives with permanent load mode, these primitives are loaded automatically.

NOTE: Changes to permanently linked primitives only become effective when you shut down�
and restart MLDesigner .

The common model properties Model Type and Domain are not editable.

13.2.3 Input/Output Port Definitions
Use the tool buttons Add Input Port and Add Output Port to create an arbitrary number of
input and output ports. Please refer to ch. 3.4 to get more detailed informations on how to create
input/output ports. In contrast to hierarchical modules, where you can define only single input and
single output ports, it is possible to define multiple input and multiple output ports for primitives.
For each port definition, MLDesigner generates an entry in the primitive source code upon saving.
These port items cannot be changed in the primitive source file, but must be changed using the
Property Editor. Select the port object and change the values of the port properties.

13.2.4 Parameter Definitions
For the definition of primitive parameters you have to use the Property Editor. As for any hier-
archical module, you can create additional properties that define model parameters. Use the menu
item New Parameter in the context menu of the Property Editor to create a new parame-
ter. The parameter is created with default values for all parameter elements. You can define the
following elements

• the parameter name,
• the parameter type,
• the default value of the parameter,
• the description of the parameter, and

13-4 MLDesigner Version 2.8

13.3 Primitive Functionality Definition

• the attributes of the parameter.

For detailed information on the type and significance of parameter elements see sec. 13.5.4. For
each defined parameter MLDesigner generates on saving a defparameter item in the primitive
source file. These items cannot be changed in the primitive source file; they must be changed using
the parameter properties of the primitive interface model.

13.2.5 Annotations
You can place annotations (plain text labels) anywhere within the model background. Use the tool
button Add Text Label to create a new text label. You can define the text, the color, the font size,
and the justification of the text label. After creation you can change an annotation anytime by
selecting the text label and modifying the label properties using the Property Editor Window.

13.3 Primitive Functionality Definition
After defining the primitive interface model, save your changes. MLDesigner then generates the
primitive source file that contains items for all model properties and definitions.
If there is already a primitive source file, the primitive properties and definitions that are defined by
the primitive interface model are replaced by the properties of the new primitive interface model.
All the other definitions like existing functionality are preserved.
The generated primitive source file serves as a template for the definition of the functionality. The
primitive source files are written in the Ptolemy language and are identified by the extension .pl.
The Ptolemy language is described in detail in section 13.4.
The Ptolemy language has several language constructs for the definition of the primitive interface.
All these constructs are generated using the information from the primitive interface model. Fur-
thermore, the Ptolemy language has some constructs for the definition of methods that describe
the functionality of the primitive. These methods are executed at different stages in the life cycle
of primitive instances. For example, the Ptolemy language allows for the definition of methods
that are executed at:

• instance creation and deletion;

• simulation start-up time;

• during simulation.

The functionality of these methods is defined using C++ code. The Ptolemy language only defines
the method structure.
You can edit the primitive source file using the primitive editor. To edit the source code choose
Open Source from the context menu or click the Open Source icon on the toolbar.
The primitive editor provides syntax highlighting and all additional source code generated by
changes made to the primitive within the Design window, will be formatted automatically (see
fig. 13.3). After making your changes, save the file using the Save icon. Since the primitive editor
is simply a text editor, changes to the primitive source file do not affect the primitive interface
model directly. Changes to open primitives using the MLDesigner GUI are visible in the Source
code editor on saving.

13-5

13 Designing Primitives

Figure 13.3: Primitive editor

13.4 Ptolemy Language Description

The Ptolemy language ptlang is a preprocessor language and was created to make it easier to write
and document primitives to run under MLDesigner. Instead of writing all the class definitions
and initialization code required for a primitive, the programmer can concentrate on writing the
functionality of a primitive and let the preprocessor generate the standard initialization code for
ports, parameters, etc. The preprocessor generates standard C++ code, divided into two files, a
header file with a .h extension and an implementation file with a .cc extension. It also generates
standardized documentation in a file with a .htm extension.

13.4.1 Compiling Primitives

The definition of a primitive named Yyy in domain Xxx should appear in file with the name
XxxYyy.pl. The class that implements this primitive will be named XxxYyy. MLDesigner
automatically uses the command ptlang XxxYyy.pl to invoke the preprocessor. The prepro-
cessor will produce the files XxxYyy.cc, XxxYyy.h, and XxxYyy.htm in the directory of the
primitive source file. The preprocessor does not attempt to parse the parts of the language that
consist of C++ code, e.g., the methods. For these parts, it simply counts curly braces to find the
ends of the items in question. It generates #line directives so the C++ compiler will print error
messages, if any, with respect to the original source file.

13-6 MLDesigner Version 2.8

13.4 Ptolemy Language Description

13.4.2 Example
To make things more clear consider this example:

1. select the Library tab in the tree view window.
2. open the MLD Libraries/SDF Domain/Nonlinear library.
3. click on the Sin item. From the context menu choose Save As to open the Save as New

Model dialog.
4. set the Logical name and Physical Name to MySin.
5. select a writable library in which to save the copied primitive.
6. click the OK button to save the primitive.

You now have a sine function primitive that is described by the file SDFMySin.pl, MySin.mml
and SDFMySin.htm as well as a makefile in the selected library. Running the prepro-
cessor (compiling the primitive) produces the three files SDFMySin.h, SDFMySin.cc and
SDFMySin.i386-linux.o. The names are determined not by the input filename but by con-
catenating the domain and name fields. These files define a class named SDFMySin.

At the time of this writing, only one type of declaration may appear at the top level of an MLDe-
signer language file, a defprimitive , used to define a whole primitive. The defprimitive
section itself is composed of subitems that describe various properties and definitions of the prim-
itive.

All subitems are of the form keyword { body }, where the body may itself be composed of
subitems, or may be C++ code, in which case the MLDesigner language preprocessor checks it
only for balanced curly braces.

NOTE: Keywords are not reserved words, they may also be used as identifiers in the C++ code �
body.

13-7

13 Designing Primitives

13.5 Primitive Language Constructs
The following items can appear in a defprimitive item. The items are given in the order in
which they typically appear in a primitive source file, although they can appear in any order. An
alphabetical listing and summary of items that are frequently used is given in table 13.3. There are
additional items for code generation stars, they will be explained in later sections.

Keyword Summary Required Page

acknowledge the names of other contributors to the primitive no 13-11

author the name(s) of the author(s) of the primitive no 13-11

begin C++ code to execute at start time, after the scheduler setup
method is called

no 13-18

ccinclude specify other files to include in the .cc file no 13-20

code C++ code to include in the .cc file outside the class defi-
nition

no 13-20

codeblock define a code segment for a code-generation primitive no 13-21

conscalls define constructor calls for members of the primitive class no 13-17

constructor C++ code to include in the constructor for the primitive 13-17

copyright copyright information to include in the generated code no 13-11

cleanup method to free all memory when a simulation ends no 13-18

defevent define an event no 13-13

defmemory define a memory no 13-14

defresource define a resource no 13-14

defparameter define a parameter no 13-12

derived alternative form of derivedfrom no 13-10

derivedfrom the base class, which must also be a primitive no 13-10

desc alternative form of descriptor no 13-10

descriptor a short summary of the functionality of the primitive no 13-10

destructor C++ code to include in the destructor for the primitive no 13-17

domain the domain, and the prefix of the name of the class yes 13-9

explanation full documentation (see also htmldoc) no 13-11

exectime specify the execution time for a code generation primitive no 13-21

go C++ code to execute when the primitive fires no 13-18

header C++ code to include in the .h file, before the class defini-
tion

no 13-20

hinclude specify other files to include in the .h file no 13-20

13-8 MLDesigner Version 2.8

13.5 Primitive Language Constructs

Keyword Summary Required Page

htmldoc full documentation, optionally using HTML items no 13-11

inmulti define a set of inputs no 13-15

inout define a (bidirectional) input and output no 13-15

input define an input to the primitive no 13-15

location an indication of where a user might find the primitive no 13-11

method define a member function for the primitive class no 13-20

name the name of the primitive, and the root of the name of the
class

yes 13-9

outmulti define a set of outputs no 13-15

output define an output from the primitive no 13-15

private define private data members of the primitive class no 13-19

protected defined protected data members of the primitive class no 13-19

public define public data members of the primitive class no 13-19

setup C++ code to execute at start time, before compile-time
scheduling

no 13-18

version version number and date no 13-10

wrapup C++ code to invoke at the end of a run (if no error occurred) no 13-19

Table 13.3: Summary of most important primitive items

13.5.1 Keywords in detail

13.5.1.1 name

This is a required item, and has the syntax

name { identifier }

Together with the domain, this provides the name of the class to be defined and the names of the
output files. The identifier is case sensitive.

13.5.1.2 domain

This is a required item. It specifies the domain, such as SDF. The syntax is

domain { identifier }

where identifier specifies the domain (again, it is case sensitive).

13-9

13 Designing Primitives

13.5.1.3 derivedfrom

This optional item indicates that the primitive is derived from another class. The derived and base
primitives must be defined in the same domain. Syntax:

derivedfrom { identifier }

where identifier specifies the base class. The .h file for the base class is automatically included in
the output .h file and the directory where the base class is located is added in the include section
of the primitive’s makefile.
The derivedfrom statement may also be written derivedfrom or derived . See also
page 13-18 for information regarding the go method for derived primitives.

13.5.1.4 descriptor

This item defines a short description of the class. It is displayed in a tooltip when you position the
mouse cursor over the element in the Tree View window or over an instance. It has the syntax

descriptor { text }

where text is simply a section of text that will become the short descriptor of the primitive. A
principal use of the short descriptor is to get on-screen help, so the descriptor should not include
any troff formatting commands. Unlike the htmldoc (described below), it does not pass
through troff. The following are legal descriptors:

desc { A one line descriptor. }

or

desc
{
A multi-line descriptor. The same line breaks and spacing
will be used when the descriptor is displayed on the screen.

}

In these descriptors, inputs, references to the names of parameters (states), and outputs, should be
enclosed in quotation marks. Also, each descriptor should begin with a capital letter, and end with
a period. If the descriptor is too long, augment it with the htmldoc item, explained below.

13.5.1.5 version

This item contains two entries as shown below

version { number mm/dd/yy }

where the number is the version number, and the mm/dd/yy is the version date. If you are using
SCCS for version control then the following syntax will work well:

version { %W% %G% }

When the file is checked in by SCCS, the string %W% will be replaced with a string of the form:
@(#)filename num, where num is the version number, and %G% will be replaced with a properly
formatted date.

13-10 MLDesigner Version 2.8

13.5 Primitive Language Constructs

13.5.1.6 author

This optional entry identifies the author or authors of the primitive. The syntax is:

author { author1, author2, author3 }

Any set of characters between the braces will be interpreted as a list of author names.

13.5.1.7 acknowledge

This optional entry attaches an acknowledgment section to the documentation. The syntax is:

acknowledge { arbitrary single line of text }

13.5.1.8 copyright

This optional entry attaches a copyright note to the .h, and .cc files. The syntax is:

copyright { copyright information }

The copyright may span multiple lines, just like the descriptor. A typical copyright note is used as
follows

copyright {1990-1994 The Regents of the
University of California}

13.5.1.9 location

This item describes the location of a primitive definition. The following descriptions can be used:

location { SDF dsp library }

or

location { directory }

where directory is the location of the primitive. Please note that this item is for documentation
only.

13.5.1.10 explanation

This item is used to give longer explanations of the function of the primitives. This item is obsolete
and has been superceded by the htmldoc item.

13.5.1.11 htmldoc

This item is used to give longer explanations, including HTML format directives. MLDesigner
uses an HTML viewer (see sec. 3.16) to display primitive documentation.

13-11

13 Designing Primitives

13.5.1.12 defparameter

This item is used to define a state or parameter.

NOTE: In Ptolemy vocabulary a parameter is by definition only the initial value of a state. How- �
ever, in context with MLDesigner state definitions are principally called parameter defi-
nitions since

1.state definitions specify the interface variables of the primitive as seen as parame-
ters from outside,

2.changes of state variables during simulation are only visible inside the primitive.

Here is an example of a parameter definition:

defparameter
{
name { gain }
type { int }
default { 10 }
desc { Output gain. }
attributes { A_CONSTANT | A_SETTABLE }

}

There are five types of subitems that may appear in a parameter statement, in any order. The
name field is the name of the parameter. The type field is its type, which may be one of int,
float, string, complex, fix, intarray, floatarray, stringarray, complex-
array, fixarray, precision, boolean, enum, file, expression, datastruct,
and many others. Case is ignored for the type argument. The default item specifies the initial
value of the parameter, its argument is either a string (enclosed in quotation marks) or a numeric
value. The above entry could equally have been written:

default { "1.0" }

Furthermore, if a particularly long default is required, for example when initializing an array, the
string can be broken into a sequence of strings. The following example shows the default for a
ComplexArray:

{
"(-.040609,0.0) (-.001628,0.0) (.17853 ,0.0)"
"(.37665 ,0.0) (.17853 ,0.0) (-.001628,0.0)"

}

For complex parameters, the syntax for the default value is

(real, imag)

where real and imag evaluate to integers or floats. The precision parameter is used to give
the precision of fixed-point values. These values can be other parameters or can be internal to the
primitive. The default can be specified in either of two ways:

13-12 MLDesigner Version 2.8

13.5 Primitive Language Constructs

Method 1: As a string like ”3.2”, or more generally ”m.n”, where m is the number of integer
bits (to the left of the binary point) and n is the number of fractional bits (to the
right of the binary point). Thus length is m+n.

Method 2: A string like ”24/32” which means 24 fraction bits from a total length of 32. This
format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at least one.
The desc (or descriptor) item, which is optional but highly recommended, attaches a de-
scriptor to the parameter. The same formatting options are available as with the primitive descrip-
tor .
Finally, the attributes keyword specifies parameter attributes. Two attributes are defined for
all parameters: A CONSTANT and A SETTABLE (along with their complements A NONCONSTANT
and A NONSETTABLE). If a parameter has the A CONSTANT attribute, then its value is not mod-
ified by the run-time code in the primitive (it is up to you as the primitive writer to ensure that
this condition is wanted). Parameters with the A NONCONSTANT attribute may change when the
primitive is run. If a parameter has the A SETTABLE attribute, you can change the value of the
parameter when you instantiate the primitive. Values of parameters without this attribute are not
editable for primitive instances. Such parameters will always start with their default values as the
initial value. If no attributes are specified, the default is A CONSTANT|A SETTABLE. Thus, in
the above example, the attributes item is unnecessary. The notation A CONSTANT|A SETTABLE
indicates a logical ”or” of two flags. Confusingly, this means that they both apply A CONSTANT
and A SETTABLE. Code generation primitives use a great number of attributes, most of them spe-
cific to the language model for which code is being generated. Mechanisms for accessing and up-
dating parameters in C++ methods associated with a primitive are explained below, in sec. 13.5.4
and sec. 13.5.5.

An alternative form for the parameter item is state . The subitems of the parameter item are
summarized in table 13.4, together with subitems of other items.

13.5.1.13 defevent

This item is used to define an event. Here is an example of an event definition:

defevent
{
name { Event1 }
scope { Internal }
type { Root }
default { "{Root}" }
code
{
}

}

There are five types of subitems that appear in an event statement, in any order. The name field is
the name of the event. The scope field specifies whether the event is external (visible) or internal

13-13

13 Designing Primitives

(hidden). The type field is its type which can be any data structure type derived from Root or
Root itself. The default value specifies the initial value of the event shared element that is used
to if the event occurs. This item is only used in case of internal events. The syntax has to conform
with declarations of data structure value (see ch. 12.3.5). The event definition can contain a code
section that defines the code which is executed if the event occurs.

13.5.1.14 defmemory

This item is used to define a memory. Here is an example of a memory definition:

defmemory
{
name { Memory1 }
scope { Internal }
type { Root }
default { "{Root}" }

}

There are four types of subitems that appear in a memory statement, in any order. The name field
is the name of the memory. The scope field specifies whether the memory is external or internal,
i.e., visible or hidden respectively. The type field is its type which can be any data structure type
derived from Root or Root itself. The default specifies the initial value of the memory shared
element. This value is used until a model instance will write data into the memory. The default
item is only used in case of internal memories. The syntax has to conform with declarations of
data structure value (see ch. 12.3.5).

13.5.1.15 defresource

This item is used to define a resource. Here is an example of a resource definition:

defresource
{
name { Resource1 }
type { "Quantity" }
scope { External }
code
{
// Arguments of the method
// int pSuccess
// QuantityTransaction* pTrans

if (pTrans == NULL)
return;

if (pSuccess == 0)
{
}
else if (pSuccess == 1)
{

13-14 MLDesigner Version 2.8

13.5 Primitive Language Constructs

}
else if (pSuccess == 2)
{
}

}
}

There are four types of subitems that appear in a resource statement, in any order. The name
field is the name of the resource. The scope field specifies whether the resource is external or
internal, i.e., visible or hidden respectively. The type field specifies whether the resource models
a quantity or a server. It defines either the string Quantity or the string Server. The resource
definition code defines the code which is executed whenever a transaction exits the resource.
When you create a resource with MLDesigner , it creates a code subitem template as shown
above automatically.

13.5.1.16 input, output, inout, inmulti, outmulti

These keywords are used to define a port also called porthole, which may be an input, output,
inout (bidirectional) port or an input/output multiport. Bidirectional ports are not supported in
most domains. Like parameters they contain subitems such as:

input
{
name { signalIn }
type { complex }
num { 2 }
desc { A complex input that consumes

two input particles. }
}

Here, name specifies the port name. This is a required item. Subitem type specifies the par-
ticle type. The scalar types are int, float, fix, complex, message, string, file,
datastruct, continuous, or anytype. Again, case does not matter for the type value.
The matrix types are int matrix env, float matrix env, complex matrix env, and
fix matrix env. The type item may be omitted; the default type is anytype. For more in-
formation on all of these, please see sec. 14. The numtokens keyword, also be written as num
or numTokens, specifies the number of tokens consumed or produced on each firing of the prim-
itive. This only makes sense for certain domains like SDF, DDF, and BDF. In such domains, if the
item is omitted, a value of one is used. For primitives where this number depends on the value of
a parameter, it is preferable to leave out the num specification and to have the setup method set
the number of tokens (in the SDF domain and most code generation domains, this is accomplished
with the setSDFParams method). This item is primarily used in the SDF and code generation
domains, and is discussed further in the documentation of those domains.
There is an alternative syntax for the type field of a port. This syntax is used in connection with
anytype to specify a link between the types of two ports. The syntax is

type { = name }

13-15

13 Designing Primitives

where name is the name of another port. This indicates that this port inherits its type from the
specified port. For example, here is a portion of the definition of the SDFFork primitive:

input
{
name { input }
type { anytype }

}

outmulti
{
name{ output}
type{ = input}
desc{ Type is inherited from the input. }

}

Item Subitem Summary Required Page

inmulti, name name of the port or group of ports yes 13-15

inout, type data type of input/output particles no

input num number of tokens consumed by the
port (useful only for data flow do-
mains)

no

method, name the name of the method no 13-20

virtual method, access private, protected, or public no

inline method, arglist the arguments to the method no

pure method, type the return type of the method no

pure virtual method, code C++ code defining the method if not pure

inline virtual method

outmulti, name name of the port or group of ports yes 13-15

output type data type of output particles no

descriptor summary of the function of the out-
put

no

num number of tokens produced by the
port (useful only for data flow do-
mains)

no

defparameter name the name of the parameter variable yes 13-12

type data type of the parameter variable yes

default the default initial value, always a
string

yes

13-16 MLDesigner Version 2.8

13.5 Primitive Language Constructs

Item Subitem Summary Required Page

descriptor summary of the function of the pa-
rameter

no

attributes hints to the simulator or code gener-
ator

no

Table 13.4: Summary of items that have subitems

13.5.1.17 constructor

This item allows the programmer to specify extra C++ code to be executed in the constructor for
the class. This code will be executed after any automatically generated code in the constructor that
initializes ports, parameters, etc. The syntax is

constructor { body }

where body is a piece of C++ code. It can be of any length. Note that the constructor is invoked
only when the class is first instantiated. Actions that must be performed before every simulation
run should appear in the setup or begin methods, not the constructor.

13.5.1.18 conscalls

You may want to have data members in your primitive that have constructors that require argu-
ments. These members would be added by using the public , private , or protected
keywords. If you have such members, the conscalls keyword provides a mechanism for

passing arguments to the constructors of those members. Simply list the names of the members
followed by the list of constructor arguments for each, separated by commas if there is more than
one. The syntax is:

conscalls { member1(arglist), member2(arglist) }

Note that member1 and member2 should have been previously defined in a public, private
or protected section, see page 13-19.

13.5.1.19 destructor

This item inserts code into the destructor for the class. The syntax is:

destructor { body }

You generally need a destructor only if you allocate memory in the constructor, begin method, or
setup method. Termination functions that happen with every run should appear in the wrapup
function 1. The optional keyword inline may appear before destructor . If it is used,

the destructor function definition appears inline, in the header file. Since the destructor for all
primitives is virtual, this is only needed if the primitive is used as a base for derivation. See also
cleanup.

1Note, however, that wrapup is not called if an error occurs

13-17

13 Designing Primitives

13.5.1.20 cleanup

The cleanup method clears memory regardless of whether a simulation ends normally or abnor-
mally. In situations where the user ends the simulation or where an error is displayed before the
wrapup method is called, the cleanup code is executed. An example can be found on 13-34.
The syntax is:

cleanup
{
// delete variable(s)

}

If you free in cleanup dynamically allocated variables, make sure that those variables are ini-
tialized to zero in the primitive’s constructor.

13.5.1.21 setup

This item defines the setup method, which is called every time the simulation is started, before
any compile-time schedule is performed. The syntax is:

setup { body }

The optional keyword inline may appear before the setup keyword. It is common for this
method to set parameters of input and output ports, and to initialize parameters. The code syntax
for this type of method is explained in sec. 13.5.2 on page 13-22. In some domains, with some
targets, the setup method may be called more than once during initiation. You must keep this
in mind if you use it to allocate or initialize memory.

13.5.1.22 begin

This item defines the begin method, which is called every time the simulation is started, but
after the setup method is called, i.e., after any compile-time schedule is performed. The syntax
is:

begin { body }

This method can be used to allocate and initialize memory. It is especially useful when data
structures are shared across multiple instances of a primitive. It is always called exactly once
when a simulation is started.

13.5.1.23 go

This item defines the action taken by the primitive when it is fired. The syntax is:

go { body }

For derived primitives the go method is empty. In such cases you can either:

• delete the go item. The go method of the base primitive is then called.
• explicitly call the go method of the base primitive.
• write new code for the go method.

13-18 MLDesigner Version 2.8

13.5 Primitive Language Constructs

A good example is MLD Libraries/SDF Domain/DSP/LMS. The LMS primitive is derived from
FIR. The go method first updates the taps and then calls the FIR’s go method explicitly.

go
{
// First update the taps
int index = int(errorDelay) * int(decimation) +

int(decimationPhase);
double factor = double(error%0) * double(stepSize);
for (int i = 0; i < taps.size(); i++)
{

taps[i] += factor * double(signalIn%(index));
index++;

}

// Then run FIR’s go method
SDFFIR :: go();

}

The optional keyword inline may appear before the go keyword. The go method will
typically read input particles and write outputs, and will be invoked many times during the course
of a simulation. The code syntax for the body is explained in sec. 13.5.2 on page 13-22.

13.5.1.24 wrapup

This item defines the wrapup method, which is called at the completion of a simulation. The
syntax is:

wrapup { body }

The optional keyword inline may appear before the wrapup keyword. The wrapup method
might typically display or store final state values. The code syntax for doing this is explained in
sec. 13.5.2 on page 13-22. Note that the wrapup method is not invoked if an error occurs during
execution. Thus, the wrapup method cannot be used reliably to free allocated memory. Instead,
the dynamically allocated memory should be freed in the cleanup method or in the primitive’s
destructor.

13.5.1.25 public, protected, private

These three keywords allow the programmer to declare extra members for the class with the de-
sired protection. The syntax is:

protkey { body }

where protkey is public, protected, or private. Example, from the XMgraph primitive:

protected
{
XGraph graph;
double index;

}

13-19

13 Designing Primitives

This defines an instance of the class XGraph, defined in the MLDesigner kernel, and a double-
precision number. If any of the added members require arguments for their constructors, use the
conscalls item to specify them.

13.5.1.26 ccinclude, hinclude

These items cause the .cc file, or the .h file, to #include extra files. A certain number of files
are automatically included, when the preprocessor can determine that they are needed, so they do
not need to be explicitly specified. If the file to be included is in the kernel it may be necessary to
put in the absolute path in future versions of MLDesigner . The syntax is:

ccinclude { inclist }
hinclude { inclist }
ccinclude { "kernel/String.h" }

where inclist is a comma-separated list of include files. Each filename must be surrounded either
by quotation marks or by < and > for system include files like <math.h>.

13.5.1.27 code

This keyword allows the programmer to specify a section of arbitrary C++ code. This code is
inserted into the .cc file after the include files but before everything else. It can be used to define
static non-class functions, declare external variables, or anything else. The outermost pair of curly
braces is stripped. The syntax is:

code { body }

13.5.1.28 header

This keyword allows the programmer to specify an arbitrary set of definitions that will appear in
the header file. Everything between the curly braces is inserted into the .h file after the include
files but before everything else. This can be used, for example, to define classes used by your
primitive. The outermost pair of curly braces is stripped.

13.5.1.29 method

The method item provides a fully general way to specify an additional method for the class of
primitive that is being defined, for example:

virtual method
{
name { exec }
access { protected }
arglist { "(const char* extraOpts)" }
type { void }
code { // code for the exec method goes here }

}

13-20 MLDesigner Version 2.8

13.5 Primitive Language Constructs

An optional function type specification may appear before the method keyword, which must be
one of the following:

virtual
pure
inline
static
const

The virtual keyword makes a virtual member function. If the pure virtual keyword is
given, a pure virtual member function is declared. There must be no code item in this case. The
function type pure is a synonym for pure virtual . The inline function type declares
the function to be inline.

If you use multiple type specifiers, the keywords have to be in the following relative order:

[const][inline][pure][virtual]

The static keyword declares a static method of the primitive class. It cannot be used in con-
junction with [const] or [pure] virtual as C++ does not support this. You can therefore use either
static method or inline static method to declare a static member function.

The method subitems are:

name The name of the method. This is a required item.

access The level of access for the method, one of public , protected or private
. If the item is omitted, protected is assumed.

arglist The argument list, including the outermost parentheses, for the method as a
quoted string. If this is omitted, the method has no arguments.

type The return type of the method. If the return type is not a single identifier, you
have to put quotes around it. If this is omitted, the return type is void (no value
is returned).

code The code that implements the method. This is a required item, unless the pure
keyword appears, in which case this item cannot appear.

13.5.1.30 exectime

This item defines the optional myExecTime function, which is used in code generation to specify
how many time units are required to execute the primitive’s code. The syntax is:

exectime { body }

The optional keyword inline may appear before the exectime keyword. The body defines
the body of a function that returns an integer value.

13.5.1.31 codeblocks

Codeblocks are parameterized blocks of code for use in code generation primitives. The syntax is:

codeblock { code }

13-21

13 Designing Primitives

13.5.2 Writing C++ Code for Primitives
Knowledge of C++ is required when reading this section. Furthermore, reading ch. 13.6 is highly
recommended, since it explains some of the more generic and useful classes defined in the MLDe-
signer kernel. Many of these can be useful in primitives.

C++ code segments are an important part of any primitive definition. They can appear in the
setup , begin , go , wrapup , constructor , destructor , exectime , header ,
code , and method items of primitive source code. These items all include a body of arbitrary
C++ code, enclosed by curly braces, { and }. In all but the code and header items, the C++
code between braces defines the body of a method of the primitive class. Methods can access any
member of the class, including ports for input and output, parameters, and members defined with
the public , protected , and private items.

The Structure of an MLDesigner Primitive

In general, the task of an MLDesigner primitive is to receive input particles and/or produce output
particles. In addition, there may be side effects (reading or writing files, displaying graphs, or
even updating shared data structures). As for all C++ objects, the constructor is called when the
primitive is created, and the destructor is called when it is destroyed. In addition, the setup
and begin methods -if any- are called every time a new simulation run is started, the go

method (which always exists except for primitives like BlackHole and Null) is called each time a
primitive is executed, and the wrapup and cleanup methods are called after the simulation run
completes.

13.5.3 Reading Inputs and Writing Outputs
The exact mechanism for references to input and output ports depends somewhat on the do-
main. This is because primitives in the domain XXX use objects of class InXXXPort and
OutXXXPort (derived from PortHole) for input and output, respectively. The examples
we use here are for the SDF domain. See the appropriate domain chapter for variations that apply
to other domains.

13.5.3.1 Portholes and Particles

In the SDF domain, normal inputs and outputs become members of type InSDFPort and
OutSDFPort after the preprocessor is finished. These are derived from base class PortHole .
For example, given the following item in the defprimitive of an SDF primitive,

input
{
name {in}
type {float}

}

A member named in, of type InSDFPort , will become part of the primitive. We are not usually
interested in directly accessing these porthole classes, but rather wish to read or write data through
the portholes. All data passing through a porthole is derived from the base class Particle .

13-22 MLDesigner Version 2.8

13.5 Primitive Language Constructs

Each particle contains data of the type specified in the type subitem of the input or output
item.

The operator % operating on a porthole returns a reference to a particle. Consider the following
example:

go
{
Particle& currentSample = in%0;
Particle& pastSample = in%1;
...

}

The right-hand argument to the % operator specifies the delay of the access. A zero always means
the most recent particle. A one means the particle arriving just before the most recent particle. The
same rules apply to outputs. Given an output named out, the same particles that are read from
in can be written to out in the same order as follows:

go
{ ...
out%1 = pastSample;
out%0 = currentSample;

}

This works because out%n returns a reference to a particle, and hence can accept an assignment.
The assignment operator for the class Particle is overloaded to make a copy of the data field
of the particle.

Operating directly on class Particle , as in the above examples, is useful for writing primitives
that accept anytype of input. The operations need not concern themselves with the type of data
contained by the particle. But it is far more common to operate numerically on the data carried by
a particle. This can be done using a cast to a compatible type. In the example above, in is of type
float, therefore its data can be accessed by

go
{
Particle& currentSample = in%0;
double value = (double)currentSample;
...

}

or more concisely,

go
{
double value = (double)(in%0);
...

}

13-23

13 Designing Primitives

The expression (double)(in%0) can be used anywhere a double can be used. In many
contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;

However, since conversion operators are defined to convert particles to several types, it is often
necessary to indicate precisely which type of conversion is desired.

To write data to an output porthole, note that the right-hand side of the assignment operator should
be of type Particle , as shown in the above example. An operator << is defined for particle
classes to make this more convenient. Consider the following example:

go
{
float t;
t = some value to be sent to the output
out%0 << t;

}

Note the distinction between the << operator and the assignment operator. The latter operator
copies particles, the former operator loads data into particles. The type of the right-side operand
of << may be int, float, double, Fix, Complex or Envelope. The appropriate type of
conversion will be performed. For more information on the Envelope and Message types,
please see sec. 14.

13.5.3.2 SDF PortHole Parameters

In the example above, where in%1 was referenced, some special action is required to tell MLDe-
signer that past input particles are to be saved. A special action is also required to tell the SDF
scheduler how many particles will be consumed at each input and produced at each output when a
primitive fires. This information can be provided through a call to setSDFParams in the setup
method. This has the syntax

setup
{
portName.setSDFParams(multiplicity, past)

}

where portName is the name of the input or output porthole, multiplicity is the number
of particles consumed or produced, and past is the maximum value that offset can take in any
expression of the form name%offset. For example, if the go method references name%0 and
name%1, then past would have to be at least one. It is zero by default.

13.5.3.3 Multiple Portholes

Sometimes a primitive should be defined with n input ports and/or n output ports, where n is a
variable. This is supported by the class MultiPortHole and its derived classes (MultiIn-
<domain>Port and MultiOut<domain>Port). An object of this class has a sequential list
of PortHoles . For SDF, we have the specialized derived class MultiInSDFPort (which

13-24 MLDesigner Version 2.8

13.5 Primitive Language Constructs

contains InSDFPorts) and MultiOutSDFPort (which contains OutSDFPorts). Defining
a multiple porthole is easy, as illustrated next:

defprimitive
{
...
inmulti
{
name {input_name}
type {input_type}

}
outmulti
{
name {output_name}
type {output_type}

}
...

}

To successfully access individual portholes in a MultiPortHole , In<domain>MPHIter or
Out<domain>MPHIter iterator class should be used, function of the type of the port. Consider
the following code segment from the definition of the SDFFork primitive:

input
{
name {input}
type {anytype}

}
outmulti
{
name {output}
type {=input}

}
...
go
{
OutSDFMPHIter nextp(output);
OutSDFPort* p;
while ((p = nextp++) != 0)
(*p)%0 = input%0;

}

A single input porthole supplies a particle that gets copied to any number of output portholes. The
type of the output MultiPortHole is inherited from the type of the input. The first line of the
go method creates an OutSDFMPHIter iterator called nextp, initialized to point to portholes
in output. The ++ operator on the iterator returns a pointer to the next porthole in the list, until
there are no more portholes, at which time it returns NULL. So the while construct steps through

13-25

13 Designing Primitives

all output portholes, copying the input particle data to the appropriate output. Consider another
example, taken from the SDFAdd primitive:

inmulti
{
name {input}
type {float}

}
output
{
name {output}
type {float}

}
go
{
InSDFMPHIter nexti(input);
InSDFPort* p;
double sum = 0.0;
while ((p = nexti++) != 0)
sum += double((*p)%0);

output%0 << sum;
}

An InSDFMPHIter iterator named nexti is created and used to access the inputs individually.
Occasionally the numberPorts method of class MultiPortHole , which returns the num-
ber of ports, is useful. This is called simply as portname.numberPorts(), and returns an
integer.

13.5.3.4 Type Conversion

The type conversion operators and << operators are defined as virtual methods in the base class
Particle . There are never really objects of class Particle in the system. Instead, there
are objects of class IntParticle , FloatParticle , ComplexParticle , and Fix-
Particle , which hold data of type int, double (not float!), Complex, and Fix, respec-
tively (there are also MessageParticle , DataStructParticle and a variety of matrix
particles, described later). The conversion and loading operators are designed to ”do the right
thing” when an attempt is made to convert between mismatched types.

Clearly we can convert an int to a double or Complex, or a double to a Complex, with
no loss of information. Attempts to convert in the opposite direction work as follows: conversion
of a Complex to a double produces the magnitude of the complex number. Conversion of a
double to an int produces the greatest integer that is less than or equal to the double value.
There are also operators to convert to or from float and Fix. Each particle also has a virtual
print method, so a primitive that writes particles to a file can accept anytype.

13-26 MLDesigner Version 2.8

13.5 Primitive Language Constructs

13.5.4 Parameters
A parameter is defined by the defparameter item. The primitive can use a parameter to
store data values, remembering them from one invocation to another. They differ from ordinary
members of the primitive, which are defined using the public , protected , and private
items, in the way that they have a name, and can be accessed from outside the primitive in sys-

tematic ways. For instance, the MLDesigner permits the programmer to set any parameter with
the A SETTABLE attribute to some value prior to a run. The MLDesigner command interpreter
provides similar functionality through the setparam command. The parameter attributes are set
in the defparameter item. A parameter may be modified by the primitive’s code during a run.
The attribute A NONCONSTANT is used as a pragma to mark a parameter as one that gets mod-
ified during a run. There is currently no mechanism for checking the properness of these attributes.

All parameters are derived from the base class State , defined in the MLDesigner kernel. The de-
rived parameter classes currently defined in the kernel are FloatState , IntState , Complex-
State , StringState , FixState , FloatArrayState , IntArrayState , Complex-
ArrayState , StringArrayState , FixArrayState , DataStructState and Enum-
State .

A parameter can be used in a primitive method just like the corresponding predefined data types.
As an example, suppose the primitive definition contains the following directive:

defparameter
{
name { myState }
type { float }
default { 1.0 }
descriptor { Gain parameter. }

}

This will define a member of class FloatState with default value 1.0. No attributes are
defined, so A CONSTANT and A SETTABLE, the default attributes, are assumed. To use the value
of a parameter, it should be cast to type double, either explicitly by the programmer or implicitly
by the context. For example, the value of this parameter can be accessed in the go method as
follows:

go
{
output%0 << (double)myState * (double)(input%0);

}

The references to input and output are explained above. The reference to myState has an
explicit cast to double. This cast is defined in FloatState class. Similarly, a cast to int
is available for IntState , to Complex from ComplexState , and to const char* for
Stringstate . In principle, it is possible to rely on the compiler to automatically invoke this
cast.
Attention:
Some compilers (notably some versions of g++) may not choose the expected cast. In particular,

13-27

13 Designing Primitives

g++ has been known to cast everything to Fix if the explicit cast is omitted in expressions similar
to that above. The arithmetic is then performed using fixed-point point computations. This will
be dramatically slower than double or integer arithmetic, and may yield unexpected results. It is
best to explicitly cast parameters to the desired form. An exception is with simple assignment
statements, like

double stateValue = myName;

Even g++ gets this right. Explicit casting should be used whenever a parameter is used in an
expression. For example, from the setup method of the SDFChop primitive, in which use -
past inputs is an integer parameter,

if ((int)use_past_inputs)
input.setSDFParams((int)nread,(int)nread+(int)offset-1);

else
input.setSDFParams((int)nread,(int)nread-1);

Note that the type Complex is not a fundamental part of C++. We have implemented a subset of
the Complex class as defined by several library vendors. Using the ComplexState class will
automatically ensure the inclusion of the appropriate header files. A member of type Complex
can be initialized and operated upon any number of ways. For details, see sec. 14.1.1. A parameter
may be updated by an ordinary assignment in C++, as in the following lines

double t = expression;
myState = t;

This works because the assignment operator = has been overloaded by the FloatState class
definition to set its value from a double. Similarly, an IntState can be set from an int and
a StringState can be set from a char* or const char*.

13.5.5 Array Parameter
The ArrayState classes (FloatArrayState , IntArrayState , ComplexArray-
State , FixArrayState and StringArrayState) are used to store arrays of data. For
example,

defparameter
{
name { taps }
type { FloatArray }
default { "0.0 0.0 0.0 0.0" }
descriptor { An array of length four. }

}

defines an array of type double with dimension four, with each element initialized to zero. Al-
ternatively, you can specify a filename with a prefix <. If you have a file named foo that contains
the default values for an array parameter, you can write,

default { "< foo" }

13-28 MLDesigner Version 2.8

13.5 Primitive Language Constructs

If you expect others to be able to use your primitive, however, you should specify the default
filename using a full path. For instance,

default { "< $MLD_USER/My_Library.lib/foo" }

For default files installed in the MLDesigner directory tree, this should read:

default { "< $MLD/directory/foo" }

The format of the file is also a sequence of data separated by spaces (or newlines, tabs, or commas).
File input can be combined with direct data input as in

default { "< foo 2.0" }
default { "0.5 < foo < bar" }

A repeat notation is also supported for ArrayState objects. The two value strings

default { "1.0 [5]" }
default { "1.0 1.0 1.0 1.0 1.0" }

are equivalent. Any integer expression may appear inside the brackets []. The number of elements
in an ArrayState can be determined by calling its size method. The size is not specified
explicitly, but is calculated by scanning the default value.

As an example of how to access the elements of an ArrayState, suppose fState is of type
FloatState and aState is of type FloatArrayState . The accesses, like those in the
following lines, are common:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];

For a more complete example of the use of FloatArrayState , consider the FIR primitive
defined below. Note that this is a simplified version of the SDFFIR primitive that does not permit
interpolation or decimation.

defprimitive
{
name { FIR }
domain { SDF }
desc { A Finite Impulse Response (FIR) filter. }
input
{
name {signalIn}
type {float}

}
output
{
name {signalOut}
type {float}

13-29

13 Designing Primitives

}
defparameter
{
name {taps}
type {floatarray}
default { "-.04 -.001 .17 .37 .37 .17 -.0018 -.04" }
desc { Filter tap values. }

}
setup
{ // tell the PortHole the maximum delay we will use
signalIn.setSDFParams(1, taps.size() - 1);

}
go
{
double out = 0.0;
for (int i = 0; i < taps.size(); i++)
out += taps[i] * (double)(signalIn%i);

signalOut%0 << out;
}

}

Notice the setup method; this is necessary to allocate a buffer in the signalIn input port large
enough to hold the particles that are accessed in the go method. Notice the use of the size method
of the FloatArrayState .

We now illustrate an PTCL interpreter session using the above FIR primitive. Assume there is a
module called singen that generates a sine wave. You can use it with the FIR primitive, as in:

primitive foop singen
primitive fir FIR
primitive printer Printer
connect foop output fir signalIn
connect fir signalOut printer input
print fir
Primitive: mainGalaxy.fir
...
States in the primitive fir:
mainGalaxy.fir.taps type: FloatArray
initial value: -.040609 -.001628 .17853 .37665 .37665 .17853
-.001628 -.040609
current value:
0 -0.040609
1 -0.001628
2 .17853
3 .37665
4 .37665
5 .17853

13-30 MLDesigner Version 2.8

13.5 Primitive Language Constructs

6 -0.001628
7 -0.040609

Then you can redefine taps by reading them from a file foo, which contains the data:

1.1
-2.2
3.3
-4.4

The resulting interpreter commands are:

setparam fir taps "<foo 5.5"
print fir
Primitive: mainGalaxy.fir
...
States in the primitive fir:
mainGalaxy.fir.taps type: FloatArray
initial value: <foo 5.5
current value:
0 1.1
1 -2.2
2 3.3
3 -4.4
4 5.5

This illustrates that both the contents and the size of a FloatArrayState are changed by a
setparam command. Also, notice that file values may be combined with string values. When

< filename

occurs in an initial value, it is processed exactly as if the whole file is substituted at that point.

13.5.6 Programming Examples
13.5.6.1 Example 1

The following SDF primitive Ramp has no inputs, just an output port. The source primitive gen-
erates a linear increasing or decreasing sequence of float particles on its output. The parameter
value is initialized to define the value of the first output. Each time the primitive’s go method
fires, the value parameter is updated to store the next output value. Hence, the attributes of the
value parameter are set, so that its value can be overwritten by the primitive’s methods. By
default, the primitive will generate the output sequence 0.0, 1.0, 2.0, etc.

defprimitive
{
name { Ramp }
domain { SDF }

13-31

13 Designing Primitives

desc
{
Generates a ramp signal, starting at "value" (default 0) and
incrementing by step size "step" (default 1) on each firing.

}

htmldoc
{

}

output
{
name { output }
type { float }

}

defparameter
{
name { step }
type { float }
default { "1.0" }
desc { Increment from one sample to the next. }

}

defparameter
{
name { value }
type { float }
default { "0.0" }
desc { Initial (or latest) value output by Ramp. }
attrib { A_NONCONSTANT|A_SETTABLE }

}

location { SDF main library }

go
{
double t = value;
output%0 << t;
t += step;
value = t;

}
}

13-32 MLDesigner Version 2.8

13.5 Primitive Language Constructs

13.5.6.2 Example 2

The next example is the SDF primitive Gain, which multiplies its input by a constant and outputs
the result.

defprimitive
{
name { Gain }
domain { SDF }
desc
{
The input multiplied by the parameter "gain"
(default 1.0) equals the output.

}

htmldoc
{

}

input
{
name { input }
type { float }

}

output
{
name { output }
type { float }

}

defparameter
{
name { gain }
type { float }
default { "1.0" }
desc { Gain of the star. }

}

location { SDF main library }

go
{
output%0 << (double)gain * (double)(input%0);

}

13-33

13 Designing Primitives

}

13.5.6.3 Example 3

The following example of the SDF primitive Printer illustrates multiple inputs of type anytype,
and the use of the print method of the Particle class. The wrapup method is also used here.

defprimitive
{
name { Printer }
domain { SDF }
desc
{
Print out one sample from each input port per line. The
"fileName" parameter specifies the file to be written; the
special names <stdout> and <cout>, which specify the
standard output stream, and <stderr> and <cerr>, which
specify the standard error stream, are also supported.

}

htmldoc
{
}

inmulti
{
name { input }
type { anytype }

}

defparameter
{
name { fileName }
type { filename }
default { "<stdout>" }
desc { Filename for output. }

}

defparameter
{
name { Title }
type { string }

}

defparameter
{

13-34 MLDesigner Version 2.8

13.5 Primitive Language Constructs

name { EndCondition }
type { boolean }
default { "FALSE" }
desc { If EndCondition is set to TRUE, the simulation

will end when NumberOfItems have been consumed
or when the number of cycles in Run Length have
been executed, whichever comes first. }

}

defparameter
{
name { NumberOfItems }
type { int }
default { "1" }
desc { The number of particles comsumed by an input port.

If the primitive receives NumberOfItems input
particles and the parameter EndCondition is set to
TRUE, then the simulation will be finished. }

}

location { SDF main library }

hinclude { "pt_fstream.h" }

code
{
using std::cout;
using std::endl;

}

protected
{
pt_ofstream *p_out;
int numItemsCounter;
bool mReqEnd;

}

constructor
{
p_out = 0;

}

setup
{
if (EndCondition) {
willRequestEnd();

13-35

13 Designing Primitives

if (NumberOfItems < 1)
Error::abortRun(*this, " the value of the parameter
NumberOfItems is less than 1");

}
numItemsCounter = 0;
mReqEnd = false;

// in case file was open from previous run w/o wrapup call
LOG_DEL; delete p_out;
LOG_NEW; p_out = new pt_ofstream(fileName);

}

go
{
if (!mReqEnd)
{
pt_ofstream& output = *p_out;
InSDFMPHIter nexti(input);
InSDFPort* p;
output << "\nPrint " << fullName() << endl;
if (!Title.null())
output << (const char*)Title << endl;

while ((p = nexti++) != 0)
output << ((*p)%0).print() << "\t";

output << "\n";

if (EndCondition && ++numItemsCounter == NumberOfItems)
{
mReqEnd = true;
requestEnd();

}
}

}

wrapup
{
LOG_DEL; delete p_out; // flush output
p_out = 0;

}

destructor
{
LOG_DEL; delete p_out; // flush output

}
}

13-36 MLDesigner Version 2.8

13.5 Primitive Language Constructs

This primitive is polymorphic since it can operate on any type of input. Note that the default value
of the output filename is <stdout>, which causes the output to go to the standard output in this
case the Command console. This and other aspects of the pt ofstream output stream class
are explained below in sec. 13.6.2.1 on page 13-40. The iterator nexti used to scan the input is
explained in sec. 13.6.3 on page 13-48.

13.5.7 Preventing Memory Leaks in C++ Code
Memory leaks occur when new memory is allocated dynamically and never deallocated. In C
programs, new memory is allocated by the malloc or calloc functions, and deallocated by the
free function. In C++, new memory is usually allocated by the new operator and deallocated by
the delete or the delete [] operator. The problem with memory leaks is that they accumu-
late over time and may cripple or even crash a program, if left unchecked.
One of the most common mistakes leading to memory leaks is applying the wrong delete oper-
ator. The delete operator should be used to free a single allocated class or data value, whereas
the delete [] operator should be used to free an array of data values. In C programming, the
free function does not make this difference.
Another common mistake is overwriting a variable containing dynamic memory without freeing
any existing memory first. For example, assume that thestring is a data member of a class,
and in one of the methods (other than the constructor), there is the following statement:

thestring = new char[buflen];

This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class’ constructor because the data member would not have
been allocated previously.
In the MLDesigner primitives, the cleanup method should contain code that deletes variables
dynamically allocated. In the primitive’s constructor method, the variables containing dy-
namic memory should be initialized to zero. By freeing memory using the cleanup method, one
covers all possible cases of memory leak during simulation. Deallocating memory in the setup
method handles the situation where a simulation is restarted, whereas deallocating memory in the
cleanup covers the case in which a simulation is ended before or after the wrapup method.
This includes cases where error messages are generated and the simulation cannot be continued.
For an example implementation, see the implementation of the SDF primitive Printer given in
sec. 13.5.6.3.
Another common mistake is not paying attention to the kinds of strings returned by functions. The
function savestring returns a new string dynamically allocated and should be deleted when
no longer used. The expandPathName , tempFileName , and makeLower functions return
new strings, like the Target::writeFileName method. Therefore, the strings returned by
these routines should be deleted when they are no longer needed, and code such as

savestring(expandPathName(s))

is redundant and should be simplified to

13-37

13 Designing Primitives

expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory returned by the function
expandPathName .
Occasionally, dynamic memory is being used where local memory would be more convenient. For
example, if a variable is only used as a local variable inside a method or function and the value
of the local variable is not returned or passed to outside the method or function, then it would be
better to simply use local memory. For example,

char* localstring = new char[len + 1];
if (person == absent) return;
strcpy(localstring, otherstring);
delete [] localstring;
return;

could easily return without deallocating localstring. The code should be rewritten to use
either the StringList or InfString class, e.g.,

InfString localstring;
if (person == absent) return;
localstring = otherstring;
return;

Both StringList and InfString can manage the construction of strings of arbitrary size.
When a function or method finishes its execution, the destructors of the StringList and
InfString variables will automatically be called and will deallocate their memory. Casts have
been defined that can convert StringList to a const char* string and InfString to
a const char* or a char* string, so that instances of the StringList and InfString
classes can be passed as they are into routines that take character array (string) arguments. A

simple example of using the StringList class is a function which builds up an error message
into a single string:

StringList sl = msg;
sl << file << ": " << sys_errlist[errno];
ErrAdd(sl);

The ErrAdd function takes a const char* argument, so sl will converted automatically to a
const char* string by the C++ compiler.
Instead of using the new and delete operators, it is tempting to use constructs like

char localstring[buflen + 1];

in which buflen is a variable, because the compiler will automatically handle the deallocation
of the memory. Unfortunately, this syntax is a GNU g++ extension and not portable to other C++
compilers. Instead, the StringList and InfString classes should be used, as the previous
example involving localstring illustrates.
Sometimes the return value from a routine that returns dynamic memory is not stored, and there-
fore, the pointer to the dynamic memory gets lost. This occurs, for example, in nested function
calls. Code like

13-38 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

puts(savestring(s));

should be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several places in MLDesigner, especially in the schedulers and targets, rely on the hashstring
function, which returns dynamic memory. This dynamic memory, however, should not be deal-
located because it may be reused by other calls to hashstring . It is the responsibility of the
hashstring function to deallocate any memory it has allocated.

13.6 Infrastructure for Primitive Definition
The MLDesigner kernel provides a number of C++ classes that often prove useful to primitive
writers. Some of these are essential such as those that handle errors. Complete documentation of
the kernel classes is given in [BH97]. Here, we summarize only the most generic of these classes,
i.e., the ones that are generally useful to primitive programmers. All of these classes described
here may be used in primitives, provided that the primitive writer includes the appropriate header
files. For instance, the entry

ccinclude { "pt_fstream.h" }

will permit the primitive to create instances of the basic stream classes (described below) in the
body of functions that are defined in the primitive.

If the programmer wishes to create an instance as a private, protected, or publicmember
of the primitive, then the header file needs to be included in the .h file, specified in the line

hinclude { "pt_fstream.h" }

in the SDF primitive Printer defined on page 13-34.

13.6.1 Handling Errors
Uniform handling of errors is provided by the Error class. The Error class provides four
static methods, summarized in table 13.5. From within a primitive definition, it is not necessary to
explicitly include the Error.h header file. A typical use of the class is shown below:

Error::abortRun(*this,"this message is displayed");

The notation Error::abortRun is the way static methods are invoked in C++ without having
a pointer to an instance of the Error class. The first argument tells the Error class which
object is flagging the error; this is strongly recommended. The name of the object will be printed
along with the error message. Note that the abortRun call does not cause an immediate halt. It
simply marks a flag that the scheduler must test for. After an error insert return;
Table 13.5 uses standard C++ notation to indicate how to use the methods. The type of the return
value and the type of the arguments is given, together with an explanation of each.

13-39

13 Designing Primitives

Class Error #include "Error.h"

Method Parameter Description

static void abortRun (...) signal a fatal error, and request a halt to the
run

const NamedObj& the object triggering the error

const char* the error message

const char* = 0 optional additional message to concatenate

const char* = 0 optional additional message to concatenate

static void abortRun (...) signal a fatal error, and request a halt to the
run

const char* the error message

const char* = 0 optional additional message to concatenate

const char* = 0 optional additional message to concatenate

static void error () signal an error, without requesting a halt to
the run

static void message () output a message to the user

static void warn () generate a warning message

Table 13.5: Summary of methods of class Error

13.6.2 I/O Classes
The programmer who is working with primitives often need to communicate with the user. The
most flexible way to do this is to build a customized, window-based interface, as described in
sec. 16 on page 16-1. However, often it is sufficient to plot some data or to just construct strings
and output them to files or to the standard output2. To do the latter, use the classes pt ifstream
and pt ofstream , which are derived from the standard C++ stream classes ifstream and
ofstream, respectively. More sophisticated output can be obtained with the XGraph class,
the histogram classes, and classes that interface to Tk for generating animated, interactive
displays. All of these classes are summarized in this section.

13.6.2.1 Extended Input and Output Stream Classes

The pt ofstream class is used in the SDF primitive Printer on page 13-34. Include the header
file pt fstream.h. The pt ofstream constructor is invoked in the setup method with
the call to new . It would not work to invoke it in the constructor for the primitive, since the
fileName parameter would not have been initialized. Notice that the setup method reclaims

2Note that when you run MLDesigner, the standard output is shown in MLDesigner output window. You can start
MLDesigner with the -c option to get the output within the console window.

13-40 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

the memory allocated in previous runs (or previous invocations of the setup method) before
creating a new pt ofstream object.
The classes pt ifstream and pt ofstream are only a slight extension of the C++ standard
classes ifstream and ofstream . They add the following features:

• First, certain special filenames are recognized as arguments to the constructor or to the open
method. These filenames are <cin>, <cout>, <cerr>, or <clog> (the angle brackets
must be part of the string), then the corresponding standard stream of the same name is used
for input (pt ifstream) or output (pt ofstream). Users accustomed to C standard
I/O can alternatively use <stdin>, <stdout>, or <stderr>.

• Second, the MLDesigner expandPathName , see table 13.10 on page 13-46, is applied to
the filename before it is opened, permitting it to start with ˜user or $VAR.

• Finally, if a failure occurs when the file is opened, Error::abortRun is called with an
appropriate error message, including the Unix error condition.

These classes can be used for binary character data as well as ASCII.

13.6.2.2 Generating Graphs Using the XGraph Class

The XGraph class provides an interface to the 2D plotting functions of MLDesigner . The 2D
plotting system and all plotting options are documented in sec. 8.2. An example of the output from
MLDesigner 2D plotting system is shown in fig. 13.4.

Figure 13.4: Example of output of the plotting system using the XGraph class

The most useful methods of the class are summarized in table 13.6. Using the XGraph class
involves an invocation of the initialize method, some number of invocations of the addPoint
method, followed by an invocation of the terminate method. Multiple datasets (currently up to
64) may be plotted together. They will each be given a distinctive color and/or line pattern. Within
each dataset, it is possible to break the connecting lines between points by calling the newTrace
method.

13-41

13 Designing Primitives

Class XGraph #include "Display.h"

Method Parameter Description

void initialize (...) start a new plot

Block* parent pointer to the block using the class

int noGraphs the number of datasets to plot

const char* options options to pass to the plotting system

const char* title title to put on the graph

const char* saveFile= 0 name of a file to save data to

int ignore = 0 number of initial points to ignore

void addPoint (...) add the next point to the first dataset with im-
plicit x position

float y the vertical position

void addPoint (...) add a single point to the first dataset

float x the horizontal position of the point to plot

float y the vertical position of the point to plot

void addPoint (...) add a single point to a particular dataset

int dataSet the number of the dataset (starting with 1)

float x the horizontal position of the point to plot

float y the vertical position of the point to plot

void newTrace (...) start a new trace independent from the previ-
ous trace

int dataSet = 1 the dataset for the new trace

void terminate () plot the data using the 2D plotting system

Table 13.6: Summary of methods of class XGraph

13.6.2.3 Classes for Displaying Animated Bar Graphs

The BarGraph class creates a Tk window to displays a bar graph that can be modified dy-
namically, while a simulation runs. An example with 5 datasets and 8 bars per dataset is shown
in fig. 13.5. The most useful methods of the class are summarized in table 13.7. Correspond-
ingly, the class definition source code is in $MLD/src/pigilib, rather than the more usual
$MLD/src/kernel.

13-42 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

Figure 13.5: Example of animated bar graph using the BarGraph class

Class BarGraph #include "BarGraph.h"

Method Parameter Description

int setup (...) start a fresh plot; return FALSE if setup fails

Block* parent pointer to the block using the class

char* desc label for the bar graph

int numInputs the number of datasets to plot

int numBars the number of bars per dataset to show at once

double top the numerical value that will produce the
highest bar

double bottom the numerical value that will produce the low-
est bar

char* geometry the starting position for the window (e.g.
+0+0 or -0-0)

double width the starting width of the window (in cm)

double height the starting height of the window (in cm)

int update (...) modify or add a bar; return FALSE if it fails

int dataSet the number of the dataset (starting with 0)

int bar the horizontal position of the point to plot

double y the requested height of the bar

Table 13.7: Summary of methods of class BarGraph

13-43

13 Designing Primitives

13.6.2.4 Collecting Statistics Using the Histogram Classes

The Histogram class constructs a histogram of data supplied using Tk widget classes. The
XHistogram class also constructs a histogram, but then plots it using the 2D plotting sys-
tem. The most useful methods of both classes are summarized in table 13.8 and table 13.9. The
Histogram class counts the number of occurrences of data values that fall within each of a
number of bins. Each bin represents a range of numbers. All bins have the same width, and the
center of each bin will be an integer multiple of this width. Bin number 0 is always the one with
the smallest center. Bins are added if new data arrives that does not fit within any of the existing
bins. The getData method is used to read out the contents of a bin. If you start with bin number
0, and proceed until getData returns FALSE, you will have read all the bins.

Class Histogram #include "Histogram.h"

Method Parameter Description

Histogram (...) constructor

double width = 1.0 the width of each bin; bins are centered at in-
teger multiples of this value

int maxBins = 1000 since bins are added as needed, it is wise to
limit their number

void add (...) add to the count of the bin within the given
data belongs in

double x a data point for the histogram

int numCounts () return the number of data values used so far
in the histogram

double mean () return the average value of all observed data
so far

double variance () return the variance of the observed data so far

int getData (...) get the count for a given bin; return FALSE if
the bin is out of range

int binno starting at 0, the bin number

int& count place to store the count for the given bin

double& binCenter place to store the center of the given bin

Table 13.8: Summary of methods of class Histogram

13-44 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

Class XHistogram #include "Histogram.h"

Method Parameter Description

void initialize (...) start a new histogram

Block* parent pointer to the block using the class

double binWidth the width of each bin; bins are centered at in-
teger multiples of this value

const char* options options to pass to the 2D plotting system, in
addition to -bar -nl -brw

const char* title title to put on the histogram

const char* saveFile name of a file to save data to (or 0 if none)

int maxBins = 1000 limit the number of bins

void addPoint (...) add to the count of the bin within the given
data belongs in

double y a data point for the histogram

int numCounts () return the number of data values used so far
in the histogram

double mean () return the average value of all observed data
so far

double variance () return the variance of the observed data so far

void terminate () plot the histogram using the 2D plotting sys-
tem

Table 13.9: Summary of methods of class XHistogram

13.6.3 String Functions and Classes
The MLDesigner kernel defines some ordinary functions (not classes) plus two classes that are
useful for building and manipulating C style strings. The non-class string functions are summa-
rized in table 13.10. This includes functions for copying strings, adding strings to a system-wide
hash table and creating temporary filenames. The non-class pathname functions are summarized
in table 13.11. These functions are for expanding filenames that might begin with a reference to
a user’s home directory ˜user or contain a shell environment variable $VAR. Also provided is
a function for verifying that an external program to be invoked is available, and a function for
searching the user’s path.

13-45

13 Designing Primitives

String functions #include "miscFuncs.h"

Function Parameter Description

char* savestring (...) create a new copy of the given text and re-
turn a pointer to it; the caller must eventually
delete the string.

const char* text

const char* hashstring (...) save a copy of the text in a system-wide hash
table, if it isn’t already there, and return a
pointer to the entry.

const char* text

char* tempFileName () return a new, unique temporary filename; the
caller must eventually delete the string.

const char* expandPathName (...) return an expanded version of the filename ar-
gument, which may start with ˜, ˜user, or
$VAR; the expanded result is in static storage,
and will be overwritten by the next call.

const char* text

Table 13.10: Summary of String functions

Path search functions #include "paths.h"

Function Parameter Description

int progNotFound (...) flag an error and return TRUE if a program is
not found

const char* program the name of the program to find in the user’s
path

const char* extramsg= 0 message to add to error message if the pro-
gram isn’t found

const char* pathSearch (...) find a file in a Unix-style path, returning the
directory name

const char* file filename to find in the path

const char* path = 0 if non-zero, the path to use instead of the
user’s path

Table 13.11: Summary of Path search functions

Two classes are provided for manipulating strings, InfString , and StringList , these

13-46 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

classes are summarized in table 13.12 and table 13.13. The InfString class inherits all of
the methods from StringList , adding only the cast to char*.

Class StringList #include "StringList.h"

Method Parameter Description

StringList (...) constructors can take one of the following
possible arguments

none return an empty StringList

const StringList& s copy s and return a new, identical StringList

char c return a StringList with one string of one char-
acter

const char* string copy the string and makes a one element
StringList containing it

int i create an ASCII representation of the number
and return a one element StringList

double x same as above

unsigned int u same as above

StringList& operator = assignment takes the same types of arguments
as the constructors, except none

StringList& operator << add one or more elements to a StringList; this
takes the same types of arguments as the con-
structors, except none

operator const char* join all elements together and return as a sin-
gle string

void initialize () delete all elements, making the StringList
empty

int length () return the length in characters (sum of the
lengths of the elements)

int numPieces () return the number of elements

const char* head () return the first element

char* newCopy () return the concatenated elements in a single
newly allocated string; the caller must free the
memory allocated

Table 13.12: Summary of methods of class StringList

13-47

13 Designing Primitives

Class InfString #include "InfString.h"

Method Parameter Description

all StringList methods see above

operator char* join all elements together and return as a sin-
gle string

Table 13.13: Summary of methods of class InfString

Although these two classes are almost identical in design, their recommended uses are quite differ-
ent. The first is designed for building up strings without having to be concerned about the current
or maximum size of the string. New characters can be appended to the string at any time, and
memory will be allocated to accommodate them. When you are ready to use the string, perhaps
by passing it to a function that expects the standard character array representation of the string,
simply cast the object to char*.

In fact, InfString is publicly derived from StringList, adding only the cast to char*.
StringList is implemented as a list of strings, where the size of the list is not bounded ahead
of time. StringList is recommended for applications where the list structure is to be pre-
served. The cast to char* in InfString destroys the list structure, consolidating all its strings
into one contiguous string.

A word of warning is necessary: if a function or expression returns a StringList or Inf-
String , and that value is not assigned to a StringList or InfString variable or ref-
erence, and the const char* or char* cast is used, it is possible (like under g++) that the
StringList or InfString temporary will be destroyed too soon, leaving the const
char* or char* pointer pointing to garbage. The solution is to assign the returned value to
a local StringList or InfString before performing the cast. Suppose, for example, that
the function foo returns an InfString . Further, suppose the function bar takes a char*
argument. Then the following code will fail:

bar(foo());

(Note that the cast to char* is implicit). The following code will succeed:

InfString x = foo();
bar(x);

The StringList class is one of several list classes in the MLDesigner kernel. A basic operation
on list classes is to sequentially access their members one at a time. This is accomplished using
an iterator class, in comparison to the list class. For the StringList class, the iterator is called
StringListIter . Its methods are summarized in table 13.14.

13-48 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

Class StringListIter #include "StringList.h"

Method Parameter Description

StringList (...) constructor

StringList& list the list on which the iterator will iterate

const char* next () return the next string on the list, or 0 if there
are no more

const char* operator++ () a synonym for ”next”, the prefix increment
operator

void reset () reset the iterator to start at the head again

Table 13.14: Summary of methods of class StringListIter

An example program fragment using this is given below:

StringListIter item(myList);
const char* string;
while ((string = item++) != 0) cout << string << "\n";

In this code sequence, myList is assumed to be a StringList previously set up.

13.6.4 List Classes
The StringList class is derived from the SequentialList class. This class is widely
used within MLDesigner to provide list functionality. This class implements a linked list with a
running count of the number of elements. It uses the generic pointer technique with

typedef void* Pointer

Thus, items in a sequential list can be pointers to any object, with a generic pointer used to access
the object. In derived classes, like StringList , this generic pointer is converted to a specific
type of pointer, like const char*. The methods are summarized in table 13.15.

An important point to keep in mind when using a SequentialList is that its destructor does
not delete the elements in the list. It would not be possible to do so, since it has only a generic
pointer. Also, note that random access (by element number, or any other method) can be very
inefficient, since it would require sequentially chaining down the list.

SequentialList has an iterator class called ListIter . The ++ operator (or next member
function) returns a Pointer . In Table 13.16 and table 13.17 are shown two classes that are
privately derived from SequentialList , Queue and Stack . The first of these can imple-
ment either a first-in / first-out (FIFO) queue, or a last-in / first-out (LIFO) queue. The second
implements a stack, which is equivalent to a LIFO queue.

13-49

13 Designing Primitives

Class SequentialList #include "DataStruct.h"

Method Parameter Description

void append (Pointer p) add the element p to the end of the list

Pointer elem (int n) return the n-th element in the list (zero if there
are fewer than n)

int empty () return 1 if empty, 0 if not

Pointer getAndRemove () return and remove the first element in the list
(return zero if empty)

Pointer getTailAndRemove () return and remove the last element in the list
(return zero if empty)

Pointer head () return the first element in the list (zero if
empty)

void initialize () remove all elements from the list

int member (Pointer p) return 1 if the list has a pointer equal to p, 0 if
not

void prepend (Pointer p) add the element p to the beginning of the list

int remove (Pointer p) if the list has a pointer equal to p, remove it,
and return 1; 0 if not

int size () return the number of elements in the list

Pointer tail () return the last element in the list (zero if
empty)

Table 13.15: Summary of methods of class SequentialList

Class Queue #include "DataStruct.h"

Method Parameter Description

Pointer getHead () return and remove the first element in the
queue (return zero if empty)

Pointer getTail () return and remove the last element in the
queue (return zero if empty)

void initialize () remove all elements from the queue

void putHead (Pointer p) add the element p to the beginning of the
queue

void putTail (Pointer p) add the element p to the end of the queue

int size () return the number of elements in the queue

13-50 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

Class Queue #include "DataStruct.h"

Method Parameter Description

Table 13.16: Summary of methods of class Queue

Class Stack #include "DataStruct.h"

Method Parameter Description

Pointer accessTop () return the top of the stack without removing it
(return zero if empty)

void initialize () remove all elements from the stack

Pointer popTop () return and remove the top element from the
stack (zero if empty)

void pushBottom (Pointer p) add the element p to the bottom of the stack

void pushTop (Pointer p) add the element p to the top of the stack

int size () return the number of elements in the stack

Table 13.17: Summary of methods of class Stack

13.6.5 Hash Tables
Hash tables are lists that are indexed by an ASCII string. A hash function computes the key index
from the string to make random accesses reasonably efficient. They are much more efficient, for
example, than a linear search over a SequentialList. Two of these classes are provided in
the MLDesigner kernel. The first, HashTable , is generic, in that the table entries are of type
Pointer , and thus can point to any user-defined data structure. The second, TextTable , is
more specialized; the entries are strings. It is derived from HashTable .

Class HashTable #include "HashTable.h"

Method Parameter Description

void clear () empty the table

virtual void cleanup (...) does nothing; in derived classes, this might
deallocate memory

Pointer p

int hasKey (...) return 1 if the given key is in the table, 0 oth-
erwise

const char* key

13-51

13 Designing Primitives

Class HashTable #include "HashTable.h"

Method Parameter Description

void insert (...) insert an entry; any previous entry with the
same key is replaced, and the cleanup method
is called so that in derived classes, its memory
can be deallocated

const char* key

Pointer data

Pointer lookup (...) look up an entry; in a derived class, this could
be overloaded to return a pointer of a more
specific type

const char* key

int remove (...) remove the entry with the given key from the
table; note that the object pointed to by the
entry is not deallocated

const char* key

int size () return the number of entries in the hash table

Table 13.18: Summary of methods of class HashTable

The HashTable class is summarized in table 13.18 and TextTable class is summarized in
table 13.19. Only the most useful (and easily used) methods are described. You may want to
refer to the source code for more information. The HashTable class has a standard iterator
called HashTableIter , where the next method and ++ operator return a pointer to class
HashEntry . This class has a const char* key() method that returns the key for the en-
try, and a Pointer value() method that returns a pointer to the entry. TextTable has an
iterator called TextTableIter , where the next method and ++ operator return type const
char*.
Sophisticated users will often want to derive new classes from HashTable . The reason is that
the methods that look up data in the table can be defined to return pointers of the appropriate type.
Moreover, the deallocation of memory when an entry is deleted or the table itself is deleted can
be automated. TextTable is a good example of such a derived class. This is not possible with
the generic HashTable class, because the Pointer type does not give enough information to
know what destructor to invoke. Thus, when using the generic HashTable class, the program-
mer should explicitly delete the objects pointed to by the Pointer if they were dynamically
created and are no longer needed. A detailed example that directly uses the HashTable class,
without defining a derived class, is given in the next section. In that example, the Pointer
entries point to primitive in a system, so they should not be deleted when the entries in the table
are deleted. Their memory will be deallocated when the system is deleted.

13-52 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

Class TextTable #include "HashTable.h"

Method Parameter Description

void clear () empty the table

void cleanup (...) deallocate the string pointed to by p

Pointer p

int hasKey (...) return 1 if the given key is in the table, 0 oth-
erwise

const char* key

void insert (...) create an entry containing a copy of string;
a previous entry with the same key is re-
placed, and the cleanup method is called to
deallocate its memory

const char* key

const char* string

const char* lookup (...) look up an entry with the given key; return 0
if there is no such entry

const char* key

int remove (...) remove the entry with the given key from the
table and deallocated its memory

const char* key

int size () return the number of entries in the hash table

Table 13.19: Summary of methods of class TextTable

13.6.6 Using Random Numbers
The primitives Random* found in the Number Generators library replaces the wide range of prim-
itives that were previously available and have been moved to Compatibility/NumberGenerators.
Every time the primitive is executed it generates a value that is a random deviate drawn from the
distribution selected by parameter Distribution. The Properties Editor Window of a random
number generator instance primitive is shown in fig. 13.6.
The following distributions are available, with their parameters shown in parenthesis:

1. Binomial - (Trials, Probability, Seed)
2. Exponential - (Mean, Seed)
3. Normal - Mean, Variance, Seed)
4. Poisson - (Mean, Seed)
5. Uniform - (Min, Max, Seed)

A separate seed value can be defined for each instance of the primitive which determines whether

13-53

13 Designing Primitives

Figure 13.6: Random Number Generator Properties

1. a local seed is used,
2. a generated seed is used, or
3. the global seed is used.

The parameter Seed is used to determine how the given seed value is used by the primitive (see
table 13.20).

Seed Value Function

Positive The given seed value is used as local seed, that is, all instances
with the same seed generate the same sequence of deviates on
each simulation run.

Negative The global seed is used. All instances generate different se-
quences during a simulation run, but each instance generates the
same sequence of deviates on consecutive simulation runs.

Zero A unique seed value is computed using current system time. All
instances generate different sequences during the simulation run
and each instance generates a different sequence of deviates on
consecutive simulation runs.

Table 13.20: Random Number Generation and Seed Value

13-54 MLDesigner Version 2.8

13.6 Infrastructure for Primitive Definition

The following code must be used (duplicated code indicates that it can be used in either the setup
or the go method):

hinclude { <Rng/Normal.h> }

protected
{
Rng::Normal mRandom;

}

setup
{
mRandom.setMean(MeanValue);
mRandom.setVariance(VarianceValue);
mRandom.setSeed(SeedValue);

}

go
{
mRandom.setMean(MeanValue);
mRandom.setVariance(VarianceValue);
mRandom.setSeed(SeedValue);

Output%0 << mRandom();
}

13-55

Chapter 14

Using Data Types

Primitives communicate with each other by sending objects of Particle type. A basic set
of types, including scalar and array types, inherited from the Particle class, is built into the
MLDesigner kernel. Since all of these particle types are derived from the same base class, it is
possible to write primitives that operate on any of them (by referring only to the base class). It is
also possible to define new types that contain arbitrary C++ objects.
There are currently eleven key data types defined in the MLDesigner kernel. There are four nu-
meric scalar types - complex, fixed-point, double precision floating-point, and integer - described
in sec. 14.1. MLDesigner supports a limited form of user-defined type, the Message type, de-
scribed in sec. 14.2. Each of the scalar numeric types has an equivalent matrix type, which uses a
more complex version of the user-defined type mechanism; they are described in sec. 14.3.
There are two experimental types included in the basic set, containing strings and file references,
described in sec. 14.4. MLDesigner allows primitives to be written that will read and write parti-
cles of any type. This mechanism is described in sec. 14.5. Finally, some additional experimental
types described in sec. 14.6.

NOTE: Experimental classes are currently unsupported and are likely to be changed in the fu- �
ture.

14.1 Scalar Numeric Types

There are four scalar numeric data types defined in the MLDesigner kernel:

• complex
• fixed-point
• floating-point with double precision
• integer

All of these four types can be read from and written to ports as described in sec. 13.5.3 on page 13-
22. The floating-point and integer data types are based on the standard C++ double and int
types, and need no further explanation. To support the other two types, the MLDesigner kernel
contains a Complex and a Fix class, which are described in this section.

14 Using Data Types

14.1.1 Complex Data Type

The Complex data type in MLDesigner contains real and imaginary components, each of them
is specified as a double precision floating-point number. The notation used to represent a complex
number is a two number pair (real, imaginary) - for example, (1.3,-4.5) corresponds
to the c omplex number 1.3 - 4.5j. Complex implements a subset of the functionality of
the complex number classes in the cfront and libg++ libraries, including most of the standard
arithmetic operators and a few transcendental functions.

14.1.1.1 Constructors

Complex()

Create a complex number, initialized with zero (0.0, 0.0). For example:
Complex c;

Complex(double real, double imag)

Create a complex number with the value (real, imag). For example:
Complex c(1.3,-4.5);

Complex(const Complex& arg)

Create a complex number which is identical to the complex number arg. For
example:
Complex c(complexSourceNumber);

14.1.1.2 Basic Operators

The following list of arithmetic operators modify the value of the complex number. All functions
return a reference to the modified complex number (*this).

Complex& operator = (const Complex& arg)
Complex& operator += (const Complex& arg)
Complex& operator -= (const Complex& arg)
Complex& operator *= (const Complex& arg)
Complex& operator /= (const Complex& arg)
Complex& operator *= (double arg)
Complex& operator /= (double arg)

These two operators return the real and imaginary parts of the complex number:

double real() const
double imag() const

14-2 MLDesigner Version 2.8

14.1 Scalar Numeric Types

14.1.1.3 Non-member functions and operators

The following unary and binary operators return a new complex number:

Complex operator + (const Complex& x, const Complex& y)
Complex operator - (const Complex& x, const Complex& y)
Complex operator * (const Complex& x, const Complex& y)
Complex operator * (double x, const Complex& y)
Complex operator * (const Complex& x, double y)
Complex operator / (const Complex& x, const Complex& y)
Complex operator / (const Complex& x, double y)
Complex operator - (const Complex& x)
Complex conj (const Complex& x)
Complex sin(const Complex& x)
Complex cos(const Complex& x)
Complex exp(const Complex& x)
Complex log(const Complex& x)
Complex sqrt(const Complex& x)
Complex pow(double base, const Complex& expon)
Complex pow(const Complex& base, const Complex& expon)

14.1.1.4 Other general operators

double abs(const Complex& x)

Return the absolute value, defined as the square root of the norm.

double arg(const Complex& x)

Return the value defined by arctan(x.imag()/x.real()).

double norm(const Complex& x)

Return the value x.real() * x.real() + x.imag() * x.imag().

double real(const Complex& x)

Return the real part of the complex number.

double imag(const Complex& x)

Return the imaginary part of the complex number.

14.1.1.5 Comparison Operators

int operator != (const Complex& x, const Complex& y)
int operator == (const Complex& x, const Complex& y)

14-3

14 Using Data Types

14.1.2 Fixed-point Data Type

The fixed-point data type is implemented in MLDesigner by the Fix class. This class supports a
two’s complement representation of a finite precision number. In fixed-point notation, the partition
between the integer part and the fractional part, the binary point, lies at a fixed position in the bit
pattern. Its position represents a trade-off between precision and range. If the binary point lies to
the right of all bits, then there is no fractional part.

NOTE: The Fix type is still experimental.�

14.1.2.1 Constructing fixed-point variables

Variables of type Fix are defined by specifying the word length and the position of the binary
point. At the user interface level, precision is specified either by setting a fixed-point parameter
to a (value, precision) pair, or by setting a precision parameter. The former gives
the value and precision of some fixed-point value, while the latter is typically used to specify the
internal precision of computations in a primitive.
In either case, the syntax of the precision is either x.y or m/n, where x is the number of integer
bits (including the sign bit), y and m are the number of fractional bits, and n is the total number of
bits. Thus, the total number of bits in the fixed-point number (also called its length) is x+y or n.
For example, a fixed-point number with precision 3.5 has a total length of 8 bits, with 3 bits to
the left and 5 bits to the right of the binary point.
At the source code level, methods working on Fix objects either have the precision passed as an
x.y or m/n string, or as two C++ integers that specify the total number of bits and the number
of integer bits including the sign bit (that is, n and x). For example, suppose you have a primitive
with a precision parameter named precision. Consider the following code:

Fix x = Fix((const char *) precision);
if (x.invalid())
Error::abortRun(*this, "Invalid precision");

The precision parameter is cast to a string and passed as argument to the Fix class construc-
tor. The error check verifies that the precision was valid.
There is a maximum value for the total length of a Fix object which is specified by the constant
FIX MAX LENGTH in the file $MLD/src/kernel/Fix.h. The current value is 64 bits. Num-
bers in the Fix class are represented using two’s complement notation, with the sign bit stored in
the bits to the left of the binary point. There must always be at least one bit to the left of the binary
point to store the sign.
In addition to its value, each Fix object contains information about its precision and error codes
indicating overflow, divide-by-zero, or bad format parameters. The error codes are set when errors
occur in constructors or arithmetic operators. There are also fields to specify:

a. whether rounding or truncation should take place when other Fix values are assigned to it,
truncation is the default,

b. the response to an overflow or underflow on assignment, the default is saturation.

14-4 MLDesigner Version 2.8

14.1 Scalar Numeric Types

14.1.2.2 Fixed-point parameter

Parameter variables can be declared as Fix or FixArray . The precision is specified by an
associated precision parameter using either one of two possible syntaxes:

• By specifying just a value itself in the dialog box. This creates a fixed-point number with the
default length of 24 bits and with the position of the binary point set as required to store the
integer value. For example, the value 1.0 creates a fixed-point object with precision 2.22,
and the value 0.5 would create one with precision 1.23.

• By specifying a (value, precision) pair. This create a fixed-point number with the specified
precision. For example, the value (2.546, 3.5) creates a fixed-point object by casting the
double 2.546 to a Fix with precision 3.5.

14.1.2.3 Fixed-point inputs and outputs

Fix types are available in MLDesigner as a type of Particle . The conversion from an int
or a double to a Fix takes place using the Fix::Fix(double) constructor which creates a
Fix object with the default word length of 24 bits and the number of integer bits as required by
the value. For instance, the double 10.3 will be converted to a Fix with precision 5.19, since 5
is the minimum number of bits needed to represent the integer part, 10, including its sign bit.
To use the Fix type in a primitive, the type of the portholes must be declared as fix. Primitives
that receive or transmit fixed-point data have parameters that specify the precision of the input
and output in bits, as well as the overflow behavior. Here is a simplified version of SDF primitive
AddFix, configured for two inputs:

defprimitive
{
name { AddFix }
domain { SDF }
derived { SDFFix }
input
{
name { input1 }
type { fix }

}
input
{
name { input2 }
type { fix }

}
output
{
name { output }
type { fix }

}
defparameter
{

14-5

14 Using Data Types

name { OutputPrecision }
type { precision }
default { 2.14 }
desc
{
Precision of the output in bits and precision of the
accumulation. When the value of the accumulation
extends outside of the precision, the OverflowHandler
will be called.

}
}

}

Note that the real AddFix primitive supports any number of inputs. By default, the precision used
by this primitive during the addition will have 2 bits to the left of the binary point and 14 bits
to the right. Not shown here is the parameter OverflowHandler, which is inherited from the
SDFFix primitive and defaults to saturate, that is, if the addition overflows, the result saturates,
pegging it to either the largest positive or negative number representable. The result value, sum,
is initialized by the following code:

protected { Fix sum; }
begin
{
SDFFix::begin();
sum = Fix(((const char *) OutputPrecision));
if (sum.invalid())
Error::abortRun(*this, "Invalid OutputPrecision");

sum.set_ovflow(((const char*) OverflowHandler));
if (sum.invalid())
Error::abortRun(*this, "Invalid OverflowHandler");

}

The begin method checks the specified precision and overflow handler for correctness. Then, in
the go method, the sum is used to add the input values, thus taking care that the desired precision
and overflow handling are enforced. For example,

go
{
sum.setToZero();
sum += Fix(input1%0);
checkOverflow(sum);
sum += Fix(input2%0);
checkOverflow(sum);
output%0 << sum;

}

The checkOverflow method is inherited from SDFFix primitive. The protected member sum
is an uninitialized Fix object until the begin method runs. In the begin method, it is given

14-6 MLDesigner Version 2.8

14.1 Scalar Numeric Types

the precision specified by OutputPrecision. The go method initializes it to zero. If the
go method had assigned a value specified by another Fix object instead, it would acquire the
precision of that other object, at the point it had be initialized.

14.1.2.4 Assignment and overflow handling

Once a Fix object has been initialized, its precision does not change as long as the object exists.
The assignment operator is overloaded so it checks whether the value of the object to the right of
the assignment fits into the precision of the left object. If not, it then takes the appropriate overflow
response and sets the overflow error bit.
If a Fix object is with no arguments in the constructor, as in the protected declaration above,
then that object is an uninitialized Fix . It can accept any assignment, acquiring not only its value,
but also its precision and overflow handler.
The behavior of a Fix object on an overflow depends on the specifications and the behavior of
the object itself. Each object has a private data field that is initialized by the constructor. If there
is an overflow, the overflow handler looks at this field and uses the specified method to han-
dle the overflow. This data field is set to saturate by default, and can be set explicitly to any
other desired overflow handling method using a function called set ovflow(<keyword>).
The keywords for overflow handling methods are: saturate (default), zero saturate,
wrapped, warning. saturate replaces the original value is replaced by the maximum (for
overflow) or minimum (for underflow) value representable given the precision of the Fix object.
zero saturate sets the value to zero.

14.1.2.5 Explicitly casting inputs

In the above example, in the second line of the go method the input is added to the protected
member sum, which has the side-effect of quantizing the input value to the precision of sum. The
programmer also could have written the go method as follows:

go
{
sum = Fix(input1%0) + Fix(input2%0);
output%0 << sum;

}

The behavior here is significantly different: the inputs are added using their own native precision,
and only the result is quantized to the precision of sum.
Some primitives allow the programmer to select between these two different behaviors with a
parameter called ArrivingPrecision. If set to YES, the input particles are not explicitly
cast. They are used as they are. If set to NO, the input particles are cast to an internal precision,
which is usually specified by another parameter.
Here is the (abbreviated) source of the SDF primitive GainFix, which demonstrates this point:

defprimitive
{
name { GainFix }
domain { SDF }

14-7

14 Using Data Types

derived{ SDFFix }
desc
{
This is an amplifier; the fixed-point output is the
fixed-point input multiplied by the "gain" (default
1.0). The precision of "gain", the input, and the
output can be specified in bits.

}
input
{
name { input }
type { fix }

}
output
{
name { output }
type { fix }

}
defparameter
{
name { gain }
type { fix }
default { 1.0 }
desc { Gain of the primitive. }

}
defparameter
{
name { ArrivingPrecision }
type {int}
default {"YES"}
desc
{
Flag indicating whether or no to use the arriving
particles as they are: YES keeps the same precision,
and NO casts them to the precision specified by
the parameter "InputPrecision".

}
}
defparameter
{
name { InputPrecision }
type { precision }
default { 2.14 }
desc
{
Precision of the input in bits. The input

14-8 MLDesigner Version 2.8

14.1 Scalar Numeric Types

particles are only cast to this precision if
the parameter "ArrivingPrecision" is set to NO.

}
}
defparameter
{
name { OutputPrecision }
type { precision }
default { 2.14 }
desc
{
Precision of the output in bits. This is the precision
that will hold the result of the arithmetic operation
on the inputs. When the value of the product extends
outside of the precision, the OverflowHandler will be
called.

}
}

protected
{
Fix fixIn, out;

}

begin
{
SDFFix::begin();
if (! int(ArrivingPrecision))
{
fixIn = Fix(((const char *) InputPrecision));
if(fixIn.invalid())
Error::abortRun(*this, "Invalid InputPrecision");

}
out = Fix(((const char *) OutputPrecision));
if (out.invalid())
Error::abortRun(*this, "Invalid OutputPrecision");

out.set_ovflow(((const char *) OverflowHandler));
if(out.invalid())
Error::abortRun(*this,"Invalid OverflowHandler");

}

go
{ // all computations should be performed with out since
// that is the Fix variable with the desired overflow
// handler
out = Fix(gain);

14-9

14 Using Data Types

if (int(ArrivingPrecision))
{
out *= Fix(input%0);

}
else
{
fixIn = Fix(input%0);
out *= fixIn;

}
checkOverflow(out);
output%0 << out;

}
}

Note that the SDFGainFix primitive and many of the Fix primitives are derived from the primitive
SDFFix. SDFFix implements commonly used methods and defines two parameters: Overflow-
Handler selects one of four overflow handlers to be called each time an overflow occurs, and
ReportOverflow , which, if true, causes the number and percentage of overflows that occurred
for that primitive during a simulation run to be reported in the wrapup method.

14.1.2.6 Constructors

Fix()

Create a Fix number with unspecified precision and value zero.

Fix(int length, int intbits)

Create a Fix number with total word length of length bits and intbits bits
to the left of the binary point. The value is set to zero. If the precision parameters
are not valid, an error bit is internally set so that the invalid method will return
TRUE.

Fix(const char* precisionString)

Create a Fix number whose precision is determined by precisionString,
which has the syntax leftbits.rightbits, where leftbits is the number of bits to
the left of the binary point and rightbits is the number of bits to the right of the
binary point, or rightbits/totalbits, where totalbits is the total number of bits.
The value is set to zero. If the precisionString is not in the proper format,
an error bit is internally set so that the invalid method will return TRUE.

Fix(double value)

Create a Fix with the default precision of 24 total bits for the word length and
set the number of integer bits to the minimum needed to represent the integer part
of the number value. If the given value needs more than 24 bits to be represent,
the value will be clipped and the number stored will be the largest possible under
the default precision (i.e. saturation occurs). In this case an internal error bit is set
so that the ovf occurred method will return TRUE.

14-10 MLDesigner Version 2.8

14.1 Scalar Numeric Types

Fix(int length, int intbits, double value)

Create a Fix with the specified precision and set its value to the given value.
The number is rounded to the closest representable number given the precision. If
the precision parameters are not valid, then an error bit is internally set so that the
invalid method will return TRUE.

Fix(const char* precisionString, double value)

Same as the previous constructor except that the precision is specified by the
given precisionString instead of as two integer arguments. If the preci-
sion parameters are not valid, an error bit is internally set so that the invalid()
method will return TRUE when called on the object.

Fix(const char* precisionString, uint16* bits)

Create a Fix with the specified precision and set the bits precisely to the ones
in the given bits argument. The first word pointed to by bits contains the
most significant 16 bits of the representation. Only as many words as necessary
to fetch the bits will be referenced from the bits argument. For example:
Fix("2.14",bits) will only reference bits[0].

This constructor gets very close to the representation and is meant mainly
for debugging. It may be removed in the future.

Fix(const Fix& arg)

Copy constructor. Produces an exact duplicate of arg.

Fix(int length, int intbits, const Fix& arg)

Read the value from the arg and set to a new precision. If the precision parame-
ters are not valid, an error bit is internally set so that the invalid method will return
TRUE when called on the object. If the value from the source will not fit, an error
bit is set so that the ovf occurred method will return TRUE.

14.1.2.7 Functions to set or display information about the Fix number

int len() const

Return the total word length of the Fix number.

int intb() const

Return the number of bits to the left of the binary point.

int precision() const

Return the number of bits to the right of the binary point.

int overflow() const

14-11

14 Using Data Types

Return the code of the type of overflow response for the Fix number. The possi-
ble codes are:

• 0 - ovf saturate,
• 1 - ovf zero saturate,
• 2 - ovf wrapped,
• 3 - ovf warning,
• 4 - ovf n types.

int roundMode() const
Return the rounding mode: 1 for rounding, 0 for truncation.

int signBit() const
Return TRUE if the value of the Fix number is negative, FALSE if it is positive
or zero.

int is zero()
Return TRUE if the value of the Fix number is zero.

double max()
Return the maximum value representable using the current precision.

double min()
Return the minimum value representable using the current precision.

double value()
The value of the Fix number as a double.

void setToZero()
Set the value of the Fix number to zero.

void set overflow(int value)
Set the overflow type.

void set rounding(int value)
Set the rounding type: TRUE for rounding, FALSE for truncation.

void initialize()
Discard the current precision format and set the Fix number to zero.

There are a few functions for backward compatibility:

void set ovflow(const char*)
Set the overflow using a name.

void Set MASK(int value)
Set the rounding type. Same functionality as set rounding().

14-12 MLDesigner Version 2.8

14.1 Scalar Numeric Types

14.1.2.8 Comparison function

int compare (const Fix& a, const Fix& b)

Compare two Fix numbers. Return -1 if a < b, 0 if a = b, 1 if a > b.

The following functions are for use with the error condition fields:

int ovf occurred()

Return TRUE if an overflow has occurred as the result of some operation like
addition or assignment.

int invalid()

Return TRUE if the current value of the Fix number is invalid due to it having
an improper precision format, or if some operation caused a divide by zero.

int dbz()

Return TRUE if a divide by zero error occurred.

void clear errors()

Reset all error bit fields to zero.

14.1.2.9 Operators

Fix& operator = (const Fix& arg)

Assignment operator. If *this does not have its precision format set (i.e. it
is uninitialized), the source Fix is copied. Otherwise, the source Fix value
is converted to the existing precision. Either truncation or rounding takes place,
based on the value of the rounding bit of the current object. Overflow results
either in saturation, ”zero saturation” (replacing the result with zero), or a warn-
ing error message, depending on the overflow field of the object. In these cases,
ovf occurred will return TRUE on the result.

Fix& operator = (double arg)

Assignment operator. The double value is first converted to a default precision
Fix number and then assigned to *this.

The function of these arithmetic operators should be self-explanatory:

Fix& operator += (const Fix&)
Fix& operator -= (const Fix&)
Fix& operator *= (const Fix&)
Fix& operator *= (int)
Fix& operator /= (const Fix&)
Fix operator + (const Fix&, const Fix&)
Fix operator - (const Fix&, const Fix&)
Fix operator * (const Fix&, const Fix&)
Fix operator * (const Fix&, int)

14-13

14 Using Data Types

Fix operator * (int, const Fix&)
Fix operator / (const Fix&, const Fix&)
Fix operator - (const Fix&) // unary minus
int operator == (const Fix& a, const Fix& b)
int operator != (const Fix& a, const Fix& b)
int operator >= (const Fix& a, const Fix& b)
int operator <= (const Fix& a, const Fix& b)
int operator > (const Fix& a, const Fix& b)
int operator < (const Fix& a, const Fix& b)

Note:

• These operators are designed so that overflow does not occur in normal cases (the return
value has a wider format than that of its arguments). The exception is when the result
cannot be represented in a Fix with all 64 bits before the binary point.

• The output of any operation will have error codes that are the logical OR of those of the
arguments to the operation, plus any additional errors that occurred during the operation
(like divide by zero).

• The division operation is currently a hack: it converts to double and computes the result,
converting back to Fix .

• The relational operators ==, ! =, >=, <=, >, < are all written in terms of a function
int compare(const Fix& a, const Fix& b)
This functions returns -1 if a < b, 0 if a = b, and 1 if a > b. The comparison is exact
(every bit is checked) if the two values have the same precision format. If the precisions are
different, the arguments are converted to doubles and compared. Since double values only
have an accuracy of about 53 bits on most machines, this may cause false equality reports
for Fix values with many bits.

14.1.2.10 Conversions

operator int() const
Return the value of the Fix number as an integer, truncating towards zero.

operator float() const

operator double() const
Convert to a float or a double, creating an exact result when possible.

void complement()
Replace the current value by its complement.

14.1.2.11 Fix overflow, rounding, and errors

The Fix class defines the following enumeration values for overflow handling:

Fix::ovf_saturate
Fix::ovf_zero_saturate
Fix::ovf_wrapped
Fix::ovf_warning

14-14 MLDesigner Version 2.8

14.2 Defining New Data Types

They may be used as arguments to the set overflow method, as in the following example:

out.set_overflow(Fix::ovf_saturate);

The member function

int overflow() const;

returns the overflow type. This returned result can be compared against the above enumerated
values. Overflow types may also be specified as strings, using the method

void set_ovflow(const char* overflow_type);

the overflow type argument may be one of saturate, zero saturate, wrapped, or
warning.

The rounding behavior of a Fix value may be set by calling

void set_rounding(int value);

If the argument is false, or has the value Fix::mask truncate, then truncation will occur.
If the argument is nonzero, for example, if it has the value Fix::mask truncate round,
rounding will occur. The older name Set MASK is a synonym for set rounding.
The following functions access the error bits of a Fix result:

int ovf_occurred() const;
int invalid() const;
int dbz() const;

The first function returns TRUE if there have been any overflows in computing the value. The
second returns TRUE if the value is invalid, because of invalid precision parameters or a divide by
zero. The third returns TRUE only for divide by zero.

14.2 Defining New Data Types
The MLDesigner contains a heterogeneous message interface, which provides a mechanism for
primitives to transmit arbitrary objects to other primitives. It’s design fulfills the following re-
quirements:

• Existing primitives (primitives that were written before the message interface was added)
that handle ANYTYPE work with message particles without change.

• Message portholes can send different types of messages during the same simulation. This is
especially useful for modeling communication networks.

• It avoids copying large messages by using a reference count mechanism, as in many C++
classes (for example, string classes).

• It is possible to safely modify large messages without excessive memory allocation and
deallocation.

• It is (relatively) easy for users to define their own message types. No change to the kernel is
required to support new message types.

14-15

14 Using Data Types

The message type is interpreted by MLDesigner as a particle containing a message. There are
three classes that implement the support for message types:

• The Message class is the base class from which all other message data types are derived.
A user who wishes to define an application-specific message type derives a new class from
Message .

• The Envelope class contains a pointer to a derived class from Message . When an
Envelope object is copied or duplicated, the new envelope simply sets its own pointer
to the pointer contained in the original. Thus, several envelopes can reference the same
Message object. Each Message object contains a reference count, which tracks how
many Envelope objects reference it. When the last reference is removed, the Message
is deleted.

• The MessageParticle class is a type of Particle (like IntParticle , Float-
Particle , etc.). It contains an Envelope . Ports of type message transmit and receive
objects of this type.

Class Particle contains two member functions for message support: getMessage , to re-
ceive a message, and the << operator with an Envelope as the right argument, to load a mes-
sage into a particle. These functions return errors in the base class. They are overridden in the
MessageParticle class with functions that perform the expected operation.

14.2.1 Defining a New Message Class
Every user-defined message is derived from class Message . Certain virtual functions defined
in that class must be overridden, others may optionally be overridden. Here is an example of a
user-defined message type:

// This is a simple vector message object. It stores
// an array of integer values of arbitrary length.
// The length is specified by the constructor.

#include "Message.h"

class IntVecData: public Message
{
private:
int len;
init(int length,int *srcData)
{
len = length;
data = new int[len];
for (int i = 0; i < len; i++)
data[i] = *srcData++;

}
public:// the pointer is public for simplicity
int *data;

14-16 MLDesigner Version 2.8

14.2 Defining New Data Types

int length() const { return len;}

// functions for type-checking
const char* dataType() const { return "IntVecData";}

// isA responds TRUE if given the name of the class or
// of any baseclass.
int isA(const char* typ) const
{
if (strcmp(typ,"IntVecData") == 0) return TRUE;
else return Message::isA(typ);

}

// constructor: makes an uninitialized array
IntVecData(int length): len(length)
{
data = new int[length];

}

// constructor: makes an initialized array from an int array
IntVecData(int length,int *srcData) { init(length,srcData);}

// copy constructor
IntVecData(const IntVecData& src) { init(src.len,src.data);}

// clone: make a duplicate object
Message* clone() const { return new IntVecData(*this);}

// destructor
˜IntVecData() { delete []data; }

};

This message object can contain a vector of integers of arbitrary length. Some functions in the class
are arbitrary and the programmer may define them in the way that is most convenient. However,
there are some requirements.
The class must redefine the dataType method from class Message . This function returns a
string identifying the message type. This string should be identical to the name of the class. In
addition, the isA method must be defined. The isA method responds with TRUE (or 1) if given
the name of the class or of any base class. Otherwise, it returns FALSE (or 0). This mechanism
permits primitives to handle any of a whole group of message types, even for classes that are
defined after the primitive is written.
Because of the regular structure of isA function bodies, macros are provided to generate them.
The ISA INLINE macro expands to an inline definition of the function; for example,

ISA_INLINE(IntVecData,Message)

could have been written like the example above, instead of the definition of isA to generate exactly
the same code. Alternatively, to put the function body in a .cc file, the programmer can write

14-17

14 Using Data Types

int isA(const char*) const;

in the class declaration and put

ISA_FUNC(IntVecData,Message)

in the .cc file (or wherever the methods are defined).
The class must define a copy constructor, unless the default copy constructor, generated by the
compiler which does member-wise copying, will do the job.
The class must redefine the clone method of class Message . In the example above, where
a new object is created using the new operator and the copy constructor, the form will suffice,
assuming that the copy constructor is defined.
In addition, the programmer may optionally define type conversions and printing functions if they
make sense. If a primitive which produces messages is connected to a primitive which expects
integers (or floating values, or complex values), the appropriate type conversion function is called.
The base class, Message , defines the virtual conversion functions asInt(), asFloat(),
and asComplex() and the printing method print(), see the file $MLD/src/kernel/-
Message.h for their exact types. The base class conversion functions assert a run-time error,
and the default print function returns a StringList saying

<type>: no print method

where type is whatever is returned by dataType(). By redefining these methods, the programmer
can make it legal to connect a primitive that generates messages to a primitive that expects integer,
float, or complex particles, or he can connect to a Printer or XMgraph primitive. For the XMgraph
to work, you must define the asFloat function, for Printer to work, you must define the print
method.

14.2.2 Use of the Envelope Class
The Envelope class references objects of the Message class or derived classes. Once a mes-
sage object is placed into an envelope object, the envelope takes over the responsibility for man-
aging its memory: maintaining reference counts and deleting the message when it is no longer
needed.
The constructor, which takes a reference to a Message as its argument, copy constructor, assign-
ment operator, and the destructor of Envelope manipulate the reference counts of the referenced
Message object. An assignment simply copies a pointer and increments the reference count.
When the destructor of an Envelope is called, the reference count of the Message object is
decremented. If it becomes zero, the Message object is deleted. Because of this deletion, a
Message must never be put inside an Envelope unless it was created with the new operator.
Once a Message object is put into an Envelope it doesn’t need to be explicitly deleted. It
will ”live” as long as there is at least one Envelope that contains it, and it will then be deleted
automatically.
It is possible for an Envelope to be ”empty”. If it is so, the empty method will return TRUE,
and the data field will point to a special ”dummy message” of the DUMMY type that has no data in
it.
The dataType method of Envelope returns the datatype of the contained Message ob-
ject. The methods asInt(), asFloat(), asComplex(), and print() are also ”passed

14-18 MLDesigner Version 2.8

14.2 Defining New Data Types

through”, in a similar way, to the contained object.
Two Envelope methods are provided for convenience to make type checking simpler: type-
Check and typeError . A simple example illustrates their use:

if (!envelope.typeCheck("IntVecData"))
{
Error::abortRun(*this, envelope.typeError("IntVecData"));
return;

}

The method typeCheck calls isA on the message contents and returns the result, so an er-
ror will be reported if the message contents are not IntVecData and are not derived from
IntVecData . Since the above code segment is common in primitives, a macro is included in
Message.h to generate it. The macro

TYPE_CHECK(envelope,"IntVecData");

expands to essentially the same code as above. The typeError method generates an appropriate
error message:

Expected message type ’arg’, got ’type’

To access the data, two methods are provided, myData() and writableCopy(). The myData
function returns a pointer to the contained Message -derived object. The data pointed to by this
pointer must not be modified, since other Envelope objects in the program may also contain it.
If the programmer convert its type, he should always make sure that the converted type is a const
pointer, see the programming example for UnPackInt below. This ensures that the compiler will
complain if the programmer is doing anything illegal.
The writableCopy function also returns a pointer to the contained object, but with a difference.
If the reference count is one, the envelope is emptied (set to the dummy message) and the contents
are returned. If the reference count is greater than one, a clone of the contents is made by calling
its clone() function and returned. Again the envelope is set to zero to prevent the making of
additional clones later on.
In some cases, a primitive writer will need to keep a received Message object around between
executions. The best way to do this is to have the primitive contain a member of type Envelope
, and to use this member object to hold the message data between executions. Messages should
always be kept in envelopes so that the programmer does not have to worry about memory man-
agement.

14.2.3 Use of the MessageParticle Class
If a porthole is of type message, its particles are objects of the class MessageParticle . A
MessageParticle is simply a particle whose data field is an Envelope , which means that
it can hold a Message in the same way that Envelope objects do.
Many methods of the Particle class are redefined in the MessageParticle class to cause
a run-time error. For example, it is illegal to send an integer, floating, or complex number to the
particle with the << operator. The conversion operators (conversion to type int, double, or
Complex) return errors by default, but can be made legal by redefining the asInt, asFloat,

14-19

14 Using Data Types

or asComplex methods for a specific message type.
The principal operations on MessageParticle objects are << with an argument of type En-
velope , to load a message into the particle, and getMessage(Envelope&), to transfer mes-
sage contents from the particle into a user-supplied message. The getMessage method removes
the message contents from the particle1. In cases where the destructive behavior of getMessage
cannot be tolerated, an alternative interface, accessMessage(Envelope&), is provided. It
does not remove the message contents from the particle. Promiscuous use of accessMessage
in systems with large-sized messages can increase the amount of virtual memory to be reserved
(though all message will be deleted eventually).

14.2.4 Use of Messages in Primitives
Here are a couple of simple examples of primitives that produce and consume messages. For more
advanced samples, look in the MLDesigner distribution for primitives that produce or consume
messages. The image processing classes and primitives, which are briefly described below in
sec. 14.6.2 on page 14-44, provide a particularly rich set of examples. The matrix classes described
in sec. 14.3 on page 14-23 are also good examples. The matrix classes are recognized in the
MLDesigner kernel.

defprimitive
{
name { PackInt }
domain { SDF }
desc { Accept integer inputs and produce

IntVecData messages.}
defparameter
{
name { length }
type { int }
default { 10 }
desc { number of values per message }

}
input
{
name { input }
type { int }

}
output
{
name { output }
type { message }

}
ccinclude { "Message.h", "IntVecData.h" }

1The reason for this ”aggressive reclamation” policy (both here and in other places) is to minimize the number of
unused messages in the system and to prevent unnecessary clones from being generated by writableCopy() by
eliminating references to Message objects as soon as possible.

14-20 MLDesigner Version 2.8

14.2 Defining New Data Types

setup
{
input.setSDFParams(int(length),int(length-1));

}

go
{
int l = length;
IntVecData * pd = new IntVecData(l);
// Fill in message. input%0 is newest, must reverse
for (int i = 0; i < l; i++)
pd->data[l-i-1] = int(input%i);

Envelope pkt(*pd);
output%0 << pkt;

}
}

Since this is an SDF primitive, it must produce and consume a constant number of tokens on each
step, so the message length must be fixed (though it is controllable with a parameter). See sec. 17.1
on page 17-1 for an explanation of the setSDFParams method. Notice that the output port-
hole is declared to be of type message. Notice also the ccinclude statement, the programmer
has to include the file Message.h in all message-manipulating primitives, and he also has to
include the definition of the specific message type he wishes to use.
The code itself is fairly straightforward. An IntVecData object is created with the new com-
mand, it is filled in with data, put into an Envelope and is sent. Resist the temptation to declare
the IntVecData object as a local variable: it will not work. It must reside on the heap. Here is
a primitive to do the inverse operation:

defprimitive
{
name { UnPackInt }
domain { SDF }
desc
{
Accept IntVecData messages and produce integers.
The first ’length’ values from each message are
produced.

}
defparameter
{
name { length }
type { int }
default { 10 }
desc { number of values output per message }

}

14-21

14 Using Data Types

input
{
name { input }
type { message }

}
output
{
name { output }
type { int }

}
ccinclude { "Message.h", "IntVecData.h" }

setup
{
output.setSDFParams(int(length),int(length-1));

}

go
{
Envelope pkt;
(input%0).getMessage(pkt);
if (!pkt.typeCheck("IntVecData"))
{
Error::abortRun(*this,pkt.typeError("IntVecData"));
return;

}
const IntVecData * pd = (const IntVecData *)pkt.myData();
if (pd.length() < int(length))
{
Error::abortRun(*this,

"Received message is too short");
return;

}
for (i = 0; i < int(length); i++)
output%(int(length)-i-1) << pd->data[i];

}
}

Because the domain is SDF, we must always produce the same number of outputs regardless of
the size of the messages. The simple approach taken here is to require at least a certain amount of
data or else to trigger an error and abort the execution.
The operations here are to declare an Envelope object pkt, get the data from the particle
into pkt variable by calling the getMessage method, check the type, and then access the con-
tents. Notice the cast operation, this is needed because myData returns a const pointer to class
Message . It is important that the programmer converts the pointer to const IntVecData

* and not IntVecData* because we have no right to modify the message through this pointer.

14-22 MLDesigner Version 2.8

14.3 Matrix Data Types

Many C++ compilers will not warn by default about ”casting away const”. We recommend turning
on compiler warnings when compiling code that uses messages to avoid getting into trouble. For
g++, say -Wcast-qual, for cfront-derived compilers, say +w.
If the programmer wishes to modify the message and then send the result as an output, he would
call writableCopy instead of myData, modify the object, then send it on its way as seen in
the previous primitive.

14.3 Matrix Data Types
The primary support for matrix types in MLDesigner is the PtMatrix class. PtMatrix is
derived from the Message class, and uses the various kernel support functions for working with
the Message data type as described in sec. 14.2 on page 14-15. This section discusses the
PtMatrix class and how to write primitives and programs using this class.

14.3.1 Design philosophy
The PtMatrix class implements two dimensional arrays. There are four key classes derived
from PtMatrix: ComplexMatrix , FixMatrix , FloatMatrix , and IntMatrix .
Note that FloatMatrix is a matrix of C++ doubles. A review of matrix classes implemented
by other programmers reveals two main styles of implementation: a vector of vectors, or a simple
array. In addition, there are two main formats of storing the entries: column ordering, where all
the entries in the first column are stored before the entries of the second column, and row order-
ing, where the entries are stored starting with the first row. Column ordering is how Fortran stores
arrays whereas row-major ordering is the way C stores arrays.
The MLDesigner PtMatrix class stores data as a simple C array, and therefore uses row order-
ing. Row ordering also seems more natural for operations such as image and video processing, but
it might make it more difficult to interface PtMatrix class with Fortran library calls. The limits
of interfacing PtMatrix class with other software is discussed in sec. 14.3.5 on page 14-36.
The design decision to store data entries in a C array rather than in an array of vector objects has
a greater effect on performance than the decision whether to use row or column ordering. There
are a couple of advantages in implementing a matrix class as an array of vector class objects: ref-
erencing an entry may be faster, and it is easier to do operations on a whole row or column of the
matrix, depending on whether the format is an array of column vectors or an array of row vectors.
An entry lookup in an array of row vectors requires two index lookups: one to find the desired
row vector in the array and one to find the desired entry of that row. A linear array, in contrast,
requires a multiplication to find the location of first element of the desired row and then an index
lookup to find the column in that row. For example, A[row][col] is equivalent to looking up
&data + (row*numRows + col) if the entries are stored in a C array data[], whereas it
is *(&rowArray + row) + col if looking up the entry in an array of vectors format.
Although the array of vectors format has faster lookups, it is also more extensive to create and
delete the matrix. Each vector of the array must be created in the matrix constructor, and each
vector must also be deleted by the matrix destructor. The array of vectors format also requires
more memory to store the data and the extra array of vectors.
With the advantages and disadvantages of the two systems in mind, we chose to implement the
PtMatrix class with the data stored in a standard C array. MLDesigner’s environment is such

14-23

14 Using Data Types

that matrices are created and deleted constantly as needed by the primitives: this negates much of
the speedup gained from faster lookups. Also, it was useful to keep the design of the class simple
and the memory usage efficient because of MLDesigner’s increasing size and complexity.

14.3.2 PtMatrix Class

The PtMatrix base class is derived from the Message class so the programmer can work
with matrices using Envelope class and message-handling system. However, the Message-
Particle class is not used by the PtMatrix class. Instead, there are special MatrixEnv-
Particle classes defined to handle the type checking between the various types of matrices.
This allows the system to automatically detect incorrect connections between two primitives with
different matrix type inputs and outputs2. Also, the MatrixEnvParticle class has some
special functions not found in the standard MessageParticle class to allow easier handling
of PtMatrix class messages. A discussion of how to pass PtMatrix class objects using the
MatrixEnvParticle can be found later in this documentation.
As previously explained, there are currently four data-specific matrix classes: ComplexMatrix
, FixMatrix , FloatMatrix , and IntMatrix . Each of these classes stores its entries in a
standard C array named data, which is an array of data objects corresponding to the PtMatrix
type: Complex , Fix , double, or int. These four matrix classes implement a common set

of operators and functions. In addition, the ComplexMatrix class has a few special methods
such as conjugate() and hermitian() and the FixMatrix class has a number of special
constructors that allow the programmer to specify the precision of the entries in the matrix. As a
rule, all entries of a FixMatrix will have the same precision.
The matrix classes were designed to take full advantage of operator overloading in C++. The
result is that matrix objects can be written much like operations on scalar ones. For example, the
two-operand multiply operator * has been defined so that if A and B are matrices, A*B will return
a third matrix that is the matrix product of A and B.

14.3.3 Public Functions and Operators for the PtMatrix Class

The functions and operators listed below are implemented by all matrix classes ComplexMatrix
, FixMatrix , FloatMatrix , and IntMatrix unless otherwise noted. The symbols used
are:

• XXX refers to one of the following: Complex, Fix, Float, or Int
• xxx refers to one of the following: Complex, Fix, double, or int

14.3.3.1 Functions and Operators to access entries of the Matrix

xxx& entry(int i)

2We recommend, however, not to adapt this method to own types, the standard method of adding new message types
described in sec. 14.2 should be used instead. The method currently used for the matrix classes may not be supported
in future releases.

14-24 MLDesigner Version 2.8

14.3 Matrix Data Types

Example: A.entry(i)
Return the i-th entry of the matrix if its data storage is considered to be a linear ar-
ray. This is useful for quick operations on every entry of the matrix without regard
for the specific (row, column) position of that entry. The total number of entries
in the matrix is defined to be numRows() * numCols(), with indices ranging
from 0 to numRows() * numCols() - 1. This function returns a reference
to the actual entry in the matrix so that assignments can be made to that entry. In
general, functions that wish to use linear references to each entry of a matrix A
should use this function instead of the expression A.data[i] because classes
which are derived from PtMatrix can then overload the entry() method and
reuse the same functions.

xxx* operator [] (int row)

Example: A[row][column]
Return a pointer to the start of the row in the matrices data storage. (This operation
is different to matrix classes defined as arrays of vectors, in which the [] operator
returns the vector representing the desired row.) This operator is generally not
used alone but with the [] operator defined on C arrays, so that A[i][j] will
give you the entry of the matrix in the i-th row and j-th column of the data storage.
The range of rows is from 0 to numRows()-1 and the range of columns is from
0 to numCols()-1.

14.3.3.2 Constructors

XXXMatrix()

Example: IntMatrix A;
Create an uninitialized matrix. The number of rows and columns are set to zero
and no memory is allocated for the storage of data.

XXXMatrix(int numRows, int numCols)

Example: FloatMatrix A(3,2);
Create a matrix with dimensions numRows by numCols. Memory is allocated
for the data storage but the entries are uninitialized.

XXXMatrix(int numRows, int numCols, PortHole& portHole)

Example: ComplexMatrix(3,3,myPortHole);
Create a matrix of the given dimensions and initialize the entries by assigning
to them values taken from the port portHole. The entries are assigned in a
rasterized sequence so that the value of the first particle removed from the porthole
is assigned to entry (0, 0), the second particle’s value to entry (0, 1), etc. It is
assumed that the port has enough particles in its buffer to fill all the entries of the
new matrix.

XXXMatrix(int numRows, int numCols, XXXArrayState& dataArray)

14-25

14 Using Data Types

Example: IntMatrix A(2,2,myIntArrayState);
Create a matrix with the given dimensions and initialize the entries to the val-
ues in the given ArrayState. The values of the ArrayState fill the matrix
in rasterized sequence so that entry (0, 0) of the matrix is the first entry of the
ArrayState, entry (0, 1) of the matrix is the second, etc. An error is generated
if the ArrayState does not have enough values to initialize the whole matrix.

XXXMatrix(const XXXMatrix& src)
Example: FixMatrix A(B);
This is the copy constructor. A new matrix is formed with the same dimensions
as the source matrix and the data values are copied from the source.

XXXMatrix(const XXXMatrix& src, int startRow
, int startCol
, int numRows
, int numCols)

Example: IntMatrix A(B,2,2,3,3);
This special ”submatrix” constructor creates a new matrix whose values came
from a submatrix of the source. The arguments startRow and startCol
specify the starting row and column of the source matrix. The values numRows
and numCols specify the dimensions of the new matrix. The sum startRow
+ numRows must not be greater than the maximum number of rows in the
source matrix; similarly, startCol + numCols must not be greater than
the maximum number of columns in the source. For example, if B is a ma-
trix with dimension (4, 4), then A(B,1,1,2,2) would create a new matrix
A that is a (2, 2) matrix with data values from the center quadrant of matrix
B, so that A[0][0] == B[1][1], A[0][1] == B[1][2], A[1][0] ==
B[2][1], and A[1][1] == B[2][2].

The following are special constructors for the FixMatrix class that allow the programmer to
specify the precision of the entries of the FixMatrix.

FixMatrix(int numRows, int numCols, int length, int intBits)
Example: FixMatrix A(2,2,14,4);
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits arguments.

FixMatrix(int numRows, int numCols,
int length, int intBits, PortHole& portHole)

Example: FixMatrix A(2,2,14,4);
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits arguments
and initialized with the values that are read from the particles contained in the
porthole portHole.

FixMatrix(int numRows, int numCols,
int length, int intBits, FixArrayState& dataArray)

14-26 MLDesigner Version 2.8

14.3 Matrix Data Types

Example: FixMatrix A(2,2,14,4);
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits arguments
and initialized with the values in the given FixArrayState.

There are also special copy constructors for the FixMatrix class that allow the programmer
to specify the precision of the entries of the FixMatrix as they are copied from the sources.
These copy constructors are usually used for easy conversion between the other matrix types. The
last argument specifies the type of masking function (truncate, rounding, etc.) to be used when
doing the conversion.

FixMatrix(const XXXMatrix& src, int length, int intBits
, int round)

Example: FixMatrix A(CxMatrix,4,14,TRUE);
Create a FixMatrix with the given dimensions such that each entry is a fixed-
point number with precision as given by the length and intBits arguments.
Each entry of the new matrix is copied from the corresponding entry of the src
matrix and converted as specified by the round argument.

14.3.3.3 Comparison operators

int operator == (const XXXMatrix& src)

Example: if (A == B) then ...
Return TRUE if the two matrices have the same dimensions and every entry in A
is equal to the corresponding entry in B. Return FALSE otherwise.

int operator != (const XXXMatrix& src)

Example: if (A != B) then ...
Return TRUE if the two matrices have different dimensions or if any entry of A
differs from the corresponding entry in B. Return FALSE otherwise.

14.3.3.4 Conversion operators

Each matrix class has a conversion operator so that the programmer can explicitly cast one type of
matrix to another (the casting is done by copying). It would have been possible to make conver-
sions occur automatically when needed, but because these conversions can be quite extensive for
large matrices and because unexpected results might occur if the programmer did not intend for a
conversion to occur, the conversions have to be used explicitly.

operator XXXMatrix () const

Example: FloatMatrix C = A * (FloatMatrix)B;
Convert a matrix of one type into another. These conversions allow the various
arithmetic operators, such as * and +, to be used on matrices of different type. For
example, if A in the example above is a (3, 3) FloatMatrix and B is a (3, 2)
IntMatrix , then C is a FloatMatrix with dimensions (3, 2).

14-27

14 Using Data Types

14.3.3.5 Invasive replacement operators

These operators are member functions that modify the current value of the object. In the following
examples, A is usually the value (*this). All operators return *this.

XXXMatrix& operator = (const XXXMatrix& src)

Example: A = B;
This is the assignment operator: make A into a matrix that is a copy of B. If A
already has allocated data storage, then the size of this data storage is compared
to the size of B. If they are equal, then the dimensions of A are simply set to those
of B and the entries copied. If they are not equal, the data storage is freed and
reallocated before copying.

XXXMatrix& operator = (xxx value)

Example: A = value;
Assign each entry of A to have the given value. Memory management is handled
as in the previous operator. Note: this operator is targeted for deletion. Do not use
it.

XXXMatrix& operator += (const XXXMatrix& src)

Example: A += B;
Perform the operation A.entry(i) += B.entry(i) for each entry in A. A
and B must have the same dimensions.

XXXMatrix& operator += (xxx value)

Example: A += value;
Add the scalar value to each entry in the matrix.

XXXMatrix& operator -= (const XXXMatrix& src)

Example: A -= B;
Perform the operation A.entry(i) -= B.entry(i) for each entry in A. A
and B must have the same dimensions.

XXXMatrix& operator -= (xxx value)

Example: A -= value;
Subtract the scalar value from each entry in the matrix.

XXXMatrix& operator *= (const XXXMatrix& src)

Example: A *= B;
Perform the operation A.entry(i) *= B.entry(i) for each entry in A. A
and B must have the same dimensions. Note: this is an element-wise operation
and is not equivalent to A = A * B.

XXXMatrix& operator *= (xxx value)

Example: A *= value;
Multiply each entry of the matrix by the scalar value.

14-28 MLDesigner Version 2.8

14.3 Matrix Data Types

XXXMatrix& operator /= (const XXXMatrix& src)

Example: A /= B;
Perform the operation A.entry(i) /= B.entry(i) for each entry in A
(Student multiplication). A and B must have the same dimensions.

XXXMatrix& operator /= (xxx value)

Example: A /= value
Divide each entry of the matrix by the scalar value. The scalar value must be
non-zero.

XXXMatrix& identity()

Example: A.identity();
Change A to be an identity matrix so that each entry on the diagonal is 1 and all
off-diagonal entries are 0.

14.3.3.6 Non-invasive operators (these return a new matrix)

XXXMatrix operator - ()

Example: B = -A;
Return a new matrix such that each element is the negative of the element of the
source.

XXXMatrix operator ˜()

Example: B = ˜A;
Return a new matrix that is the transpose of the source.

XXXMatrix operator ! ()

Example: B = !A;
Return a new matrix which is the inverse of the source.

XXXMatrix operator ˆ(int exponent)

Example: B = Aˆ2;
Return a new matrix which is the source matrix to the given exponent power. The
exponent can be negative, in which case the exponent is first treated as a positive
number and the final result is then inverted. So Aˆ2 == A*A and Aˆ(-3) ==
!(A*A*A).

XXXMatrix transpose()

Example: B = A.transpose();
This is the same as the ˜operator but called by a function name instead of an
operator.

XXXMatrix inverse()

Example: B = A.inverse();
This is the same as the ! operator but called by a function name instead of an
operator.

14-29

14 Using Data Types

ComplexMatrix conjugate()

Example: ComplexMatrix B = A.conjugate();
Return a new matrix such that each element is the complex conjugate of the
source. This function is defined for the ComplexMatrix class only.

ComplexMatrix hermitian()

Example: ComplexMatrix B = A.hermitian();
Return a new matrix which is the Hermitian Transpose (conjugate transpose) of
the source. This function is defined for the ComplexMatrix class only.

14.3.3.7 Non-member binary operators

XXXMatrix operator + (const XXXMatrix& left,
const XXXMatrix& right)

Example: A = B + C;
Return a new matrix which is the sum of the first two. The left and right source
matrices must have the same dimensions.

XXXMatrix operator + (const xxx& scalar,
const XXXMatrix& matrix)

Example: A = 5 + B;
Return a new matrix that has entries of the source matrix added to a scalar value.

XXXMatrix operator + (const XXXMatrix& matrix,
const xxx& scalar)

Example: A = B + 5;
Return a new matrix that has entries of the source matrix added to a scalar value.
(This is the same as the previous operator but with the scalar on the right.)

XXXMatrix operator - (const XXXMatrix& left,
const XXXMatrix& right)

Example: A = B - C;
Return a new matrix which is the difference of the first two. The left and right
source matrices must have the same dimensions.

XXXMatrix operator - (const xxx& scalar,
const XXXMatrix& matrix)

Example: A = 5 - B;
Return a new matrix that has the negative of the entries of the source matrix added
to a scalar value.

XXXMatrix operator - (const XXXMatrix& matrix,
const xxx& scalar)

Example: A = B - 5;
Return a new matrix such that each entry is the corresponding entry of the source
matrix minus the scalar value.

14-30 MLDesigner Version 2.8

14.3 Matrix Data Types

XXXMatrix operator * (const XXXMatrix& left,
const XXXMatrix& right)

Example: A = B * C;
Return a new matrix which is the matrix product of the first two. The left and
right source matrices must have compatible dimensions, i.e., A.numCols() ==
B.numRows().

XXXMatrix operator * (const xxx& scalar,
const XXXMatrix& matrix)

Example: A = 5 * B;
Return a new matrix that has entries of the source matrix multiplied by a scalar
value.

XXXMatrix operator * (const XXXMatrix& matrix,
const xxx& scalar)

Example: A = B * 5;
Return a new matrix that has entries of the source matrix multiplied by a scalar
value. (This is the same as the previous operator but with the scalar on the right.)

14.3.3.8 Miscellaneous functions

int numRows()
Return the number of rows in the matrix.

int numCols()
Return the number of columns in the matrix.

Message* clone()
Example: IntMatrix *B = A.clone();
Return a copy of *this.

StringList print()
Example: A.print()
Return a formatted StringList that can be printed to display the contents of
the matrix in a reasonable format.

XXXMatrix& multiply (const XXXMatrix& left,
const XXXMatrix& right,

XXXMatrix& result)
Example: multiply(A,B,C);
This is a faster 3 operand form of matrix multiply such that the result matrix is
passed as an argument so that we avoid the extra copy step that is involved when
we write C = A * B.

const char* dataType()
Example: A.dataType()
Return a string that specifies the name of the type of matrix. The strings are
ComplexMatrix, FixMatrix, FloatMatrix, and IntMatrix.

int isA(const char* type)
Example: if(A.isA("FixMatrix")) then ...
Return TRUE if the argument string matches the type string of the matrix.

14-31

14 Using Data Types

14.3.4 Writing Primitives Using the PtMatrix Class
This section describes how to use the matrix data classes when writing primitives. Some examples
are given here but the programmer should refer to the primitives in $MLD/MLD Libraries/-
sdf/matrix/*.pl and $MLD/MLD Libraries/sdf/image/*.pl for more examples.

14.3.4.1 Memory management

The most important thing to understand about the use of matrix data classes in the MLDesigner
environment is that primitives that intend to output the matrix in a particle should allocate memory
for the matrix but never delete that matrix. Memory reclamation is done automatically by the
reference-counting mechanism of the Message class. Strange errors will occur if the primitive
deletes the matrix before it is used by another primitive later in the execution sequence.

14.3.4.2 Naming conventions

Primitives that implement general-purpose matrix operations usually have names with the M suffix
to distinguish them from primitives that operate on scalar particles. For example, the SDF primi-
tive Gain M multiplies an input matrix by a scalar value and outputs the resulting matrix. This is
in contrast to SDF primitive Gain, which multiplies an input value held in a FloatParticle
by a double and puts that result in an output FloatParticle .

14.3.4.3 Include files

To use the PtMatrix classes in a primitive, the file Matrix.h has to be included either in its
.h or .cc file. If the primitive has a matrix data member, then the declaration

hinclude { "Matrix.h" }

needs to be in the Primitive definition. Otherwise, the declaration

ccinclude { "Matrix.h" }

is sufficient.

14.3.4.4 Input portholes

To declare an input port that accepts matrices, the following syntax is used:

input
{
name { inputPortHole }
type { FLOAT_MATRIX_ENV }

}

The syntax is the same for output ports. The type field can be COMPLEX MATRIX ENV, FLOAT -
MATRIX ENV, FIX MATRIX ENV, or INT MATRIX ENV. The icons created by MLDesigner
will have terminals that are thicker and that have larger arrow points than the terminals for scalar
particle types. The colors of the terminals follow the pattern of colors for scalar data types, e.g.,
blue represents float and FloatMatrix .
The syntax to extract a matrix from the input porthole is:

14-32 MLDesigner Version 2.8

14.3 Matrix Data Types

Envelope inPkt;
(inputPortHole%0).getMessage(inPkt);
const FloatMatrix& inputMatrix =

*(const FloatMatrix *)inPkt.myData();

The first line declares an Envelope , which is used to access the matrix. Details of the Envelope
class are given in sec. 14.2.2 on page 14-18. The second line fills the envelope with the input ma-
trix. Note that, because of the reference-counting mechanism, this line does not make a copy of
the matrix. The last two lines extract a reference to the matrix from the envelope. It is up to the
programmer to make sure that the cast agrees with the definition of the input port.
Because multiple envelopes might reference the same matrix, a primitive is generally not permitted
to modify the matrix held by the Envelope . Thus, the function myData() returns a const
Message *. This can be cast to be a const FloatMatrix * and then be de-referenced
and assigned the value to inputMatrix. It is generally better to handle matrices by reference
instead of pointers because it is easier to write A + B rather than *A + *B when working with
matrix operations. Primitives that wish to modify an input matrix should access it by using the
writableCopy method, as explained in sec. 14.2.2 on page 14-18.

14.3.4.5 Allowing delays on inputs

The cast to const FloatMatrix * above is not always safe. Even if the source primitive is
known to provide matrices of the appropriate type, a delay on the arc connecting the two primitives
can cause problems. In particular, delays in data flow domains are implemented as initial particles
on the arcs. These initial particles are given the value ”zero” as defined by the type of particle.
For Message particles, ”zero” is an uninitialized Message particle containing a ”dummy” data
value. This dummy Message will be returned by the myData method in the third line of the
above code fragment. The dummy message is not a FloatMatrix , rendering the above cast
invalid. A primitive that expects matrix inputs has to have code to handle empty particles. An
example is:

if(inPkt.empty())
{
FloatMatrix& result = *(new FloatMatrix(int(numRows),
int(numCols)));
result = 0.0;
output%0 << result;

}

There are many ways that an empty input can be interpreted by a primitive which operates on
matrices. For example, a primitive multiplying two matrices can simply output a zero matrix if
either input is empty. A primitive adding two matrices can output whichever input is not empty. In
the example above, the output matrix has the dimensions as set by the parameters of the primitive
so that any primitive that uses this output will have valid data.
A possible alternative to outputting a zero matrix is to simply pass that empty MessageParticle
along. This approach, however, can lead to counterintuitive results. Suppose that the empty mes-

sage reaches a display primitive like TkText, which will attempt to call the print() method of
the object. An empty message has a print() method that results in a message like

14-33

14 Using Data Types

<type>: no print method

This is most likely to prove extremely confusing to users, so it is strongly recommend that each
matrix primitive handle the empty input in a reasonable way, and produce a non-empty output.

14.3.4.6 Matrix outputs

To put a matrix into an output porthole, the syntax is:

FloatMatrix& outMatrix =*(new FloatMatrix(someRow,someCol));
// ... do some operations on the outMatrix
outputPortHole%0 << outMatrix;

The last line is similar to outputting a scalar value. This is because the << operator has been
overloaded for MatrixEnvParticle to support PtMatrix class inputs. The standard use
of the MessageParticle class requires the programmer to put his message into an envelope
first and then use << on the envelope (see sec. 14.2.2 on page 14-18), but this has been specialized
so that the extra operation of creating an envelope first is not explicit.
Here is an example of a complete primitive definition with input and output matrices:

defprimitive
{
name { Mpy_M }
domain { SDF }
desc
{
Does a matrix multiplication of two input Float
matrices A and B to produce matrix C.

Matrix A has dimensions (numRows,X).
Matrix B has dimensions (X,numCols).
Matrix C has dimensions (numRows,numCols).

the programmer need only specify numRows and numCols.
An error will be generated automatically if the
number of columns in A does not match the number of
columns in B.

}
input
{
name { Ainput }
type { FLOAT_MATRIX_ENV }

}
input
{
name { Binput }
type { FLOAT_MATRIX_ENV }

}
output

14-34 MLDesigner Version 2.8

14.3 Matrix Data Types

{
name { output }
type { FLOAT_MATRIX_ENV }

}
defparameter
{
name { numRows }
type { int }
default { 2 }
desc { The number of rows in Matrix A and Matrix C.}

}
defparameter
{
name { numCols }
type { int }
default { 2 }
desc { The number of columns in Matrix B and Matrix C}

}
ccinclude { "Matrix.h" }

go
{ // get inputs
Envelope Apkt;
(Ainput%0).getMessage(Apkt);
const FloatMatrix& Amatrix =

*(const FloatMatrix *)Apkt.myData();

Envelope Bpkt;
(Binput%0).getMessage(Bpkt);
const FloatMatrix& Bmatrix =

*(const FloatMatrix *)Bpkt.myData();

// check for "null" matrix inputs, which could be
// caused by delays on the input line
if(Apkt.empty() || Bpkt.empty())
{
// if either input is empty, return a zero
// matrix with the state dimensions
FloatMatrix& result = *(new FloatMatrix(int(numRows),

int(numCols)));
result = 0.0;
output%0 << result;

}
else
{
// Amatrix and Bmatrix are both valid

14-35

14 Using Data Types

if((Amatrix.numRows() != int(numRows)) ||
(Bmatrix.numCols() != int(numCols)))

{
Error::abortRun(*this,"Dimension size of FloatMatrix",

" inputs do not match the given ",
"state parameters.");

return;
}
// do matrix multiplication
FloatMatrix& result = *(new FloatMatrix(int(numRows),

int(numCols)));
// we could write
// result = Amatrix * Bmatrix;
// but the following is faster
multiply(Amatrix,Bmatrix,result);

output%0 << result;
}

}
}

14.3.5 Future Extensions
After reviewing the libraries of numerical analysis software that is freely available on the Internet,
it is clear that it would be beneficial to extend the PtMatrix class by adding those well-tested
libraries as callable functions. Unfortunately, many of those libraries are currently only available
in Fortran, and there are some incompatibilities with Fortran’s column ordering and C’s row major
ordering. Those problems will still exist even if the Fortran code will be converted to C. There are
a few groups which are currently working on C++ ports of the numerical analysis libraries. One
notable group is the Lapack++[DP93] project which is developing a flexible matrix class of their
own, besides porting the Fortran algorithms of Lapack into C++. This might possibly be included
in a future release.

14.4 File and String Types
There are two experimental types in MLDesigner that support non-numeric computation. These
types represent the beginnings of an effort to extend MLDesigner’s data flow model to ”non-data
flow” problems such as scheduling and design flow. Their interfaces are still being developed,
therefore they should be expected to be changed in future releases. Any suggestion on how to
improve the interface and functionality of these two types will be welcomed.

14.4.1 File Type
The file type is implemented by the classes FileMessage and FileParticle , which are
derived from Message and Particle . It uses the reference-counting mechanism of the

14-36 MLDesigner Version 2.8

14.4 File and String Types

Message and Envelope classes to ensure that files are not deleted until no longer needed.
It is, however, recommend that the programmer creates the Message interface described in
sec. 14.2 for his own types. The File type adds the following functions to Message.

14.4.1.1 Constructors

FileMessage()
Create a new file message with a unique filename. By default, the file will be
deleted if no file messages reference it.

FileMessage(const char* name)
Create a new file message with the given filename name. By default, the file will
not be deleted if no file messages reference it.

FileMessage(const FileMessage& src)
Create a new file message containing the same filename as the given file message.
By default, the file will not be deleted if no file mes- sages reference it.

14.4.1.2 Operations

const char* fileName()
Return the filename contained in this message.

StringList print()
Return the filename contained in this message in a StringList object.

void setTransient(int transient)
Set the status of the file. If transient is TRUE, the file will be deleted if no file
messages are reference it; if FALSE, it will not be deleted.

14.4.2 String Type
The string type is implemented by the classes StringMessage and StringParticle ,
which are derived from Message and Particle . It contains an InfString object. Inf-
String is a version of StringList that allows limited modification and is used to interface
C++ to Tcl. Again, it uses the reference-counting mechanism of the Message and Envelope
classes to ensure that strings are not deleted until no longer needed. StringMessage is

currently very simple, it adds the following functions to Message .

14.4.2.1 Constructors

StringMessage()
Create a new string message with an empty string.

StringMessage(const char* name)
Create a new string message with a copy of the given string. The given string can
be deleted, since the new message does not reference it.

StringMessage(const StringMessage& src)
Create a new string message containing the same string as the given string mes-
sage. Again, the string is copied.

14-37

14 Using Data Types

14.4.2.2 Operations

StringList print()

Return the string contained in this message in a StringList object.

14.5 Manipulating Particles of Type anytype

MLDesigner allows primitives to declare that inputs and outputs are of type anytype. A prim-
itive may need to do this, for example, if it simply copies its inputs without regard to type, as in
the case of a Fork primitive, or if it calls a generic function that is overloaded by every data type,
such as sink primitives which call the print method of the type. The following is an example of a
primitive that operates on anytype particles:

defprimitive
{
name {Fork}
domain {SDF}
desc { Copy input particles to each output. }

input
{
name { input }
type { anytype }

}

outmulti
{
name { output }
type { =input }

}

location { SDF main library }

ccinclude {"Message.h","Type.h" }

go
{
OutSDFMPHIter nextp(output);
OutSDFPort* p;
Particle& pp = input%0;
Type *tType;
if((pp.type() == DATASTRUCT) && (tType = (Type*)pp))
{
while ((p = (OutSDFPort*)nextp.next()) != 0)
(*p)%0 << tType->clone();

}

14-38 MLDesigner Version 2.8

14.5 Manipulating Particles of Type anytype

else
{
while ((p = (OutSDFPort*)nextp.next()) != 0)
(*p)%0 = pp;

}
}

}

It should be noticed that in the definition of the output port, the primitive simply says that its output
type will be the same as the input type. Ptlang translates this definition into an ANYTYPE output
porthole and a statement in the primitive constructor that reads

output.inheritTypeFrom(input);

During module setup, the MLDesigner kernel assigns actual types to ANYTYPE ports, making use
of the types of connected ports and inheritTypeFrom connections. For example, if a Fork
input is connected to an output port of type INT, the Fork input’s type becomes INT, and, because
of the inheritTypeFrom connection, the output will do, too. At runtime, there is no such thing
as an ANYTYPE porthole. Every port has been resolved to some specific data type, which can be
obtained from the porthole using the resolvedType() method. However, this mechanism does
not differ among the various subclasses of Message , so if the programmer is using Message
particles, he still needs to check the actual type of each Message received.
Porthole type assignment is really a fairly complex and subtle algorithm, which is discussed further
in [BH97]. The important properties for a primitive writer to know are these:

• If an input port has a specific declared type, it is guaranteed to receive particles of that type.
For reasons mentioned in sec. 13.5.3 on page 13-22, it should be preferred to explicitly cast
input particles to the desired type, as in

go
{
double value = double(in%0);
...

}

but this is not strictly necessary in the current system.
• In simulation domains, an output port is NOT guaranteed to transmit particles of its declared

type. The actual resolved type of the porthole will be determined by the connected input
porthole. Therefore, the programmer should always allow type conversion of the value
computed by the primitive into the actual type of the output particle. This happens implicitly
when he writes something like

out%0 << t;

because this expands into a call of the particle’s virtual method for loading a value of the
given type. But assuming that the programmer knows the exact type of particle in the port-
hole, say by writing something like (FloatParticle&), (out%0) is very unsafe.

14-39

14 Using Data Types

• In code generation domains, it is usually critical that the output porthole’s actual type to be
what the primitive writer expected. Most codegen domains therefore splice type conversion
primitives into the schematic when input and output ports of different declared types are
connected. In this way, both connected primitives will see the data type they expect, and the
necessary type conversion is handled transparently.

• The component portholes of a multiporthole are separately type-resolved. Thus, if an input
multiporthole is declared ANYTYPE, its component portholes might have different types at
runtime. The component portholes of an output multiporthole can have different resolved
types in any case, because they might be connected to inputs of different types.

• It is rarely a good idea to declare a pure ANYTYPE output porthole. Its type should be
equated to some input porthole using the ptlang = port notation instead or an explicit
inheritTypeFrom call. This ensures that the type resolution algorithm can succeed.
A ”pure ANYTYPE” output will work only while connected to an input of determinable
type. If it’s connected to an ANYTYPE input, the kernel will be unable to resolve a type for
the connection. By providing a = type declaration, the programmer allows the kernel to
choose an appropriate particle type for an ANYTYPE-to-ANYTYPE connection.

14.6 Unsupported Types
There are a number of data types in MLDesigner that are NOT recommended to be used by external
developers because they are either insufficiently mature or most likely to be changed in the future.
This section briefly describes those classes.

14.6.1 Sub-Matrices
The MLDesigner kernel contains a set of matrices to support efficient computation with sub-
matrices. These classes were developed specifically for the experimental multidimensional SDF
(MDSDF) domain and will probably be implemented differently in a future release.
There are four sub-matrix classes, one for each concrete matrix class: ComplexSubMatrix ,
FixSubMatrix , FloatSubMatrix , and IntSubMatrix . Each of them inherits from
the corresponding PtMatrix class. A sub-matrix contains a reference to a ”parent” matrix of
the same type, and modifies its internal data pointers and matrix size parameters to reference a
rectangular region of the parent’s data. The constructors for the submatrix classes have arguments
that specify the region of the parent matrix referenced by the sub-matrix.
As for matrices, the following descriptions of sub-matrices uses the writing convention that XXX
means Complex, Fix, Float, or Int, and xxx means Complex, Fix, double, or int.

14.6.1.1 Submatrix constructors

XXXSubMatrix()
Create an uninitialized matrix.

XXXSubMatrix(int numRows, int numCols)
Create a regular matrix with dimensions numRows by numCols; return a new
submatrix with this matrix as its parent. Memory is allocated for the data storage
but the entries are uninitialized.

14-40 MLDesigner Version 2.8

14.6 Unsupported Types

XXXSubMatrix(XXXSubMatrix& src, int sRow, int sCol,
int nRows, int nCols)

Create a sub-matrix and initialize it to reference the region of the parent matrix
starting at (sRow, sCol) and of size (nRows, nCols). The parent matrix is the
same as the parent matrix of src. The given dimensions must fit into the parent
matrix, or an error will be flagged. Unlike the ”sub-matrix” constructors in the
regular matrix classes, this constructor does not copy matrix data.

XXXSubMatrix(const XXXSubMatrix& src)

Make a duplicate of the src sub-matrix. The parent of the new matrix is the same
as the parent of src.

14.6.1.2 Operations

Sub-matrices support all operations supported by the regular matrix classes. Because the matrix
classes uniformly use only the entry() and operator [] member functions to access the data,
the sub-matrix classes need only to override these functions, and all matrix operations become
available on sub-matrices.

xxx& entry(int i)

Return the i-th entry of the sub-matrix when its data storage is considered to be a
linear array.

xxx* operator [] (int row)

Return a pointer to the start of the row of the sub-matrices data storage.

14.6.1.3 Using sub-matrices in primitives

Sub-matrices are not currently useful in general-purpose data flow primitives. Rather, they were
developed to provide an efficient means of referencing portions of a single larger matrix in the
multi-dimensional synchronous data flow (MDSDF) domain.
A short summary: unlike other domains, the MDSDF kernel does not transfer particles through
FIFO buffers. Instead, each geodesic keeps a single copy of a ”parent” matrix, that represents
the ”current” two-dimensional datablock. Each time a primitive fires, it obtains a sub-matrix that
references this parent matrix with the getOutput() function of the MDSDF input port class.
For example, a primitive might contain:

FloatSubMatrix* data = (FloatSubMatrix*)(input.getInput());

Note that this is not really getting a matrix, but a sub-matrix that references a region of the current
data matrix. The size of the sub-matrix has been set by the primitive in its initialization code by
calling the setMDSDFParams() function of the port. To write data to the output matrix, the
primitive gets a sub-matrix which references a region of the current output matrix and writes to it
with a matrix operator. For example,

FloatSubMatrix* result = (FloatSubMatrix*)(output.getOutput());
result = -data;

14-41

14 Using Data Types

Because the sub-matrices are only references to the current matrix on each arc, they must be
deleted after use:

delete &input;
delete &result;

Here is a simplified example of a complete MDSDF primitive:

defprimitive
{
name { Add }
domain { MDSDF }
desc
{
Matrix addition of two input matrices A and B to
produce matrix C. All matrices must have the same
dimensions.

}
version { %W% %G% }
author { Mike J. Chen }
location { MDSDF library }

input
{
name { Ainput }
type { FLOAT_MATRIX }

}
input
{
name { Binput }
type { FLOAT_MATRIX }

}
output
{
name { output }
type { FLOAT_MATRIX }

}
defparameter
{
name { numRows }
type { int }
default { 2 }
desc { The number of rows in the input/output matrices. }

}
defparameter
{
name { numCols }

14-42 MLDesigner Version 2.8

14.6 Unsupported Types

type { int }
default { 2 }
desc { The number of columns in the input/output matrices. }

}
ccinclude { "SubMatrix.h" }

setup
{
Ainput.setMDSDFParams(int(numRows), int(numCols));
Binput.setMDSDFParams(int(numRows), int(numCols));
output.setMDSDFParams(int(numRows), int(numCols));

}

go
{
// get a SubMatrix from the buffer
FloatSubMatrix& input1

= *(FloatSubMatrix*)(Ainput.getInput());
FloatSubMatrix& input2

= *(FloatSubMatrix*)(Binput.getInput());
FloatSubMatrix& result

= *(FloatSubMatrix*)(output.getOutput());

// compute addition, putting result into output

result = input1 + input2;

delete &input1;
delete &input2;
delete &result;

}
}

14.6.1.4 Sub-Matrix ”Particles”

The Ptolemy language type of submatrices is FLOAT MATRIX, INT MATRIX, and so on. This is
not documented in the Modeling Guide and is likely to change in a future release. Each of these
Ptolemy language types is implemented by a sub-class of Particle : IntMatrixParticle
, FloatMatrixParticle , FixMatrixParticle and ComplexMatrixParticle .
These particle classes exist only for setting up the portholes and performing type-checking. They
are never created or passed around during a simulation. Instead, sub-matrices are created and
destroyed by the MDSDF kernel and the primitives as described above.

14-43

14 Using Data Types

14.6.2 Image Particles
A set of experimental image data types, designed to make it convenient to manipulate images and
video sequences in MLDesigner , were defined by Paul Haskell. They are based on MLDesigner’s
built-in Message type, described above. A library of primitives that uses these image data types
can be found in the image library of the DE domain.
This set of classes is being replaced by the PtMatrix classes, and the SDF image classes now
all use PtMatrix . We give here a brief introduction to the image data types used in the DE
domain, although a new user should consider using PtMatrix classes instead. Class definitions
can be found in $MLD/MLD Libraries/DE/kernel.
The base class of all the image classes is called BaseImage . It has some generic methods and
members for manipulating images. Most of the methods are redefined in the derived classes. The
fragment method partitions an image into many smaller images, which together represent the
same picture as the original. The assemble method combines many small images which make
up a single picture into a single image that contains the picture. The fragment method works
recursively, so an image that has been produced by a previous fragment call can be further frag-
mented. assembly always produces a full-sized image from fragments, however small.
Use of the size, fullSize, and startPos members varies within each subclass. Typically
the size variable holds the number of pixels that an object is storing. If an object is not produced
by fragment(), then (size == fullSize). If the object is produced by a fragment()
call, size may be less than or equal to fullSize. An object’s fullSize may be bigger
or smaller than width*height. It would be bigger, for example, in DCTImage , where the
amount of allocated storage must be rounded up to be a multiple of the block size. It would be
smaller, for example, for an object that contains run-length coded video.
The frameId variable is used during assembly. Fragments with the same frameId’s are as-
sembled into the same image. So, it is important that different frames from the same source have
different frameIds.
The comparison operators ==, !=, <, >, etc. compare two objects’ frameId’s. They can be used
to resequence images or to sort image fragments.
The copy constructor and clone methods have an optional integer argument. If a non-zero argu-
ment is provided, then all parameter values of the copied object are copied to the created object,
but none of the image data is copied. If no argument or a zero argument is provided, then the
image data is copied as well. Classes derived from BaseImage should maintain this policy.
The GrayImage class, derived from BaseImage , is used to represent gray-scale images. The
DCTImage class is used to represent images or image fragments that have been encoded using
the discrete-cosine transform. The MVImage class is a bit more specialized. It stores a frame’s
worth of motion vectors.

14-44 MLDesigner Version 2.8

Chapter 15

Programming Using Data Structures

In designing new primitives that use data structure it is very important to understand how to in-
stantiate a data structure, when it should be created using new (in the heap), when an instance of
a data structure may be deleted and when not. The incorrect use of the data structure mechanism
can lead to memory leaks or to unexpected behavior.

15.1 Initializing Data Structures
The DsHandler class holds a list with all defined data structures that are loaded at one given time.
To properly use these data structures, DsHandler class provides static methods to access the class
objects or to create value objects.
Methods for handling data structure class objects:

const TypeClass& DsHandler::findClass (const String& pName);
const TypeClass* DsHandler::findClassPointer (const String& pName);
bool DsHandler::isDataStructure (const String& pName);

findClass searches and returns a const reference to a data structure by its name. When the
data structure is not found it throws NotFoundDataTypeException. The second method,
findClassPointer, returns a const pointer to a specified data structure and NULL when is
not found. With isDataStructure you can test if a given data structure exists (is loaded) or
not. Do not try to change the references returned by this methods.
Methods to create data structure values:

Type& DsHandler::newValue (const Kernel::String& pName);
Type& DsHandler::newInteger ();
Type& DsHandler::newFloat ();
Type& DsHandler::newIntVector (unsigned int pLength,

int pDefault=0);
Type& DsHandler::newFloatVector (unsigned int pLength,

double pDefault=0);
Type& DsHandler::newValueFromString (const Kernel::String& pStr);

15 Programming Using Data Structures

All these methods throw NotFoundDataTypeException when the specified data structure
is not found.
In primitives design use TypeRef class in case you have a non const Type object and Const-
TypeRef when you have a const Type object. The life time of this object determines the creation
and releasing of a data structure value.
Example:

go
{
TypeRef tData=DsHandler::newValue("Root.Protocol.TCPProtocol");
.... // do something with it

}
// at the exit of the method the object is deleted and
the TypeRef destructor is called. This frees the data
structure value.

You can use directly only TypeRef class constructor to instantiate a data structure (without using
DsHandler).

TypeRef tData("Root.Protocol.TCPProtocol");
// creates an objects that holds a reference to a
// TCPProtocol data structure

The old methods are still available:

const Type* DsHandler::findStructure (const char* pName);
Type* DsHandler::makeNewStructure (const char* pName);
Type* DsHandler::makeNewInt();
Type* DsHandler::makeNewFloat();
Type* DsHandler::makeNewFromString (const char* pString)

throw (DataTypeSyntaxException*);

Please take care if you use findStructure method. It is still available for compatibility
but now it generates memory leak. It is therefore recommended to replace this method with
findClass method.

NOTE: You can call these methods directly on the class, no object instance is needed.�

Data Structure Values
During the simulation a certain number of data structure values is generated. MLDesigner 2.3 in-
troduces a mechanism that saves you from the overhead of creating, duplicating or releasing data
structure values. MLDesigner uses a pool mechanism to reuse created values that are no longer
needed. Every data structure has a reference counter that is increased when an object reference
to it, and is decrease every time this object is no longer referencing to the value. When reference
counter reaches zero means the value is free and is put in a pool of free values. A clone method
looks first if there are any free data structures in the pool to be reused, if not a new data structure

15-2 MLDesigner Version 2.8

15.2 Using Data Structures

is created. Use a reference class (TypeRef or derivated) every time you want to work with data
structures. Every time a method returns Type& or Type* you can assign it to a TypeRef or a
derivated class. When it returns a const reference, you have to use the ConstTypeRef class.
As a general rule you have to know that non const references returned by methods are in fact
copies of the original data structure inside and every time a method returns a const reference, this
is a reference to the real object inside. This is the reason why expressions like tVector[i] =
tElement don’t work.

15.2 Using Data Structures
Two types of operations can be executed on data structures:

• Generic type operations - operations that can be executed on every data structure regardless
of its type.

• Type specific operations - operations defined only for specific data structures

15.2.1 Generic Type Operations
Methods provided by the data structure class are listed in table 15.1.

15.2.2 Type Specific Interfaces
15.2.2.1 Base Types Interface

You can perform the following operations on base types:

• read its value (using the cast operator).
• set the value by calling setValue(Type); or by changing the value of the reference

returned by cast operators.

Example:

IntegerR tInteger; //create a new integer
tInteger.setValue(123); //set the value 123 to this integer.
tInteger = 321;
int IntValue = tInteger; //read the value (call the cast to

//int operator)

This example creates a special reference class to an integer. When the reference life time ends, the
value is set as free and becomes available for further use.

15.2.2.2 Vector Data Structure Interface

Numeric vectors provide two kinds of type specific operations. On the one hand there are methods
to manage the vectors, such as setting the length and the default value and on the other hand there

15-3

15 Programming Using Data Structures

are methods to use vectors as values i.e., to set and get the vector elements.

You can manage the vector’s length with these methods:

void setLength (int pLength);

sets the length of a vector for the first time before initialization.

int getLength () const;

returns the vector’s length.

void changeLength (int pLength);

with this method you can change the size of an already initialized vector during a simulation.
Other methods for vector management are:

void setDefault (T pDefault);
T getDefault ();

methods with whom you can set a default value for vector elements. This make sense on an
uninitialized vector. When you create a new vector, all its elements are set with this default value.
To operate over vector elements use the following methods:

Type& operator [] (int index) const;
Type& getElement (unsigned int index);
int getIntElement (unsigned int index);
double getFloatElement (unsigned int index);
void setElement (unsigned int index, T pValue);

With this methods it is possible to access vector elements. Return methods are also defined as
const methods that return a const reference. In case of a generic vector, operator [] returns a copy
of the value inside the vector, therefore an expression like tVector[i] = tElement does
not work and generates memory leak. All this methods throw IndexOutOfRangeException
in case the specified index does not exist.
Example 1:

// create a vector of ten integers, all elements set to one.
TypeRef tVector = DsHandler::newIntVector(10,1);

// set the first element to 99
tVector.setElement(0,99);

// read the value of the first element.
int tValue = tIntVector.getIntElement(0);

15-4 MLDesigner Version 2.8

15.2 Using Data Structures

To call operator [] on a vector it is necessary to have an object of IntVector or FloatVector
, due to the operator [] that is not defined in the base class Type. For this is necessary to use
static cast operator.

Example 2:

// create a generic vector
TypeRef tVector = DsHandler::newValue("Root.Vector");

// set the default value to a defined data structure
tVector.setDefault(DsHandler::findClass(

"Root.NetworkProtocol.TCPProtocol"));

// change the vector length to 25.
// The vector is initialized with default elements.
tVector.changeLength(25);

15.2.2.3 Enumeration Data Structure Operations

Enumeration class (EnumType) is designed to satisfy the requirements of C++ style enumera-
tions. In this way an Enumeration object can be used to describe an enumeration, i.e. its elements,
as well as holding its value, which must be in the range described by its elements.
Following methods are provided for elements management:

void addElement (const Element* e);

Add a new element in the enumeration list. This element should have the index
set. Take care that the Element object must be created with new.

void addNewValue (const String& pValue);

Add a new value in the enumeration list this function set the element index to the
last element’s index incremented by one.

int deleteElement (const String& pValue);
int deleteIndex (int pIndex);

All these methods can be used to remove an element from an enumeration. The
difference between them is the way the element is searched for: by its value or by
its index.

const void setValue (const String& pValue);
const void setValue (int pValue);
const void setValue (Element* pValue);

You can set a value of an enumeration using one of these three methods. In case
the specified element is not found in the enumeration this method will throw an
Exception, so is better to place this methods in a try...catch block.

EnumType provides various methods to get the value inside. You can get the value as an ele-
ment, as a string, or you can get the index of the value.

15-5

15 Programming Using Data Structures

const Element* getValueElement () const;

You can use this method to get the value element of an enumeration. This is a
pointer to the value member, so don’t try to change or to delete this pointer.

String value () const;
operator const char* ();
const char* operator () (void);

This methods and operators return the actual value of an enumeration as a string.

int indexOfMyValue () const;

You can use this method to get the actual value as index.

With the following methods you can get information on the possible elements of an enumeration.

String getValueAtIndex (int pIndex);

Returns the value of the element with the specified index. The value is returned
as a string.

Element* getElementAtIndex (int pIndex);

Use this method to get a pointer to the specified element. Changes on this pointer
affects the element inside the enumeration.

int getIndexForValue (const String& pValue);

This method returns the index of an element specified by its value.

15.2.2.4 Operations for Composite Data Structures

Composite data structures use a handler class called DataStructMember for member man-
agement. With composite data structures you can use a reference to such a handler object or use
methods directly on the composite object. DataStructure class provides methods to set or read
member values.

void setField (const String& name, int value);
void setField (const String& name, float value);
void setField (const String& name, const String& value);
void setField (const String& name, const Type& value);

You can set a value for a field using these methods, where name is the name of
the member.

void setField (unsigned int index, int value);
void setField (unsigned int index, float value);
void setField (unsigned int index, const String& value);
void setField (unsigned int index, const Type& value);

15-6 MLDesigner Version 2.8

15.2 Using Data Structures

If you know the index you can call these methods with index and valuemaking
the simulation much faster.

If the member with the given name or index is not found a DataTypeException is thrown.

Example:

// creates a new data structure
TypeRef tData("Root.NetworkProtocol.TCPProtocol");
// sets the field "Name" to value XYZ
tData.setField("Name","XYZ");
// set the "SourceID" field to index "1"
// using the string representation
tData.setField(1,"{192,168,2,0}");
// create a new IPAddress
TypeRef tDestination("Root.Address.IPAddress");
// sets "Byte1" to 255
tDestination.setField("Byte1",255);
tData.setField("DestIP",tDestination);
// outputs the data structure to the "Output" port
Output.put(arrivalTime) << tData;

For reading member values use one of the following methods:

Type& getField (const String& name);
Type& getField (unsigned int pIndex);
const Type& getField (const String& name) const;
const Type& getField (unsigned int pIndex) const;

When the method is non const it returns a copy of the data inside, otherwise it
returns a reference to the data inside. When the field is not found, the methods
throw a DataTypeException .

int getIndexForMember (const String& pName) const;

Returns the index for a specific member. Use this method in setup primitive
method to save the index (see example).

Example (this is part of a primitive code):

protected
{
int mIndex; // primitive member to save the index

}

setup
{
const TypeClass& tTCP = DsHandler::findClass(

"Root.NetworkProtocol.TCPProtocol");
mIndex = tTCP.getIndexForMember("SourcePort");

15-7

15 Programming Using Data Structures

// assign the index value before the simulation starts
}

go
{
// get data structure from the input port
TypeRef tTcp = Input.get();
int tPortValue = tTcp.getField(mIndex);
// assign to the variable tPortValue the member value
//(calls the cast operator)

}

In the new mechanism the field handler, DataStructMember , belongs only to the data struc-
ture descriptors, the class part of data structures. It does not hold any longer a data structure
value therefore old methods like:

Type& data ();
Type* getData ();
const Type& data () const;
const Type* getData () const;
void writeData (const Type* data);

are no longer available. If you used them, you have to replace them with calls directly on the
DataStructure object. Return methods like getData() and data() can be replaced
with getField(...) methods from DataStructure class, and writeData(...) with
setField(...).
You can iterate over members of a data structure using the iterator class

DSMemberIter (DataStructureClass& ds)

and over the values inside a composite data structure with

DSFieldIter (DataStructure& ds)

operator++ returns the current member and moves the cursor to the next one.
If you use the old iterator DSMemberIter(DataStructure&) you’ll have to replace it with
one of these two iterators.

15.3 When to Clone/Release Data Structures.
MLDesigner 2.3 introduces a new data structure mechanism and with it a new type of classes
that handle the copying and releasing of data structure value objects. The base class is called
TypeRef and from this are some type specific classes derivated and they have distinctive R as
last letter. To avoid any problems that might appear (like memory leak or unexpected behavior) is
better to use only this kind of classes when programming using data structures. This mechanism
is based on the object’s life time. Every time a reference object is created it increase the reference

15-8 MLDesigner Version 2.8

15.4 When is a data structure released?

counter of the value object. When the object is destroyed the destructor is called and with that the
reference counter is decreased. When this becomes zero the value data structure is put in a pool
of free elements. As a result when you use objects of this class types you have to take care that
the life time of this will end after exiting the method that defines it. Do not initialize this classes
dynamic unless you want to handle the object life time manually.
Next paragraph contains a description of the cloning and releasing mechanism in case you want to
make an idea about it. It is important to know exactly when a data structure must be cloned and
whether a cloned value data structure must be released, by calling the die() method, or deleted.
This is critical in order to avoid memory leak .

Data structure clones are created when:

• A data structure is returned by the method DsHandler::newValue(...). Call this
method every time you want to instance a new data structure for direct usage as a value in
primitives.

• Methods that return data structure values, return a copy of the object inside when the method
is defined non const, and a const reference to the inside value when the method is defined
const.

• When you call methods that take as parameter a const reference to a data structure the value
is cloned inside the method.

Example :

// data structure is instantiated and sent on the "Output" port
TypeRef tData("Root.Address.IPAddress");
Output.put(arrivalTime) << tData;

Exception to this rule are old methods, now obsolete:

getTypeForMember(...) - in DataStructure class;

Const references returned by some methods of data structures are references to the values inside
the object.
Example :

// the fastest way to read a memory when no changes have occurred.
const Memory tMemory;
const ConstTypeRef tData = tMemory;

15.4 When is a data structure released?
• You can release a data structure by calling the die() method. This method places the data

structure in a pool of free data structure of the same type.
• DataStruct particles release any data structure they reference once it is no longer needed.

If you get a data structure from an input port or you create one and place it on an output
port, you don’t have to worry about whether the data structure is released.

15-9

15 Programming Using Data Structures

• Every clone data structure value must be released using the die() method. The exception
is when you place it on an output port or when you use a TypeRef class.

Example 1:

go
{
TypeRef tData = MyMemory.readData(); // clone returned
//or
TypeRef tData = MyMemory;
....

} // life time of tData ends - data structure is no longer
// needed and it is released.

Example 2:

TypeRef tData = MyMemory.readData(); // clone returned
....
Output.put(arrivalTime) << tData;
// data structure is placed on the output port.

Errors in using clone() and die() methods in a simulation can lead to unexpected behavior
or memory leak, so try to analyze and use the data structure mechanism correctly.

15.5 Compatibility Problems
In designing the new data structure mechanism we tried to keep unchanged as much as possible the
actual interface. Unfortunately this was not fully possible and some methods had to be changed or
removed in the new interface. In case you run into compatibility problems - compile errors in old
primitives - you can easily fix it following the indications in the next paragraph.

15.6 Known problems
const Type* DsHandler::findStructure(...) generates memory leak.

In the new mechanism, DsHandler contains only descriptors of data structures, that are Type-
Class objects or are derived from this class. In this case this method makes no more sense, and
has been replaced with findClass(...) or findClassPointer(...). The old method
now creates a value object (a clone) when the specified data structure is found and returns it as
const pointer. This generates memory leak since this pointer cannot be changed any more.

Data structure access methods from DataStructMember were removed.

The new DataStructMember does not hold any references to value objects. It is used to
handle the description of composite data structures and exists only in the class objects. In case
you use these methods:

15-10 MLDesigner Version 2.8

15.6 Known problems

Type& data ();
Type* getData ();
const Type& data () const;
const Type* getData () const;
void writeData (const Type* data);

you will have to replace them to calls directly on the DataStructure object.
Example:

// before:
Type* tTCP = DsHandler::makeNewStructure("Root.Protocol.

TCPProtocol");
DataStructMember* tMember = tTCP->getMember("SourcePort");
Type* tData = tMember->getData();
// do something with data
tMember->writeData(tData);
tData->die(); // data structure released, no longer needed.
tTCP->die(); // data structure released, no longer needed.

// replaced with:
TypeRef tTCP("Root.Protocol.TCPProtocol");
TypeRef tData = tTCP.getField("SourcePort");
// do something with data
tTCP.setField("SourcePort",tData);

DataStructMember iterators are modified.

Since a DataStructure object doesn’t hold references to DataStructMember objects any
longer, it is not possible to use a DSMemberIter iterator over it. Depending on what you want to
do you can use DSMemberIter(DataStructureClass&) or DSFieldIter(DataStructure&).
If you need to access DataStructMember objects, then use DSMemberIter over a DataStructClass
object that returns DataStructMember objects. If you need to access the data under a member
in a composite data structure value, then use DSFieldIter over a DataStructure object
and you will get all the fields in this composite.
Example:

// you used a DSMemberIter in this way:
Type* tTCP = DsHandler::makeNewStructure("Root.Protocol.TCPProtocol");
DSMemberIter next(*tTCP);
while (DataStructMember* tMember = next++)
{
Type* tData = tMember->getData();
// do something with data
tData->die(); // data structure released, no longer needed.

}
tTCP->die(); // data structure released, no longer needed.

15-11

15 Programming Using Data Structures

//replace with:
TypeRef tTCP("Root.Protocol.TCPProtocol");
DSFieldIter next(tTCP);
while (Type* tData = next++)
{
// do something with data
tData->die();

}

Operator [] in Vector data structure might generate memory leak.

In order to have a general mechanism for cloning and releasing value data structures the data struc-
ture returned by this operator changed from a reference to the element to a copy of the element.
Example:

// if you used an expression like:
tVector[i] = tElement; // where tVector is a Vector

// replace with:
tVector.setElement(i,tElement);

15-12 MLDesigner Version 2.8

15.6 Known problems

primitive function

String getName() returns the name of a data structure

String getFullName() returns the full name of a data structure

String getUniqueName() returns the unique name of a data struc-
ture

bool isA(const Type& pType)
const;

Tests if the type has the same name as
the parameter. If you want to compare
two types, call one of this methods

bool isParentOf(const Type*
pChild) const;

Tests if pChild is a data structure de-
rived from this data structure

bool isChildOf(const Type*
pParent) const;

Tests if pParent is a parent for this
data structure

String toString() const; Returns the string representation of a
data structure

void createFromString(const
char *pString) throw
(DataTypeSyntaxException*);

This method sets all the data structure’s
values conforming to the string repre-
sentation. When you call this function
you should be careful to place it in a try
catch block. The exception is thrown
when a syntax error occur in the param-
eter string.

const Type& operator = (const
Type&);

Sets all values to the values pro-
vided by the parameter. If the pa-
rameter is not of the same type, a
DataTypeException is thrown.

bool operator == (const Type&);
bool operator != (const Type&);

Tests if two data structures are equal.
First the type is tested, and, if they are
the same type, values are tested.

Table 15.1: Data structure Class Methods

15-13

Chapter 16

Using Tcl/Tk in Primitives

Tcl (Tool Command Language) pronounced “tickle” was created in 1988 by John Ousterhout,
while he was a professor at UC Berkeley. Since that time its use has spread through a wide variety
of software industries for mission-critical integration tasks.
Tk is a graphical user interface toolkit that makes it possible to create powerful GUIs incredibly
quickly. Both Tcl and Tk have been integrated into MLDesigner . Parts of the graphical user
interface and all of the textual interpreter ptcl are designed using them. Several of the primitives
in the standard primitive library also use Tcl/Tk. This chapter explains how to use the most basic
of these primitives, TclScript, as well as how to design such primitives from scratch. It is possible
to define very sophisticated, totally customized user interfaces using this mechanism.
In this chapter, it is assumed you are familiar with the Tcl language. Up-to-date documentation
and software releases are available on the Tcl Developer Xchange web page at www.tcl.tk. There
is also a newsgroup called comp.lang.tcl.
The principal use of Tcl/Tk in MLDesigner is to customize the user interface.

16.1 Writing Tcl/Tk Scripts for the TclScript Primitive

Several of the domains in MLDesigner have a primitive called TclScript. This primitive provides
the quickest and easiest path to a customized user interface.
The TclScript primitive has an unspecified number of inputs and outputs as indicated by the
double arrows at its input and output ports. The TclScript primitive has one settable parameter
tcl file. This parameter defines a string that contains the full path name of a file containing a
Tcl script. The Tcl script file specifies initialization commands, for example to open new windows
on the screen, and may optionally define a procedure to be invoked by the primitive every time it
runs. We begin with two examples that illustrate most of the key techniques needed to use this
primitive.

Example 1: This example demonstrates the use of the TclScript primitive for creating customized
GUI elements using Tcl files. The system can be found in MLD Examples/Tutorials/TclSystem.
We must create a system containing theTclScript primitive and the TkShowValues found in MLD
Libraries/SDF Domain/SDF Demo/Tcl/Tk (see fig. 16.2).
This is done as follows:

http://www.tcl.tk

16 Using Tcl/Tk in Primitives

TclScript#1

TclScript.input=0#1

1

2

1

2TclScript.input=2.output=2#1

Figure 16.1: Examples of TclScript icons

TclScript.input=0.output=1#1 TkShowValues#1
�

Figure 16.2: System model of TclScript demo

16-2 MLDesigner Version 2.8

16.1 Writing Tcl/Tk Scripts for the TclScript Primitive

• Click the New Model icon and create a new Library called TclScript.
• Click the New Model icon and select System from the Type of model menu.
• Give the system a name such as MyTclSystem. Select the newly created library from the

Select Library dialog.
• Open the library MLD Libraries/SDF Domain/TclTk and click and drag the primitive

TclScript into the Model Editor Window MyTclSystem. From the Select Special Primi-
tive dialog choose TclScript.input=0.output=1 and click OK.

• Click and drag the TkShowValues primitive into the Model Editor Window.
• Connect the ports of the two model instances. (see fig. 16.2).

You must now create a (.tcl) file containing the following script:

set s $ptkControlPanel.middle.button_$starID
if {! [winfo exists $s]} {
button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}
bind $s <ButtonPress-1> "setOutputs_$starID 1.0"
bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"
setOutputs_$starID 0.0

}
unset s

Save this file in your TclScript library with the name TclScript.tcl.

NOTE: Since in Ptolemy vocabulary a primitive is called a star, the variable starID always �
means the identifier of the primitive.

You must now alter the reference to the Tcl script as follows:

• select the TclScript primitive in the design area;
• in the Property Editor, set the value of parameter tcl file to $MLD USER/TclScript/-
TclScript.tcl (see fig. 16.3).

Change the RunLength value to -1. This makes the simulation run endlessly or until you decide
to terminate it. You can now run the simulation. Click the Switch to Simulation Mode icon and
click Go. This script creates a push button in the tclRunControl panel. The primitive outputs the
value 1.0 when the button labeled Push Me is clicked and held and 0.0 when it is released (see
fig. 16.4).

16.1.1 Create a New TclScript Special Primitive
If you want to create a new special primitive because one with the correct amount of input or out-
put ports does not exist, you need to first create a new primitive derived from TclScript and then
create a special primitive with the correct amount of ports.

NOTE: The Derived primitive has its own empty go method which overwrites the go method �
of the parent. You must either delete the go entry in the derived primitives source code
or write new code for the method.

16-3

16 Using Tcl/Tk in Primitives

Figure 16.3: Full path where TclScript.tcl is saved

Figure 16.4: Additional controls in tclRunControl panel

16-4 MLDesigner Version 2.8

16.1 Writing Tcl/Tk Scripts for the TclScript Primitive

16.1.2 The Tcl Script Explained
The Tcl script is explained here:

set s $ptkControlPanel.middle.button_$starID

This defines a Tcl variable s whose value is the name of the window to be used for the button. The
first part of the name, $ptkControlPanel, is a global variable giving the name of the control
panel window itself. This global variable has been set by MLDesigner and can be used by any
Tcl script. The second part, .middle, specifies that the button should appear in the sub-window
named middle of the control panel. The control panel, by default, has empty sub-windows
named high, middle, and low.
The last part, .button $starID, gives a unique name to the button itself. The Tcl variable
starID has been set by the TclScript primitive to a name that is guaranteed to be unique for each
instance of the primitive. Using a unique name for the button permits multiple instances of the
primitive in a model to create separate buttons in the control window without conflict.

if {! [winfo exists $s]} {
...

}

This conditionally checks to see whether or not the button already exists. If, for example, the
system is being run a second time, then there is no need to create the button a second time. In
fact, an attempt to do so will generate an error message. If the button does not already exist, it is
created by the following lines:

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}

The first of these defines the button, and the second packs it into the control panel, refer to the Tk
documentation. The following Tcl statement binds a particular command to a mouse action, thus
defining the response when the button is pushed.

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

When button number 1 of the mouse is pressed, the Tcl interpreter invokes a procedure named
setOutputs $starID with a single argument, 1.0 (passed as a string). This procedure has
been defined by the TclScript primitive. It sets the value(s) of the outputs of the primitive. In this
case, there is only one output, so there is only one argument. The next statement defines the action
when the button is released:

bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"

The next statement initializes the output of the primitive to value 0.0.

setOutputs_$starID 0.0

16-5

16 Using Tcl/Tk in Primitives

The last command unsets the variable s, since it is no longer needed.

As illustrated in the previous example, a number of procedures and global variables will have
been defined for use by the Tcl script by the time it is sourced. These enable the script to modify
the control panel, define unique window names, and set initial output values for the primitive.
Much of the complexity in the above example is due to the need to use unique names for each
primitive instance that sources this script. In the above example, the Tcl procedure for setting
the output values has a name unique to this primitive. Moreover, the name of the button in the
control panel has to be unique to handle the case when more than one TclScript primitive sources
the same Tcl script. These unique names are constructed using a unique string defined by the
primitive prior to sourcing the script. That string is made available to the Tcl script in the form of
a global Tcl variable starID. The procedure used by the Tcl script to set output values is called
setOutputs $starID. This procedure takes as many arguments as there are output ports. The
argument list should contain a floating-point value for each output of the primitive.
In the above example, Tcl code is executed when the Tcl script is sourced. This occurs during the
setup phase of the execution of the primitive. After the setup phase, no Tcl code will be executed
unless the user pushes the ”PUSH ME” button. The command

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

defines a Tcl command to be executed asynchronously. Notice that the command is enclosed in
quotation marks, not braces. Tcl aficionados will recognize that this is necessary to ensure that
the starID variable is evaluated when the command binding occurs (when the script is sourced),
rather than when the command is executed. There is no guarantee that the variable will be set
when the command is executed.
In the above example, no Tcl code is executed when the primitive fires. The following example
shows how to define Tcl code to be executed each time the primitive fires, and also how to read
the inputs of the primitive from Tcl.

Example 2: Consider the following design in the SDF domain

TclScript.input=2.output=1#1

Ramp#1�

Rect#1�

Xgraph#1�

Figure 16.5: System model of TclScript demo

Suppose the Tcl script for the TclScript primitive reads:

proc goTcl_$starID {starID}
{

16-6 MLDesigner Version 2.8

16.1 Writing Tcl/Tk Scripts for the TclScript Primitive

set inputVals [grabInputs_$starID]
set xin [lindex $inputVals 0]
set yin [lindex $inputVals 1]
setOutputs_$starID [expr $xin+$yin]

}

Unlike the previous example, this script does not define any code that runs when the script is
sourced, during the setup phase of execution of the primitive. Instead, it simply defines a procedure
with a name unique to the instance of the primitive. This procedure reads two input values, adds
them, and writes the result to the output. Although this would be a very costly way to accomplish
addition in MLDesigner , this example nonetheless illustrates an important point. If a Tcl script
sourced by a TclScript primitive defines a procedure called goTcl $starID, then that procedure
will be invoked every time the primitive fires. The single argument passed to the procedure when it
is called is the starID. In this example, the procedure uses grabInputs $starID, defined by
the TclScript primitive, to read the inputs. The current input values are returned by this procedure
as a list, so the Tcl command lindex is used to index into the list. The final line adds the two
inputs and sends the result to the output.

As shown in the previous example, if the Tcl script defines the optional Tcl procedure goTcl -
$starID, then that procedure will be invoked every time the primitive fires. It takes one argument
(the starID) and returns nothing. This procedure, therefore, allows for synchronous communi-
cation between the MLDesigner simulation and the Tcl code (it is synchronized to the firing of the
primitive). If no goTcl $starID procedure is defined, then communication is asynchronous
(Tcl commands are invoked at arbitrary times, as specified when the script is read). For asyn-
chronous operation, typically X events are bound to Tcl/Tk commands that read or write data to
the primitive.
The inputs to the primitive can be of any type. The print() method of the particle is used to
construct a string passed to Tcl. Although it is not illustrated in the above examples, asynchronous
reads of the primitive inputs are also allowed.
Below is a summary of the Tcl procedures used when executing a TclScript primitive:

grabInputs $starID

A procedure that returns the current values of the inputs of the primitive corre-
sponding to the given starID. This procedure is defined by the TclScript primi-
tive if and only if the instance of the primitive has at least one input port.

setOutputs $starID

A procedure that takes one argument for each output of the TclScript primitive.
The value becomes the new output value for the primitive. This procedure is
defined by the TclScript primitive if and only if the instance of the primitive has
at least one output port.

goTcl $starID

If this procedure is defined in the Tcl script associated with an instance of the
TclScript primitive, then it will be invoked every time the primitive fires.

16-7

16 Using Tcl/Tk in Primitives

wrapupTcl $starID
If this procedure is defined in the Tcl script associated with an instance of the
TclScript primitive, then it will be invoked every time the wrapup method of the
primitive is invoked. In other words, it will be invoked when a simulation stops.

destructorTcl $starID
If this procedure is defined in the Tcl script associated with an instance of the
TclScript primitive, then it will be invoked when the destructor for the primitive
is invoked. This can be used to destroy windows or to unset variables that are no
longer needed.

In addition to the starID global variable, the TclScript primitive makes other information avail-
able to the Tcl script. The mechanism used is to define an array with a name equal to the value
of the starID variable. Tcl arrays are indexed by strings. Thus, not only is starID a global
variable, but so is $starID. The value of the former is a unique string, while the value of the
latter is an array. One of the entries in this array gives the number of inputs that are connected
to the primitive. The value of the expression [set ${starID}(numInputs)] is an integer
giving the number of inputs. The Tcl command set, when given only one argument, returns the
value of the variable whose name is given by that argument. The array entries are summarized
below.

$starID
This evaluates to a string that is different for every instance of the TclScript
primitive. The starID global variable is set by the TclScript primitive.

[set ${starID}(numInputs)]
This evaluates to the number of inputs that are connected to the primitive.

[set ${starID}(numOutputs)]
This evaluates to the number of outputs that are connected to the primitive.

[set ${starID}(tcl file)]
This evaluates to the name of the file containing the Tcl script associated with the
primitive.

[set ${starID}(fullName)]
This evaluates to the full name of the primitive (which is of the form sys-
tem.module.module.primitive).

16.2 Tcl Utilities Available to the Programmer
A number of Tcl global variables and procedures that will be useful to the Tcl programmer have
been incorporated into MLDesigner. Any of these can be used in any Tcl script associated with an
instance of the TclScript primitive. For instance, in example 1 on page 16-1, the global variable
ptkControlPanel specifies the control panel that is used to run the system. Below is a list of
the useful global variables that have been set by the MLDesigner graphical interface when the Tcl
script is sourced or when the goTcl $starID procedure is invoked.

16-8 MLDesigner Version 2.8

16.2 Tcl Utilities Available to the Programmer

$ptkControlPanel

A string giving the name of the control panel window associated with a given run.
This variable is set by MLDesigner.

$ptkControlPanel.high

The uppermost panel in the control panel that is intended for user-defined entries.

$ptkControlPanel.middle

The middle panel in the control panel that is intended for user- defined entries.

$ptkControlPanel.low

The lowest panel in the control panel that is intended for user- defined entries.
In addition to these global variables, a number of procedures have been supplied. Using these
procedures can ensure a consistent look-and-feel across a variety of MLDesigner applications. The
complete set of procedures can be found in $MLD/lib/tcl. Only the most useful commands are
listed here. Note also that the entire set of commands defined in the Tcl-based textual interpreter
for MLDesigner, PTcl, are also available. So for example, the command curuniverse will
return the name of the current system (see ch. 9).

NOTE: In Ptolemy vocabulary a system is called universe. �

ptkExpandEnvVar

Procedure to expand a string that begins with an environment variable refer-
ence. For example, ptkExpandEnvVar $MLD/src will return something
like /opt/mld/src (depending on the installation of MLDesigner).

ptkImportantMessage

Procedure to pop up a message window and grab the focus. The process is sus-
pended until the message is dismissed.
Arguments:
win window name to use for the message
text text to display in the pop-up window

ptkMakeButton

Procedure to make a pushbutton in a window. A callback procedure must be
defined by the programmer. It will be called whenever the user pushes the button,
and takes no arguments.
Arguments:
win name of window to contain the button
name name to use for the button itself
desc description to be put into the display
callback name of callback procedure to register changes

ptkMakeEntry

16-9

16 Using Tcl/Tk in Primitives

Procedure to make a text entry box in a window. A callback procedure must be
defined by the programmer. It will be called whenever the user changes the value
in the entry box and types <Return>. Its single argument will be the new value
of the entry.
Arguments:
win name of window to contain the entry box
name name to use for the entry box itself
desc description to be put into the display
default the initial value of the entry
callback name of callback procedure to register changes

ptkMakeMeter

Procedure to make a bar-type meter in a window.
Arguments:
win name of window to contain the entry box
name name to use for the entry box itself
desc description to be put into the display
low the value of the low end of the scale
high the value of the high end of the scale

ptkSetMeter

Procedure to set the value of a bar-type meter created with ptkMakeMeter.
Arguments:
win name of window to contain the entry box
name name to use for the entry box itself
value the new value to display in the meter

ptkMakeScale

Procedure to make a sliding scale. All scales in the control panel range from 0 to
100. A callback procedure must be defined by the programmer. It will be called
whenever the user moves the control on the scale. Its single argument will be the
new position of the control, between 0 and 100.
Arguments:
win name of window to contain the scale
name name to use for the scale itself
desc description to be put into the display
position initial integer position between 0 and 100
callback name of callback procedure to register changes

NOTE: A widget is created with name $win.$name.value that should be used by the pro-�
grammer to display the current value of the slider. Thus, the callback procedure should
contain a command like:$win.$name.value configure -text $new value

16-10 MLDesigner Version 2.8

16.2 Tcl Utilities Available to the Programmer

to display the new value after the slider has been moved. This is not performed automat-
ically because the fixed range from 0 to 100 may be correct from the user’s perspective.
So, for example, if the programmer divides the scale value by 100 before displaying it,
it will appear to the user as if the scale ranges from 0.0 to 1.0. It is also possible to con-
trol the position of the slider from Tcl (overriding the user actions) using a command
like $win.$name.scale set $position, where position is an integer-valued
variable in the range of 0 to 100.

Example 3: The following Tcl script can be used with the TclScript primitive in the system
configuration given in example 1 on page 16-1

ptkMakeMeter $ptkControlPanel.high meter_$starID \
"meter tracking scale" 0 100

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
$ptkControlPanel.high.scale_$starID.value \
configure -text \$new_value"

ptkMakeScale $ptkControlPanel.high scale_$starID \
"my scale" 50 scale_update_$starID

ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button" button_update

proc button_update {} {ptkImportantMessage .msg "Hello"}
ptkMakeEntry $ptkControlPanel.low entry_$starID \
"my entry" 10 entry_update_$starID

proc entry_update_$starID {new_value} \
"setOutputs_$starID \$new_value"

It will create the rather raw control panel shown in fig. 16.6. The commands are explained indi-
vidually below.

Figure 16.6: Simulation control window for the TclScript demo

The first two lines of the script

16-11

16 Using Tcl/Tk in Primitives

ptkMakeMeter $ptkControlPanel.high meter_$starID \
"meter tracking scale" 0 100

call the method ptkMakeMeter to create a meter display with the label ”meter tracking scale”
in the upper part of the control panel with range from 0 to 100. The next script lines

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
$ptkControlPanel.high.scale_$starID.value \
configure -text \$new_value"

define the callback function to be used for the slider (scale) shown below the meter. The callback
function sets the meter and updates the numeric display to the left of the slider. Notice that the
body of the procedure is enclosed in quotation marks rather than the usual braces. This ensures
that the variables ptkControlPanel and starID will be evaluated at the time the procedure
is defined, rather than at the time it is invoked. To make sure that new value is not evaluated
until the procedure is invoked, a preceding backslash is being used, as in \$new value. The
ptkControlPanel and starID values could have been alternatively passed as arguments.

ptkMakeScale $ptkControlPanel.high scale_$starID \
"my scale" 50 scale_update_$starID

This creates the slider itself, and sets its initial value to 50, half of full scale.

ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button" button_update

This creates a button labeled ”my button”.

proc button_update {} {ptkImportantMessage .msg "Hello"}

This defines the callback function connected with the button. This callback function opens a new
window with the message ”Hello”, and grabs the focus. the programmer must dismiss the new
window before continuing.

proc button_update {} {ptkImportantMessage .msg "Hello"}
ptkMakeEntry $ptkControlPanel.low entry_$starID \
"my entry" 10 entry_update_$starID

This creates the entry box with initial value ”10”.

proc entry_update_$starID {new_value} \
"setOutputs_$starID \$new_value"

This defines the callback function associated with the entry box. Again notice that the procedure
body is enclosed in quotation marks.

16-12 MLDesigner Version 2.8

16.3 Creating Primitives Derived from TclScript

16.3 Creating Primitives Derived from TclScript
A large number of useful primitives can be derived from the TclScript primitive. The TkShow-
Values primitive used in example 1 on page 16-1 is such a primitive. This primitive takes inputs
of any type and displays their value in a window that is optionally located in the control panel. It
has three settable parameters:

label
a string parameter giving a label to identify the display

put in control panel
a boolean parameter that specifies whether the display should be put in the control
panel or in its own window

wait between outputs
a boolean parameter that specifies whether the execution of the system should
pause each time a new value is displayed. If it does, then a mouse click in the
display restarts the system.

Conspicuously absent is the tcl file parameter of the TclScript primitive from which this is
derived. The file is hard-wired into the definition of the primitive by the following C++ statement
included in the begin method.

tcl_file="$MLD/MLD_Libraries/SDF/TclTk/tkShowValues.tcl";

The parameter is hidden from the user of the primitive by the following statement included in the
constructor.

tcl_file.clearAttributes(A_SETTABLE);

Thus, the user only sees the parameters that are defined in the derived primitive. This is a key part
of customizing the primitive.
A second issue is that of communicating the new parameter values to the Tcl script. For example,
the Tcl script will need to know the value of the label parameter in order to create the label
for the display. The TclScript primitive automatically makes all the parameters of any derived
primitive available as array entries in the global array whose name is given by the global variable
starID. To read the value of the label parameter in the Tcl script, use the expression [set
${starID}(label)]. The confusing syntax is required to ensure that Tcl uses the value of
starID as the name of the array. The string label is just the index into the array. The set
command in Tcl, when given only one argument, returns the value of the variable whose name is
given by the argument.
Some programmers may prefer an alternative way to refer to parameters that is slightly more
readable. The Tcl statement

upvar #0 $starID params

allows subsequent statement to refer to parameters simply as $param(param name). The
upvar command with argument #0 declares the local variable params equivalent to the global
variable whose name is given by the value of starID.
Many more examples can be found in $MLD/MLD Libraries/SDF/TclTk/ primitives.

16-13

16 Using Tcl/Tk in Primitives

16.4 Writing Tcl Primitives for DE Domain
In the discrete-event (DE) domain, primitives are fired in chronological order according to the
time stamps of the new data that has arrived at their input ports. The Tcl interface class TclStarIfc,
which was originally written with the SDF domain in mind, works well for some types of DE
primitives. Specifically, any primitive with an input in the DE domain can use this class effectively.
Consequently, a basic Tcl/Tk primitive, TclScript, has been written for the DE domain. The
TclScript primitive can have any number of input or output ports.

16-14 MLDesigner Version 2.8

Chapter 17

Domain Related Issues

17.1 SDF Domain
Synchronous Data Flow (SDF) is a statically scheduled data flow domain in MLDesigner. ”Stat-
ically scheduled” means that the firing order of the primitives is determined once, during the
start-up phase. The firing order will be strictly periodic. The SDF domain in MLDesigner is one
of the most mature and common, with a large library of primitives and demo programs. It is a
simulation domain, but the model of computation is the same as that used in most of the code
generation domains. A number of different schedulers, including parallelizing schedulers, have
been developed for this model.
It is assumed that you are familiar with the SDF model of computation. Refer to the ch. 18 for
further informations. We also assume you are familiar with writing primitives for the SDF domain
(see ch. 13.) Since most of the examples given in that chapter are from the SDF domain, there is
only a little more information to add here.

Setting SDF Porthole Parameters

All primitives in the SDF domain must follow the basic SDF principle. The number of particles
consumed or produced on any porthole does not change within the simulation runs. These numbers
are given for each porthole as part of the primitive definition. Most primitives consume just one
particle on each input and produce just one particle on each output. In these cases, no special
action is required, since the porthole SDF parameters will be set to one by default. However, if
the numbers differ from one, the primitive definition must reflect this. For example, the FFTCx
primitive has a size parameter that specifies how many input samples are given. The value of that
parameter specifies the number of samples required at the input in order for the primitive to fire.
The following line in the setup method of the primitive is used to make this information available
to the scheduler.

input.setSDFParams (int(size), int(size)-1);

The name of the input porthole is input. The first argument to setSDFParams specifies how
many samples are consumed by the primitive when it fires. It is the same as the number of samples
required in order to enable the primitive. The second argument to setSDFParams specifies how
many past samples (before the most recent one) will be accessed by the primitive when it fires.

17 Domain Related Issues

If the number of particles produced or consumed is independent from any parameters, then it may
be declared right along with the declaration of the input, in the .pl file. For example,

input
{
name { signalIn }
type { complex }
num { 2 }
desc { Complex input that consumes 2 input particles. }

}

This declares an input that consumes two successive complex particles.

17.2 DDF Domain
A Dynamic Data Flow (DDF) primitive, as distinct from an SDF primitive, has at least one port-
hole, either an input or an output, that receives or sends a variable number of particles. Such
portholes are called dynamic. Consequently, for a DDF primitive, how many particles to read or
write is determined at run time, in the go method. Consider an example, the LastOfN primitive:

defprimitive
{
name {LastOfN}
domain {DDF}
desc
{
Outputs the last token of N input tokens,
where N is the value of the control input.

}
input
{
name {input}
type {anytype}
num {0}

}
input
{
name {control}
type {int}

}
output
{
name {output}
type {anytype}

}
private

17-2 MLDesigner Version 2.8

17.2 DDF Domain

{
int readyToGo;

}
constructor
{
input.inheritTypeFrom(output);

}
setup
{
waitFor(control);
readyToGo = FALSE;

}
go
{
if (!readyToGo)
{
control.receiveData();
waitFor(input, int (control%0));
readyToGo = TRUE;

}
else
{
int num = int (control%0);
for (int i = num; i > 0; i--) input.receiveData();
output%0 = input%0;
output.sendData();
waitFor(control);
readyToGo = FALSE;

}
}

}

The LastOfN primitive discards the first N − 1 particles from the input porthole and routes the
last one to the output porthole . The value N is read from the control input. Since the control
data varies, the number of particles to read from the input porthole is variable, as expected for
a DDF primitive. The programmer can specify that the input porthole is dynamic by setting the
num field of the input declaration to 0 using the preprocessor format:

num {0}

The firing rule of the primitive is controlled by the waitFor method of the DDFStar class
(actually, it is defined in the base class, DynDFStar). The waitFor method takes a porthole as
an argument, and an optional integer as a second argument. It indicates that the primitive should
fire when the amount of data specified by the integer (default is 1) is available on the specified
port. In the above example, the setup method specifies that the primitive should first wait for
a control input. When a control input arrives, the go method reads the control value, and
uses waitFor to specify that the primitive should fire next when the specified number of values

17-3

17 Domain Related Issues

have arrived at input. The private member readyToGo is used to keep track of which input the
primitive is waiting for. The line

for (int i = num; i > 0; i--) input.receiveData();

causes the appropriate number of inputs (given by num) to be consumed.

DownCounter

This is an example of the DDF primitive with a dynamic output porthole: the DownCounter prim-
itive.

defprimitive
{
name { DownCounter }
domain { DDF }
author { Soonhoi Ha }
copyright { Copyright (c) 1990-1996 The Regents of the

University of California. All rights reserved.
See the file $MLD/copyright for copyright
notice, limitation of liability, and
disclaimer of warranty provisions. }

desc
{
Given an integer input with value N, produce a sequence
of output integers with values (N-1), (N-2), ... 1, 0.

}

input
{
name { input }
type { int }

}

output
{
name { output }
type { int }
num {0}

}

location { DDF library }

go
{
// get input token from Geodesic

17-4 MLDesigner Version 2.8

17.2 DDF Domain

input.receiveData();

// generates output
// the output only has a buffer of length one, so
// we store one data token in the buffer and send it
int in = int(input%0);
for (int i = in - 1; i >= 0; i--)
{
output%0 << i;
output.sendData();

}
}

}

The DownCounter primitive has a dynamic output porthole that will generate the down-counter
sequence of integer data starting from the value read through the input porthole. The code in
the go method is self-explanatory.
It is possible, although a bit uncommon, for a primitive to alternate between SDF-like and DDF-
like behavior. To assert that its next firing should be under SDF rules, the primitive calls clearWaitPort().
The following example shows a primitive that uses the same input for control and data. An integer
input specifies the number of particles that will be consumed on the next firing. After these parti-
cles have been consumed, the primitive reverts to SDF behavior to collect the next control input.
In the following example, readyToGo and num are private integers.

setup
{
clearWaitPort();
readyToGo = FALSE;

}
go
{
int i;
if (!readyToGo)
{
// get input token from Geodesic
input.receiveData();
num = int(input%0);
waitFor(input, num);
readyToGo = TRUE;

}
else
{
for (i = 0; i < num; i++)
{
input.receiveData();
output%0 << int(input%0);

17-5

17 Domain Related Issues

output.sendData();
}
readyToGo = FALSE;
clearWaitPort();

}
}

Because of the clearWaitPort() in the setupmethod, the primitive begins as an SDF primi-
tive. It consumes one data, stores its value in num, and issues a waitFor command. This changes
its behavior to DDF and specifies the number of input tokens that are required. On the next fir-
ing, it will read num input tokens and copy them to the output, and then it will revert to SDF
behavior.

17.3 BDF Domain
Boolean-controlled Data Flow (BDF) primitives are written in almost exactly the same way as
SDF primitives. When the go method of the primitive is executed, it is guaranteed that all required
input data are present, and after execution, any particles generated by the primitive are correctly
sent off to their destinations. The only addition the primitive writer has to know is how to specify
that a port’s condition depends on other ports. This is accomplished with a method of the class
BDFPortHole called setBDFParams.
The setBDFParams method takes four arguments. The first argument is the number of particles
transferred by the port when the port is enabled. Note that unconditional ports are always enabled.
The second argument is either a pointer or a reference to another BDFPortHole, which is called
the associated port. The function has two overloaded forms, which is why the argument may be
specified either as a pointer or as a reference. The third argument is a flag specifying the relation
between the porthole the method is called on and the associated port:

BDF NONE This flag indicates no relation at all.
BDF TRUE This flag indicates that data are transferred by the port only when the

conditional port has a TRUE particle.
BDF FALSE This flag indicates that data are transferred by the port only when the

conditional port has a FALSE particle.
BDF SAME This flag indicates that the stream transferred by the associated port is the

same as the stream transferred by this port. This relation is specified for
the BDF Fork actor and aids the operation of the clustering algorithm.

BDF COMPLEMENT This flag indicates that the stream transferred by the associated port is the
logical complement of the stream transferred by this port. This relation is
specified for the BDF Not actor and aids the operation of the clustering
algorithm.

The fourth argument for setBDFParams is the maximum delay, that is, the largest value that the
primitive may specify as an argument to the % operator on that porthole. The default value is zero.
This argument serves the same purpose as the second argument to setSDFParams.
The setSDFParams function may be used on BDF portholes. It does not alter the associated
port or the relation type, but does alter the other two parameters of setBDFParams . By default,

17-6 MLDesigner Version 2.8

17.4 DE Domain

BDF portholes transfer one token, unconditionally.
Calls to setBDFParams may be placed in the setup method of a primitive, or alternatively
in the constructor if the call does not depend on any parameters of the primitive. Considering
for example the Switch primitive. This primitive’s functionality is as follow: on each execution,
it reads a particle from its control input port. If the value is TRUE, it reads a particle from
its trueInput port; otherwise it reads a particle from its falseInput port. In any case, the
particle is copied to the output port. Using the Ptolemy language, the setup method could be
written

setup
{
trueInput.setBDFParams (1, control, BDF_TRUE, 0);
falseInput.setBDFParams(1, control, BDF_FALSE, 0);

}

and the go method could be written:

go
{
if (int(control%0))
output%0 = trueInput%0;

else
output%0 = falseInput%0;

}

17.4 DE Domain
The discrete event (DE) domain in MLDesigner provides a general environment for time-oriented
simulations of systems such as queuing networks, communication networks, and high-level com-
puter architectures. In this domain, each Particle represents an event that corresponds to a
change of the system state. The DE schedulers process events in chronological order. Since the
time interval between events is generally not fixed, each particle has an associated time-stamp.
Time stamps are generated by the block producing the particle, using the time stamps of the input
particles and the latency of the block.
A knowledge of the DE model of computation is assumed in this section. Refer to the ch. 22 for
additional information. Moreover, it is assumed the reader is familiar with ch. 13. In this section,
additional information required to write primitives for the DE domain are given.

17.4.1 Programming Primitives in the DE Domain
A DE primitive can be viewed as an event-processor; it receives events from the outside, processes
them, and generates output events after some latency. In a DE primitive, the management of the
time stamps of the particles (events) is as important as the input/output mapping of particle values.
Generating output values and time stamps are separable tasks. For greatest modularity, some DE
primitives, so-called delay primitives, are dedicated to time management. Examples of such prim-
itives are Delay and Server. These primitives, when fired, produce output events that typically

17-7

17 Domain Related Issues

have larger time stamps than the input events. They usually do not manipulate the value of the
particles in any significant way. The other primitives, so-called functional primitives, avoid time
management, usually by generating output events with the same time stamp as the input events.
They, however, do manipulate the value of the particles.

Time Stamps

For managing time stamps, the DEStar class has two DE-specific members: arrivalTime
and completionTime , summarized in table 17.1. Before firing a primitive, a DE scheduler

sets the value of the arrivalTime member equally to the time stamp of the event triggering
the current firing. When the primitive fired, before returning, it typically sets the value of the
completionTime member to the value of the time stamp of the latest event produced by the
primitive. The schedulers do not use the completionTime member, however, so it can actually
be used in any way the primitive writer wishes. DEStar also contains a field delayType and
a method setMode that are used to signal the properties of the primitive, as described below.

Class DEStar #include "DEStar.h"

Method Parameter Description

double completionTime store the completion time of the current exe-
cution, which in turn is equal to the next free
time

double arrivalTime is set by the scheduler to the time stamp of the
event triggering the current firing

int delayType flag to indicate whether it is a delay type prim-
itive or not

void setMode(FiringMode m) set the firing mode to PHASE or SIMPLE

Table 17.1: Summary of methods of class DEStar

17.4.1.1 Delay primitives

Delay primitives manipulate time stamps. Two types of examples of delay primitives are pure
delays, and servers. A pure-delay primitive generates an output with the same value as the input
sample, but with a time stamp that is greater than that of the input sample. The difference between
the input sample time stamp and the output time stamp is a fixed, user-defined value. Consider for
example the DE primitive Delay:

defprimitive
{
name {Delay}
domain {DE}
desc { Delays its input by a fixed amount }
input

17-8 MLDesigner Version 2.8

17.4 DE Domain

{
name {input}
type {anytype}

}
output
{
name {output}
type {=input}

}
defparameter
{
name {delay}
type {float}
default {"1.0"}
desc { Amount of time delay. }

}
constructor
{
delayType = TRUE;

}
go
{
completionTime = arrivalTime + double(delay);
Particle& pp = input.get();
output.put(completionTime) = pp;

}
}

Inside the go method description, the completionTime is calculated by adding the delay to
the arrival time of the current event. The last two lines will be explained in more detail below.
Another type of delay primitive is a server. In a server primitive, the input event waits until a
simulated resource becomes free to attend to it. An example is the DE primitive Server:

defprimitive
{
name {Server}
domain {DE}
desc
{
This primitive emulates a server. If an input event
arrives when it is not busy, it delays it by the
service time (a constant parameter). If it arrives
when it is busy, it delays it by more than the service
time. It must become free, and then serve the input.

}
input

17-9

17 Domain Related Issues

{
name {input}
type {anytype}

}
output
{
name {output}
type {=input}

}
defparameter
{
name {serviceTime}
type {float}
default {"1.0"}
desc { Service time. }

}
constructor
{
delayType = TRUE;

}
go
{ // No overlapped execution. set the time.
if (arrivalTime > completionTime)
completionTime = arrivalTime + double(serviceTime);

else
completionTime += double(serviceTime);

Particle& pp = input.get();
output.put(completionTime) = pp;

}
}

This primitive uses the completionTime member to store the time at which it becomes free af-
ter processing an input. On a given firing, if the arrivalTime is greater than the completion-
Time, meaning that the input event has arrived when the server was free, the server then delays
the input by the serviceTime only. Otherwise, the time stamp of the output event is calculated
as the serviceTime plus the time at which the server becomes free, the completionTime.
Both pure delays and servers are delay primitives. Hence their constructor sets the delayType
member, summarized in table 17.1. This information is used by the scheduler.
The technical meaning of the delayType flag needs some explanation. Such a primitive guaran-
tees that it will never produce any output event with zero delay. All its output events will have time
stamps larger than the time of the firing in which they are emitted. Primitives that can produce
zero-delay events should leave delayType set to its default value of FALSE.
Actually, primitives often cheat a little bit on this rule. As just shown, the standard DE primitive
Delay sets delayType even if the user sets the primitive’s delay parameter to zero. This causes
the primitive to be treated as though it had a positive delay for the purpose of assigning firing
priorities, which is normally what is wanted. Both pure delays and servers are delay primitives.

17-10 MLDesigner Version 2.8

17.4 DE Domain

Hence their constructor sets the delayType member, table 17.1. This information is used by the
scheduler, and is particularly important when determining which event (of several simultaneous)
to process first.

17.4.1.2 Functional Primitives

In the DE model of computation, a primitive is runnable (ready for execution), if any input port-
hole has a new event, and that event has the smallest time stamp of any pending event in the
system. When the primitive fires, it may need to know which input or inputs contain the events
that triggered the firing. An input porthole containing a new particle has the dataNew flag set by
the scheduler. The primitive can check the dataNew flag for each input. A functional primitive
will typically read the value of the new input particles, compute the value of new output particles,
and produce new output particles with time stamps identical to those of the new inputs. To see
how this is done, consider the DE primitive Switch:

defprimitive
{
name { Switch }
domain { DE }
author { Tommy Baumann }
copyright { Copyright (c) 1990-1997 The Regents of the

University of California. All rights reserved.
See the file $MLD/copyright for copyright
notice, limitation of liability, and disclaimer
of warranty provisions. }

desc
{
The function of this primitive is to pass an Input DS to
one of the two output ports. The value of the "control"
input determines which output is to be enabled. If the
value of the "control" input is zero, the input DS is
placed on the "falseOut" output port. The input DS is
placed on the "trueOut" output port for non-zero values
of the "control" input.

}

input
{
name { input }
type { anytype }
desc { This is the DS to be placed on one of the

two output ports. }
}

output

17-11

17 Domain Related Issues

{
name { trueOut }
type { =input }
desc { The input DS is placed on this port if the

"control" input is non-zero. }
}

output
{
name { falseOut }
type { =input }
desc { The input DS is placed on this port if the

"control" input equals zero. }
}

input
{
name { control }
type { int }
desc { Value which sets the switch. A zero value

will cause the Input to be placed on the
"falseOut" output port, otherwise a non-zero
value will cause the input to be placed on
the "trueOut" output port. }

}

go
{
if (input.dataNew && control.dataNew)
{
Particle& tP = input.get();

if (int(control.get()) == 0)
falseOut.put(arrivalTime) = tP;

else
trueOut.put(arrivalTime) = tP;

}
}

}

The Switch primitive has two input ports input and control. When an event arrives at the
input port, it routes the event to either the trueOut or the falseOut output port depending
on the value of the last received control input. In the go method, the programmer has to check
whether a new input event has arrived. If not, then the firing was triggered by a control input
event, and there is nothing to do. If the input has new data, then its particle is read using get
method, as summarized in table 17.2. In addition, the most recent value from the control input

17-12 MLDesigner Version 2.8

17.4 DE Domain

is read. This value is used to determine which output should receive the data input.

Class InDEPort #include "DEPortHole.h"

Method Parameter Description

Particle& operator % get a particle from the porthole without reset-
ting dataNew

void before (GenericPort& p) simultaneous inputs here should be processed
before those at p

int dataNew flag indicating whether the porthole has new
data

Particle& get () get a particle from the porthole and reset
dataNew

void getSimulEvent () fetch a simultaneous event from the global
event queue

int numSimulEvents () return the number of pending simultaneous
events at this input

void triggers () indicate that the input does not trigger any im-
mediate output events

void triggers (GenericPort& p) indicate that the input triggers an immediate
output on port p

Table 17.2: Summary of methods of class InDEPort

Class OutDEPort #include "DEPortHole.h"

Method Parameter Description

Particle& operator % get the most recent particle from the porthole

Particle& put (double time) get a new writable particle with the given time
stamp

void sendData () flush output porthole data (generated by put)
to the global event queue

Table 17.3: Summary of methods of class OutDEPort

There are three ways to access a particle from an input or output port. First, the programmer can
use the % operator followed by an integer, which is equivalent to the same operator in the SDF
domain. For example, control%0 returns the most recent particle from the control porthole.
The second method, get, is specific to class InDEPort . It resets the dataNew member of
the port as well as returning the most recent particle from an input port. If you need to reset the

17-13

17 Domain Related Issues

dataNew member of an input port after reading the newly arrived event (the more common case)
you should use the get method instead of %0 operator. Alternatively, you can reset the dataNew
flag explicitly using a statement like:

input.dataNew = FALSE;

The put method is specific to OutDEPort . It sets the timeStamp member of the port to the
value given by its argument, and returns a reference to the most recent particle from an output
port. Considering the line in the above example:

trueOut.put(arrivalTime) = tP;

This says that the particle tP is copied to the trueOut output port with
timeStamp = arrivalTime. The programmer can send more than one output event to the
same port by calling the put method repeatedly. A new particle is returned each time.

17.4.1.3 Simultaneous Events

An input port may have a sequence of simultaneous events pending (events with identical time
stamps). Normally, the primitive will be fired repeatedly until all these events have been con-
sumed. Optionally, a DE primitive may process simultaneous events during a single firing. The
getSimulEvent method can be used as in the following example, taken from an up-down
counter primitive:

go
{
...
while (countUp.dataNew)
{
count++;
countUp.getSimulEvent();

}
...

}

Here, countUp is an input porthole. The getSimulEvent method examines the global event
queue to see if any more events are available for the porthole with the current time stamp. If so,
it fetches the next one and sets the dataNew flag to TRUE. If none remain, it sets the dataNew
flag to FALSE. In this example, the actual values of the input events are uninteresting, but the
primitive could use get() within the loop if it did need the event values.
Sometimes, a primitive simply needs to know how many simultaneous events are pending on a
given porthole. Without fetching any event, we can get the number of simultaneous events by
calling the numSimulEvents method. This returns the number of simultaneous events still
waiting in the global event queue. The one already in the porthole isn’t counted.
If the primitive has multiple input ports, the programmer should carefully consider the desired
behavior of simultaneous inputs on different ports, and choose the order of processing of events

17-14 MLDesigner Version 2.8

17.4 DE Domain

accordingly. For example, it might be appropriate to absorb all the events available for a control
porthole before examining any events for a data porthole.

17.4.1.4 Source Primitives

The DE primitives discussed so far fire in response to input events. In order to build signal gen-
erators, or source primitives, or primitives with outputs but no inputs, we need another class of
DE primitive, called a self-scheduling primitive. A self-scheduling primitive fools the scheduler
by generating its own input events. These feedback events trigger the primitive firings. An event
generator is a special case of a delay primitive, its role is mainly to control the time spacing of
source events. The values of the source events can be determined by a functional block attached
to the output of the event generator (e.g. Const, Ramp, etc).

Class DERepeatStar #include "DERepeatStar.h"

Method Parameter Description

int canGetFired () return 1 if the primitive is enabled for firing

void refireAtTime (double t) schedule the primitive to fire again at time t

void begin () schedule the primitive to fire at time zero

Table 17.4: Summary of methods of class DERepeatStar

A self-scheduling primitive is derived from class DERepeatStar , which in turn is derived
from class DEStar . The DERepeatStar class has two special methods to facilitate the
self-scheduling function: refireAtTime and canGetFired . These are summarized in
table 17.4. The DE primitive Poisson illustrates these:

defprimitive
{
name {Poisson}
domain {DE}
derivedfrom { RepeatStar }
desc
{
Generates events according to a Poisson process.
The first event comes out at time zero.

}
output
{
name {output}
type {float}

}
defparameter

17-15

17 Domain Related Issues

{
name {meanTime}
type {float}
default {"1.0"}
desc { The mean inter-arrival time. }

}
defparameter
{
name {magnitude}
type {float}
default {"1.0"}
desc { The value of outputs generated. }

}
hinclude { <NegExp.h> }
ccinclude { <ACG.h> }
protected { NegativeExpntl *random; }
code { extern ACG* gen; }
constructor { random = NULL; }
destructor { if(random) delete random; }
begin
{
if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar::begin ();

}
go
{ // Generate an output event
// (Recall that the first event comes out at time 0).
output.put(completionTime) << double(magnitude);

// and schedule the next firing
refireAtTime(completionTime);

// Generate an exponential random variable.
double p = (*random)();

// Turn it into an exponential, and add to completionTime
completionTime += p;

}
}

The Poisson primitive generates a Poisson process. The inter-arrival time of events is exponen-
tially distributed with parameter meanTime. Refer to sec. 13.6.6 on page 13-53 for information
about the random number generation. The method refireAtTime launches an event onto a
feedback arc that is invisible to the programmer. The feedback event triggers the self-scheduling
primitive some time later.

17-16 MLDesigner Version 2.8

17.4 DE Domain

Note that the feedback event for the next execution is generated in the current execution. To initiate
this process, an event is placed on the feedback arc by the DERepeatStar::begin method,
before the scheduler runs.
The DERepeatStar class can also be used for other purposes besides event generation. For ex-
ample, a sampler primitive might be written to fire itself at regular intervals using the refireAt-
Time method.
Another uncommon named method, canGetFired is seldom used in the primitive definitions.
The method checks for the existence of a new feedback event, and returns TRUE if it is there, or
FALSE otherwise.
The internal feedback arc consists of an input and an output porthole that are automatically cre-
ated and connected together, with a delay marker added to prevent the scheduler from complaining
about a delay-free loop. This effectively assumes that refire requests will always be for time stamps
greater than the current time.
Sometimes the programmer of a primitive derived from DERepeatStar needs to be explic-
itly aware of these portholes. In particular, they should be taken into account when considering
whether a primitive is delay-type. Setting delayType in a DERepeatStar derivative asserts
that not only do none of the primitive’s visible input portholes trigger output events with zero
delay, but refire events do not either. Frequently this is a false statement. It’s usually safer to
write triggers directives that indicate that specific input portholes cannot trigger zero-delay
outputs. Since the feedback portholes have a delay marker, it is never necessary to mention the
feedback output porthole in triggers directives, even for an input porthole that gives rise to
refireAtTime requests, the scheduler is uninterested in zero-delay paths to the feedback out-
put.
The event passed across the feedback arc is an ordinary FLOAT particle, normally having value
zero. Sometimes it can be useful to store extra information in the feedback event. The refireAt-
Time method accepts an optional second parameter that gives the numeric value to place in the
feedback event. Fetching the value currently requires direct access to the feedback input port, for
example:

if (feedbackIn->dataNew)
{
double feedbackValue = double(feedbackIn->get());
...

}

A future version of DERepeatStar might provide some syntactic changes to hide the details of
this operation.

17.4.1.5 Init and WrapUp Primitives

The two primitives Init and WrapUp changed in the the DE domain with version 2.3. Thereafter
systems using these primitives display a warning in the log console when the simulation is exe-
cuted. The warning asks that you look at the online documentation for details about the changes.
It is important to know that these primitives are not automatically replaced by the new primitives.
Problems arise if a system uses MLDesigner modules containing these primitives and an instance
of the primitive is also used in the system.

17-17

17 Domain Related Issues

The primitive instance in the module has been replaced with the new WrapUp or Init primi-
tive but the primitive instance is not automatically updated. We recommend you replace the old
instance of the primitive with the new.
The new Init and WrapUp:

1. allow negative values for relative order;
2. use descending order firing (from relative order variables, so 1 fires before 0).

The old version of Init and WrapUp, (now called Init MLD2 3 and WrapUp MLD2 3 respectively,
are stored in the Compatibility library):

1. do not allow negative values for relative order.
2. use ascending order firing (0 fires before 1)

NOTE: Do not mix old and new Init and WrapUp primitives in a system as this will lead to�
conflicts.

17.4.2 Programming Examples
This section presents different examples of programming in the discrete-event domain. We will
give several examples of DE primitives that work with matrices.

Identity Matrix Primitive

This section develops a primitive in the DE domain that will create an identity matrix. Instead
of creating a source primitive which must schedule itself, it is being done with a primitive that
fires whenever it receives an new input value. For example, a clock or some other source can be
attached to the primitive to set its firing pattern.

defprimitive
{
name { Identity_M }
domain { DE }
desc { Output a floating-point identity matrix }
author { Brian L. Evans }
input
{
name { input }
type { anytype }

}
output
{
name { output }
type { FLOAT_MATRIX_ENV }

}
defparameter
{
name { rowsCols }

17-18 MLDesigner Version 2.8

17.4 DE Domain

type { int }
default { 2 }
desc { Number of rows and columns of the output matrix. }

}
ccinclude { "Matrix.h" }
go
{
// Functional Primitive: pass timestamp without change
completionTime = arrivalTime;

// For messages, you must pass dynamically allocated data
FloatMatrix& result = *(new FloatMatrix(int(rowsCols),

int(rowsCols)));

// Set the contents of the matrix to an identity matrix
result.identity();

// Send the matrix result to the output port
output.put(completionTime) << result;

}
}

This is a functional primitive because the time stamp on the input particle is not altered. The
output is a matrix message. The matrix is a square matrix. In order for the matrix to remain
defined after the go method finishes, the matrix result cannot be allocated from local memory.
Instead, it must be allocated from global dynamic memory via the new operator. In the syntax
for the new operator, the int cast in int(rowsCols) extracts the value from rowsCols
which is an instance of the State class. The dynamic memory allocated for the matrix will be
automatically deleted by the Message class. Then, the matrix is reset to be an identity matrix.
Finally, the matrix is sent to the output port with the same time stamp as that of the input
data. Note that the syntax to output data in the DE domain differs from the syntax of the SDF due
to the time stamp. In the SDF domain, the output code would be

output%0 << result

Matrix Transpose

In the next example, the matrix transpose will be implemented.

defprimitive
{
name { Transpose_M }
domain { DE }
desc { Transpose a floating-point matrix }
author { Brian L. Evans }
input
{

17-19

17 Domain Related Issues

name { input }
type { FLOAT_MATRIX_ENV }

}
output
{
name { output }
type { FLOAT_MATRIX_ENV }

}
ccinclude { "Matrix.h" }
go
{
// Functional Primitive: pass timestamp without change
completionTime = arrivalTime;

// Extract the matrix on the input port
Envelope Xpkt;
input.get().getMessage(Xpkt);
const FloatMatrix& Xmatrix =

*(const FloatMatrix *)Xpkt.myData();

// Create a copy of the input matrix
FloatMatrix& xtrans = *(new FloatMatrix(Xmatrix));

// Transpose the matrix
xtrans.transpose();

// Send the matrix result to the output port
output.put(completionTime) << xtrans;

}
}

The key difference between creating an identity matrix and taking a matrix transpose in the DE
domain is the conversion of the input data to a matrix. The input data comes in the form of an
envelope which is essentially an instance of a class embedded in a message particle. To extract
the contents of the message, the message is first extracted from the input envelope. Then, the data
field is taken from the message and cast it to a FloatMatrix . Just as in the previous example,
the dynamic memory is needed to be allocated to hold the value of the matrix to be output. In this
case, the programmer do not have to code the transpose operation since it is already built into the
matrix classes.

17-20 MLDesigner Version 2.8

Part III

Domains

MLDesigner Domains

Version 2.8

February 26, 2010

MLDesign Technologies, Inc.
2130 Hanover St
Palo Alto, CA 94306

support : www.mldesigner.com/support
http : www.mldesigner.com

http://www.mldesigner.com/support.php
http://www.mldesigner.com

17-23

Chapter 18

SDF Domain

18.1 Introduction

Synchronous data flow (SDF) is a data-driven, statically scheduled domain in MLDesigner. It is
a direct implementation of the techniques given in [LM87a] and [LM87b]. ”Data-driven” means
that the availability of Particles at the inputs of a primitive enables it. Primitives without any
inputs are always enabled (including disconnected Xgraphs.) ”Statically scheduled” means that
the firing order of the primitives is determined once during the start-up phase. The firing order will
be periodic. The SDF domain is one of the most mature in MLDesigner, having a large library
of primitives and demo programs. It is a simulation domain, but the model of computation is
the same as that used in most of the code generation domains. A number of different schedulers,
including parallel schedulers, have been developed for this model of computation.

18.2 Basic Data Flow Terminology

SDF is a special case of the data flow model introduced by Dennis [Den75]. In the terminology
of the data flow literature, primitives are called actors. An invocation of the go() method of a
primitive is called a firing. Particles are called tokens. In a digital signal processing system, a
sequence of tokens might represent a sequence of samples of a speech signal or a sequence of
frames in a video sequence.

When an actor fires, it consumes a number of tokens from its input arcs, and produces a number of
output tokens. In synchronous data flow, these numbers remain constant throughout the execution
of the system. It is for this reason that this model of computation is suitable for synchronous
signal processing systems, but not for asynchronous systems. The fact that the firing pattern is
determined statically is both a strength and a weakness of this domain. It means that long runs can
be very efficient, a fact that is heavily exploited in the code generation domains. But it also means
that data-dependent flow of control is not allowed. This would require dynamically changing firing
patterns. The Dynamic Data Flow (DDF) and Boolean Data Flow (BDF) domains were developed
to support this.

18 SDF Domain

18.3 Balancing production and consumption of to-
kens

Each porthole of each SDF primitive has an attribute that specifies the number of particles con-
sumed (for input ports) or the number of particles produced (for output ports). When you connect
two portholes with an arc, the number of particles produced on the arc by the source primitive may
not be the same as the number of particles consumed from that arc by the destination primitive.
To maintain a balanced system, the scheduler must fire the source and destination primitives with
different frequency.

Consider a simple connection between three primitives, as shown in fig. 18.1. The symbols ad-
jacent to the portholes, such as N , represent the number of particles consumed or produced by
that porthole when the primitive fires. For many signal processing primitives, these numbers are
simply one, indicating that only a single token is consumed or produced when the primitive fires.
But there are three basic circumstances in which these numbers differ from one:

• Vector processing in the SDF domain can be accomplished by consuming and producing
multiple tokens on a single firing. For example, a primitive that computes a fast Fourier
transform (FFT) will typically consume and produce 2M samples when it fires, where M
is an integer. Examples of vector processing primitives that work this way are FFTCx,
Burg, and LevDur found in the MLD Libraries/SDF/DSP library. This behavior is
quite different from the matrix primitives, which operate on particles where each individual
particle represents a matrix.

• In multirate signal processing systems, a primitive may consume M samples and produce
N , thus achieving a sampling rate conversion of N

M . For example, the FIR and FIRCx
primitives optionally perform such a sampling rate conversion, and with an appropriate
choice of filter coefficients, can interpolate between samples. Other primitives that perform
sample rate conversion include UpSample, DownSample, and Chop.

• Multiple signals can be merged using primitives such as Commutator or a single signal
can be split into sub-signals at a lower sample rate using the Distributor primitive.

A

B

C
N

N

N N

N
N

A1

C1
C2

B2B1

A2

Figure 18.1: A simple connection of SDF primitives, used to illustrate the use of balance equations
in constructing a schedule.

To be able to handle these circumstances, the scheduler first associates a simple balance equation

18-2 MLDesigner Version 2.8

18.4 Iterations in SDF

with each connection in the graph. For the graph in fig. 18.1, the balance equations are

rANA1 = rCNC1

rANA2 = rBNB1

rBNB2 = rCNC2

This is a set of three simultaneous equations in three unknowns. The unknowns, rA, rB and rC

are the repetitions of each actor that are required to maintain balance on each arc. The first task
of the scheduler is to find the smallest non-zero integer solution for these repetitions. It is proven
in [LM87a] that such a solution exists and is unique for every SDF graph that is consistent, as
defined below.

18.4 Iterations in SDF
When running an SDF system under the graphical user interface, you will have the opportunity to
specify the Run Length. Since the SDF domain has no notion of time, this is not given in units of
time. Instead, it is given in units of SDF iterations. At each SDF iteration, each primitive is fired
the minimum number of times to satisfy the balance equations.
Create a system with the modeling domain set as SDF containing a Const.level primitive
from the Sources Library, a FFTCx from the Spectrals Library and a XMgraph from the Sinks
Library (see fig. 18.2). Select the primitive FFTCx and set the parameter size to 128. It will
consume 128 samples and produce 128 samples. The Const.level primitive produces exactly
one sample on each output, and the XMgraph primitive consumes one sample from each input.
In summary,

NA1 = NA2 = NC1 = NC2 = 1

NB1 = NB2 = 128

The balance equations become
rA = rC

rA = 128 · rB

128 · rB = rC

The smallest integer solution is
rA = rC = 128

rB = 1

Hence, each iteration of the system includes one firing of the FFTCx primitive and 128 firings
each of primitives A and B.

18.5 Inconsistency
It is not always possible to solve the balance equations. Suppose that in fig. 18.1 we have

NA1 = NA2 = NC1 = NC2 = NB1 = 1

18-3

18 SDF Domain

FFTCx#1 XMgraph.input=1#1Const.level=-1#1

Figure 18.2: System Illustrating Iterations in the SDF Domain

NB2 = 2

In this case, the balance equations have no non-zero solution. The problem with this system is
that there is no sequence of firings that can be repeated indefinitely with bounded memory. If we
fire A,B,C in sequence, a single token will be left over on the arc between B and C. If we repeat
this sequence, two tokens will be left over. Such a system is said to be inconsistent, and is flagged
as an error. The SDF scheduler will refuse to run it. If you must run such a system, change the
domain of your graph to the DDF domain.

18.6 Delays
Delays are indicated in MLDesigner by small green diamonds that are placed on an arc. Delays
are created using the Add Delay tool button on the editor toolbar. Please refer to sec. 3.10.2. The
delay has a single parameter, the number of samples of delay to be introduced. In the SDF domain,
a delay with parameter equal to one is simply an initial particle on an arc. This initial particle may
enable a primitive, assuming that the destination primitive for the delay arc requires one particle
in order to fire. To avoid deadlock, all feedback loops must have delays. The SDF scheduler will
throw an error if it finds a loop with no delays. For most particle types, the initial value of a delay
will be zero. For particles which hold matrices, the initial value is an empty envelope, which must
be checked for by primitives which work on matrix inputs. Initializable delays allow the user to
give values to the initial particles placed in the buffer.

18.7 Targets

18.7.1 Default SDF target
The default SDF target has a simple set of options:

logFile (STRING)
The name of a file into which the scheduler will write the final sched-
ule. The initial default is the empty string.

loopScheduler (STRING) Default = DEF
A String specifying whether to attempt to compact the schedule for
forming looping structure (see below). Choices are DEF, CLUST and

18-4 MLDesigner Version 2.8

18.7 Targets

ACYLOOP. The case does not matter: DEF, def, Def are all the
same. For backward compatibility, ”0” or ”NO”, and ”1” or ”YES” are
also recognized, with ”0” or ”NO” being DEF, and ”1” or ”YES” being
CLUST.

schedulePeriod (FLOAT) Default = 0.0
A floating-point number defining the time taken by one iteration through
the schedule. This is not needed for pure SDF systems, but if SDF
systems are mixed with timed domains, such as DE, then this will de-
termine the amount of simulated time taken by one iteration.

The SDF scheduler determines the order of execution of primitives in a system at start time. It
performs most of its computation during its setup() phase. If the loopScheduler target pa-
rameter is DEF, then we get a scheduler that exactly implements the method described in [LM87a]
for sequential schedules. If there are sample rate changes in a program graph, some parts of the
graph are executed multiple times. This scheduler does not attempt to generate loops; it simply
generates a linear list of blocks to be executed. For example, if primitive A is executed 100 times,
the generated schedule includes 100 instances of A. A loop scheduler will include in its ”looped”
schedule (where possible) only one instance of A and indicate the repetition count of A, as in (100
A). For simulation, a long unstructured list might be tolerable, but not in code generation. (The
SDF schedulers are also used in the code generation for a single processor target).

Neglecting the overhead due to each loop, an optimally compact looped schedule is one that con-
tains only one instance of each actor, and we refer to such schedules as single appearance sched-
ules. For example, the looped schedule (3A)(2B), corresponding to the firing sequence AAABB,
is a single appearance schedule, whereas the schedule AB(2A)B is not.

By setting the loopScheduler target parameter to CLUST, we select a scheduler developed by
Joe Buck. Before applying the non-looping scheduling algorithm, this algorithm collects actors
into a hierarchy of clusters. This clustering algorithm consists of alternating a merging step and a
looping step until no further changes can be made. In the merging step, blocks connected to-
gether are merged into a cluster if there is no sample rate change between them and the merge will
not introduce deadlock. In the looping step, a cluster is looped until it is possible to merge it with
the neighbor blocks or clusters. Since this looping algorithm is conservative, some complicated
looping possibilities are not always discovered. Hence, even if a graph has a single appearance
schedule, this heuristic may not find it.

Setting the loopScheduler target parameter to ACYLOOP results in another loop scheduler
being selected, this one developed by Praveen Murthy and Shuvra Bhattacharyya. This scheduler
only tackles acyclic SDF graphs, and if it finds that the system is not acyclic, it automatically re-
sets the loopScheduler target parameter to CLUST. This scheduler is optimized for program
as well as buffer memory. Basically, for a given SDF graph, there could be many different single
appearance schedules. These are all optimally compact in terms of schedule length (or program
memory in inline code generation). However, they will, in general, require differing amounts
of buffering memory; the difference in the buffer memory requirement of an arbitrary single ap-
pearance schedule versus a single appearance schedule optimized for buffer memory usage can
be dramatic. Again, in simulation this does not make that much difference (unless really large

18-5

18 SDF Domain

SDF graphs with large rate changes are being simulated of-course), but in code generation it is
very helpful. Note that acyclic SDF graphs always have single appearance schedules; hence, this
scheduler will always give single appearance schedules. If the logFile target parameter is set,
then a summary of internal scheduling steps will be written to that file. Essentially, two different
heuristics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one
of the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory requirement
(called BMLB) over all possible single appearance schedules.

Note that the ACYLOOP scheduler modifies the system during its computations; hence, scripted
runs that depend on the system remaining in the original state, cannot be used with this scheduler.
Since the system reverts to its original state after a run sequence, the ACYLOOP scheduler will
work fine in normal usage.

18.7.2 The loop-SDF target
An exact looping algorithm, available in an alternative target called the loop-SDF target, was
developed by adding post-processing steps to the CLUST loop scheduling algorithm. For lack of a
better name, this technique is called ”SJS scheduling”, for the first initials of the designers (Shuvra
Bhattacharyya, Joe Buck, and Soonhoi Ha). In the post-processing, the attempt was to decompose
the graph into a hierarchy of acyclic graphs [BBHL93], for which a compact looped schedule can
easily be constructed. Cyclic subgraphs that cannot be decomposed by this method, called tightly
interdependent subgraphs, are expanded to acyclic precedence graphs in which looping structures
are extracted by the techniques developed in [BL93a] and extensions to these techniques developed
by Soonhoi Ha. This scheduling option is selected when the loopTarget is chosen instead of the
default SDF target. The target options are:

logFile
schedulePeriod

They have the same interpretation as for the default target, but in the loop-SDF target,
schedulePeriod has an initial default of 10000.0.

When there are sample rate changes in the program graph, the default SDF scheduler may be much
slower than the loop schedulers, and in code generation, the resulting schedules may lead to un-
acceptably large code size. Buck’s scheduler provides a fast way to get compact looped schedules
for many program graphs, although there are no guarantees of optimality. The somewhat slower
SJS scheduler is guaranteed to find a single appearance schedule whenever one exists [BBHL95].
Furthermore, a schedule generated by the SJS scheduler contains only one instance of each actor
that is not contained in a tightly interdependent subgraph. However, neither the SJS scheduler
nor Buck’s scheduler will attempt to optimize for buffer memory usage; this need is met by the
ACYLOOP scheduler chosen through the default-SDF target as described above, for acyclic graphs.
Algorithms for generating single appearance schedules optimized for buffer memory systemati-
cally for graphs that may contain cycles have not yet been implemented.

The looped result can be seen by setting the logFile target parameter. That file will contain
all the intermediate procedures of looping and the final scheduling result. The loop scheduling

18-6 MLDesigner Version 2.8

18.8 An overview of SDF Primitives

algorithms are usually used in code generation domains, not in the simulation SDF domain. Refer
to the Code Generation domain documentation for a detailed discussion to the section on ”Sched-
ulers” on page 13-6.

18.7.3 SDF to PTCL target

This target is substantially incomplete, only a rough outline is given below. The SDF-to-PTCL
target uses CGMultiInOut primitives to generate abstract ptcl graphs which capture the SDF
semantics of a simulation SDF system. These abstract graphs can then be used to test SDF sched-
ulers.

The ptcl output filename will use the system name as a prefix, and append .pt to the name (e.g.,
the ptcl output for the butterfly demo would be in butterfly.pt). Currently the directory
that will contain the ptcl output is hardwired to ˜/MLD/ptcl/. You may need to create this
directory by hand.

The most interesting aspect about the target is that it collects statistics on the execution time of
each primitive. This is valuable for seeing the relative runtime of the various primitives which can
be used in code generation. It collects statistics by running the scheduled system, accumulating
elapsed CPU time totals for each primitive. This new target does not call the wrapup methods of
the primitives, so you will not see XGraph outputs.

18.8 An overview of SDF Primitives
The SDF library is divided into sub-libraries. These are:

Arithmetic Contains basic adders, subtracters, multipliers, and amplifiers, for all the stan-
dard scalar data types (floating point, complex, fixed-point, and integer).

Atm

Coding

Comm Contains primitives that are specific to digital communications functions, such
as pulse shapers, speech coders, and QAM encoders.

Comparison

Compatibility

Contrib

Control Contains primitives that manipulate the flow of tokens, such as commutators
and distributors, downsamplers and upsamplers, and forks.

18-7

18 SDF Domain

Conversion Contains primitives that explicitly accomplish type conversion.

Counters

DSHandling

DSP Contains various signal processing functions such as fixed and adaptive filters
of various types.

Delay

Dfm Design Flow Management library containing primitives that use strings and
files as data types.

Filter

Image Contains primitives for image and video signal processing.

logic Contains primitives that perform Boolean and comparison operations, such as
and, or, and greater than.

Matlab

Matrix Contains matrix operators such as matrix addition and multiplication. More
complex primitives that use matrix operations internally can be found in other
libraries, such as the singular value decomposition and Kalman filters in the
Signal Processing library.

MemoryAccess

Misc

Modulation

Neural Contains neural network primitives.

Nonlinear Contains primitives that compute transcendental functions, such as logarithm,
cosine, sine, and exponential functions, as well as quantizer and table lookup
primitives.

NumberGenerators

Radar

18-8 MLDesigner Version 2.8

18.9 Source primitives

Satlab

Sinks Contains various primitives that display signals in different ways or write the
value of signal samples to files.

Sources Contains signal generators of various types.

Spectral Contains spectral estimation functions.

Statistics

Switches

TclTk

Telecomm Contains touch tone generators and decoders, channel models, and PCM coders.

Each library is summarized in more detail below. In the listing, whenever data types are not men-
tioned, double-precision floating point is used. Not all data types are represented in all primitives.
Type conversions, automatic or explicit, can be used to complete the collection.

18.9 Source primitives
Source primitives are primitives with no inputs. They generate signals, and may represent external
inputs to the system, constant data, or synthesized stimuli. In the data flow model of computation,
they are always enabled, and hence can be fired at any time. In the synchronous data flow model,
the frequency with which they are fired, relative to other primitives in the system, is determined by
the solution to the balance equations. The source primitives are summarized below in no particular
order.

18.9.1 Floating Point Sources
Const Output a constant signal with value given by the level parameter (de-

fault 0.0).

Impulse Generate a single impulse or an impulse train. Each impulse has an
amplitude level (default 1.0). If period (default 0) is equal to 0,
then only a single impulse is generated; otherwise, period specifies
the period of the impulse train.

IIDGaussian Generate an identically independently distributed white Gaussian pseudo-
random process with mean (default 0) and variance (default 1).

IIDUniform Generate an identically independently distributed uniformly distributed
pseudo-random process. Output is uniformly distributed between lower
(default 0) and upper (default 1).

18-9

18 SDF Domain

Ramp Generate a ramp signal, starting at value (default 0.0) and increment-
ing by step size step (default 1.0) on each firing.

RanConst Generate an random number with a uniform, exponential, or
normal distribution, as determined by the distribution param-
eter.

ReadFile Read ASCII data from a file. The simulation can be halted on end-of-
file, or the file contents can be periodically repeated, or the file contents
can be padded with zeros.

ReadVar Output the value of a double-precision floating point variable from a
shared memory. Use the writeVar primitive to write values into
the shared memory. WARNING: This primitive may produce unpre-
dictable results, since the results will depend on the precedences in the
block diagram in which it appears as well as the scheduler used.

Rect Generate a rectangular pulse of height (default 1.0) and width (de-
fault 8). If period is greater than zero, then the pulse is repeated with
the given period.

WaveForm Output a waveform as specified by the array parameter value (default
[1 − 1]). You can get periodic signals with any period, and can halt
a simulation at the end of the given waveform. The following table
summarizes the capabilities:

haltAtEnd periodic period operation

NO YES 0 The period is the length of
the waveform

NO YES N > 0 The period is N

NO NO anything Output the waveform once,
then zeros

YES anything anything Stop after outputting the
waveform once

Table 18.1: parameters for WaveForm primitive

The first line of the table gives the default settings. This primitive may
be used to read a file by simply setting value to something of the form
< filename, preferably specifying a complete path.

Window Generate standard window functions or periodic repetitions of stan-
dard window functions. The possible functions are: Recangle,
Bartlett, Hanning, Hamming, Blackman, Kaiser and
SteepBlackman. One period of samples is produced at each firing.

TclScript Invoke a Tcl script that can optionally define a procedure that is in-
voked every time the primitive fires. That procedure can read the prim-

18-10 MLDesigner Version 2.8

18.9 Source primitives

itive’s inputs and update the value of the outputs.

TkSlider Output a value determined by an interactive on-screen scale slider.

TkButtons This primitive outputs the value 0.0 on all outputs unless the corre-
sponding button is pushed. When the button is pushed, the output
takes the value given by the parameter value. If synchronous is
YES, then outputs are produced only when some button is pushed. I.e.,
the primitive waits for a button to be pushed before its go() method
returns. If allow simultaneous events is YES, then the but-
tons pushed are registered only when the button labeled ”PUSH TO
PRODUCE OUTPUTS” is pushed. Note that if synchronous is NO,
this primitive is nondeterminate.

18.9.2 Fixed-point sources

ConstFix Constant source for fixed-point values.

RampFix Ramp for fixed-point values.

RectFix Generate a fixed-point rectangular pulse of height (default 1.0). and
width (default 8). If period is greater than zero, then the pulse is
repeated with the given period. The precision of height can be speci-
fied in bits.

18.9.3 Complex sources

ConstCx Constant source for complex values.

WaveFormCx Output a complex waveform as specified by the array parameter value
(default ”(1,0) (-1,0)”). Note that ”(a,b)” means a+jb. The parameters
work the same way as in the WaveForm primitive.

expgen Generate a complex exponential with the given frequency (relative
to the samplerate parameter).

RectCx Generate a rectangular pulse of height (default 1.0) and width (de-
fault 8). If period is greater than zero, then the pulse is repeated with
the given period.

bits Produce ”0” with probability probOfZero, else produce ”1”.

RampInt Ramp for integer values.

PCMReadInt Read a binary µ-law encoded PCM file. Return one sample on each
firing. The file format that is read is the same as the one written by
the Play primitive. The simulation can be halted on end-of-file, or the
file contents can be periodically repeated, or the file contents can be
padded with zeros.

ConstInt Constant source for integer values.

18-11

18 SDF Domain

18.9.4 Matrix Sources
The Matrix and Identity primitives each have four different icons for the different matrix data
types.

Matrix Produce a matrix with floating-point entries. The entries are read from
the array parameter FloatMatrixContents in rasterized order: i.e., for
an M x N matrix, the first row is filled from left to right using the first
N values from the array.

Matlab M Evaluate a Matlab function if inputs are given or evaluate a Matlab
command if no inputs are given. Any Matlab script can be evaluated,
provided that the current machine has a license to run Matlab.

MatlabCx M Complex version of the above primitive.

Identity M Output a floating-point identity matrix.

18.10 Sink primitives
The primitives in this library have no output ports. They display signals in various ways, write
output datasets to files or simply discard the input particles (see Black Hole).

18.10.1 Batch Plotting Facilities
The first six primitives in this library are all based on the pxgraph program. This program has
many options, summarized in ch. 8.2. The differences between primitives often amount to little
more than the choice of default options. Some, however, preprocess the signal in useful ways
before passing it to the pxgraph program. The first allows only one input signal, the second
allows any number (notice the double arrow on the input port).

BlackHole Discards the input particles. This is exactly the same as terminating a
output port via the context menu.

DmpNFloat The Float output dataset is written to a file. The default path is $MLD USER/DmpNFloat.out.

DmpNInt The Integer output dataset is written to a file. The default path is
$MLD USER/DmpNFloat.out.

Play Play an input stream on the SparcStation speaker. The ”gain” param-
eter (default 1.0) multiplies the input stream before it is mu-law com-
pressed. The ”gain” should chosen to scale the input values in the
range -32000.0 to 32000.0. The scaled input values are compressed
from 16-bit linear amplitude format to sign magnitude mu-law 8-bit
format and written to a file. When the wrapup method is called, a
file of 8-bit mu-law will be played at the fixed sampling rate of 8000
samples/second by the ”ptplay” program, which must be in your path.

PlayAIFF Play an Audio Interchange File Format (AIFF) input stream on the
workstation speaker.

18-12 MLDesigner Version 2.8

18.11 Arithmetic primitives

PlayAIFF2 Play a stereo AIFF input stream on the workstation speaker.

Printer Print out one sample from each input port per line. A ”fileName” can
be specified via the appropriate dialog; the options stdout and cout
which specify the standard output stream, and stderr and cerr
which specify the standard error stream, are also supported.

Scatter This primitive writes a complex input to a file and an XYgraph. The
dataset is stored in a data file which is specified using the parameter
fileName. The graph is displayed as a scatter diagram. In the data
file the values of the signal elements are arranged as follows:

Re(1), Im(1), Re(2), Im(2), ..., Re(k), Im(k)

where k is the number of complex elements processed.

Xgraph Generate a generic single-signal plot with the pxgraph program.

XMgraph Generate a generic multi-signal plot.

XYgraph Generate an X-Y plot with the pxgraph program. The X data is on
xInput and the Y data is on input.

Xscope Generate a multi-trace plot with the pxgraph program. Successive
traces are overlaid on one another.

Xhistogram Generate a histogram with the pxgraph program. The parameter binWidth
determines the bin width.

Waterfall Plot a series of traces in the style of a waterfall plot. This is a type of
three-dimensional plot used to show the evolution of signals or spectra.
Optionally, each plot can be made opaque, so that lines that would
appear behind the plot are eliminated.

WriteVar Generate a generic single-signal plot with the pxgraph program.

18.11 Arithmetic primitives
In principle, it should be possible to overload the basic arithmetic operators so that, for example,
a single Add primitive could handle any data type. The decision, however, was in favor of more
explicit typing, in which there is an Add primitive for each particle type supported in the kernel.
As before, when there is no data type suffix in the name of the primitive, the data type supported
is double-precision floating point.
Each primitive type has equivalent primitives for floating-point, complex, fixed-point, and integer
arithmetic, respectively. The basic primitive type functions are:

Add Output the sum of the inputs.

Sub Output the ”pos” input minus all ”neg” inputs.

Mpy Output the product of the inputs.

Gain This is an amplifier; the output is the input multiplied by the gain (de-
fault 1.0).

18-13

18 SDF Domain

The floating-point and complex-valued scalar data types also have the following primitive:

Average Average some number of input samples or blocks of input samples.
Blocks of successive input samples are treated as vectors.

The floating-point type has one additional arithmetic primitive:

Integrator This is an integrator with leakage, limits, and reset. With the default
parameters, input samples are simply accumulated, and the running
sum is the output. To prevent any resetting in the middle of a run,
connect a Const source with value 0 to the ”reset” input. Otherwise,
whenever a non-zero is received on this input, the accumulated sum is
reset to the current input (i.e. no feedback).
Limits are controlled by the top and bottom parameters. If
top≤bottom, no limiting is performed (this is the default). Other-
wise, the output is kept between bottom and top. If saturate=YES,
saturation is performed. If saturate=NO, a wrap-around is per-
formed (this is the default). Limiting is performed before output.
Leakage is controlled by the feedbackGain parameter (default 1.0).
The output is the data input plus feedbackGain·state, where
state is the previous output.

The integer type has the following primitive:

DivByInt This is an amplifier. The integer ”output” is the integer ”input” divided
by the integer divisor (default 1). Truncated integer division is used.

18.12 Nonlinear primitives
The nonlinear library in the SDF domain includes transcendental functions, quantizers, table
lookup primitives, and miscellaneous nonlinear functions.

18.12.1 Quantizers
AdaptLinQuant Quantize the input to one of 2bits possible output levels. The high

and low output levels are anti-symmetrically arranged around zero and
their magnitudes are determined by (2bits − 1) · inStep

2 . The steps be-
tween levels are uniformly spaced at the step size given by the ”inStep”
input value. The linear quantizer can be made adaptive by feeding
back past information such as quantization level, quantization value,
and step size into the current step size.

LinQuantIdx Quantize the input to the number of levels given by the levels pa-
rameter. The quantization levels are uniformly spaced between low
and high inclusive. Rounding down is performed, so that output
level will equal high only if the input level equals or exceeds high.
If the input is below low, then the quantized output will equal low.

18-14 MLDesigner Version 2.8

18.12 Nonlinear primitives

The quantized value is output to the ”amplitude” port, while the index
of the quantization level is output to the ”stepNumber” port.

Quant Quantize the input value to one of N + 1 possible output levels using
N thresholds. For an input less than or equal to the n-th threshold, but
larger than all previous thresholds, the output will be the n-th level. If
the input is greater than all thresholds, the output is the N +1-th level.
If level is specified, there must be one more level than thresholds; the
default value for level is 0, 1, 2, ... N . This primitive is much slower
than LinQuantIdx, so if possible, that one should be used instead.

QuantIdx Quantize the input value to one of N+1 possible output levels using N
thresholds, and output both the quantized result and the quantization
level. See the Quant primitive for more information.

Quantizer This primitive quantizes the input value to the nearest output value in
the given codebook. The nearest value is found by a full search of
the codebook, so the primitive will be significantly slower than either
Quant or LinQuantIdx. The absolute value of the difference is
used as a distance measure.

18.12.2 Math Functions
Abs Compute the absolute value of its input.

cexp Compute the complex exponential function of its complex input. See
also expjx.

conj Compute the conjugate of its complex input.

Cos Compute the cosine of its input, assumed to be an angle in radians.

Dirichlet Compute the normalized Dirichlet kernel (also called the aliased sinc
function):

dN (x) =
sin(Nx/2)

N · sin(x/2)

The value of the normalized Dirichlet kernel at x = 0 is always 1, and
the normalized Dirichlet kernel oscillates between -1 and +1. The nor-
malized Dirichlet kernel is periodic in x with a period of either 2π
when N is odd or 4π when N is even.

Exp Compute the real exponential function of its real input.

expjx Compute the complex exponential function of its real input. See also
cexp.

Floor Output the greatest integer less than or equal to its input.

Log Output the natural logarithm of its input.

Limit The output of this primitive is the value of the input limited to the range
between bottom and top inclusive.

MaxMin Finds maximum or minimum, value or magnitude, of a fixed number of

18-15

18 SDF Domain

data values on its input. If you want to use this primitive to operate over
multiple data streams, then precede this primitive with a Commutator
and set the parameter N accordingly.

Modulo The output is equal to the remainder after dividing the input by the
modulo parameter.

ModuloInt The output is equal to the integer remainder after dividing the integer
input by the integer modulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two integers.

Reciprocal Output the reciprocal of its input, with an optional magnitude limit
(magLimit. If magLimit is greater than zero, and the input value
is zero, then the output will equal magLimit.

Sgn Compute the signum of its input. The output is±1. Note that 0.0 maps
into 1.

Sin Computes the sine of its input, assumed to be an angle in radians.

Sinc Computes the sinc of its input given in radians. The sinc function is
defined as sin(x)/x, with value 1.0 when x = 0.

Sqrt Computes the square root of its input.

18.12.3 Other Nonlinear Functions

DB Convert input to a decibels (dB) scale. Zero and negative values are
assigned the value min (default -100). The inputIsPower param-
eter should be set to YES if the input signal is a power measurement
(vs. an amplitude measurement).

PcwzLinear This primitive implements a piecewise linear mapping from the list
of (x,y) pairs, which specify the breakpoints in the function. The se-
quence of x values must be increasing. The function implemented by
the primitive can be represented by drawing straight lines between the
(x,y) pairs, in sequence. The default mapping is the tent map, in
which inputs between -1.0 and 0.0 are linearly mapped into the range -
1.0 to 1.0. Inputs between 0.0 and 1.0 are mapped into the same range,
but with the opposite slope, 1.0 to -1.0. If the input is outside the range
specified in the ”x” values of the breakpoints, then the appropriate ex-
treme value will be used for the output. Thus, for the default map, if
the input is - 2.0, the output will be -1.0. If the input is +2.0, the output
will again be -1.0.

powerEst Estimate the power in decibels (dB) by filtering the square of the input
using a first-order filter with the time constant given as a number of
sample periods.

powerEstCx Like powerEst, but for complex inputs.

powerEstLin Same as powerEst, but the output is on a linear scale instead of

18-16 MLDesigner Version 2.8

18.13 Logic primitives

decibels (dB).

Table This primitive implements a real-valued lookup table indexed by an
integer-valued input. The input must lie between 0 and N − 1, inclu-
sive, where N is the size of the table. The values parameter specifies
the table. Its first element is indexed by a zero-valued input. An error
occurs if the input value is out-of-bounds.

TableCx Table lookup for complex values.

TableInt Table lookup for integer values.

TclScript Invoke a Tcl script that can optionally define a procedure that is in-
voked every time the primitive fires. That procedure can read the prim-
itive’s inputs and update the value of the outputs.

18.13 Logic primitives
The logic library contains a number of base primitives. To select the specific type of primitive
function you require, drag and drop the primitive into a system or module to open the select
special primitive dialog shown in fig. 18.3.

Figure 18.3: Logic primitives in the SDF library.

Test Compare two inputs. The test condition can be any of {EQ NE GT
GE} or {== != > >=} , resulting in equals, not equals, greater than,
or greater than or equals. The four icons represent these possibilities.
If crossingsOnly is TRUE, then the output is non-zero only when the
outcome of the test changes from TRUE to FALSE or FALSE to TRUE.
In this case, the first output is always TRUE.

Multiple Output a 1 if the top input is a multiple of the bottom input.

Logic This primitive applies a logical operation to any number of inputs. The
inputs are integers interpreted as Booleans, where zero is a FALSE
and nonzero is a TRUE. The logical operations supported are {NOT,
AND, NAND, OR, NOR, XOR, XNOR}, with any number of in-
puts.

18-17

18 SDF Domain

18.14 Control primitives
Control primitives manipulate the flow of tokens. All of these primitives are polymorphic; they
operate on any data type. The control primitives can be divided into three categories. They are:

18.14.1 Single-Rate Operations
Fork Copy input particles to each output. Note that a fork is automatically

inserted in a schematic when a single output is sent to more than one
input. However, when a delay is needed on one of the connections,
then an explicit fork primitive must be used.

Reverse On each execution, read a block of N samples (default 64) and write
them out backwards.

Transpose Transpose a rasterized matrix (one that is read as a sequence of parti-
cles, row by row, and written in the same form). The number of parti-
cles produced and consumed equals the product of samplesInaRow
and numberOfRows.

Trainer Pass the value of the train input to the output for the first train-Length
samples, then pass the decision input to the output. This primitive is
designed for use with adaptive equalizers that require a training se-
quence at start-up, but it can be used whenever one sequence is used
during a start-up phase, and another sequence after that.

18.14.2 Multirate Operations
Commutator Synchronously combine N input streams (where N is the number of

inputs) into one output stream. The primitive consumes B input parti-
cles from each input (where B is the block size), and produces N ×B
particles on the output. The first B particles on the output come from
the first input, the next B particles from the next input, etc.

DownSample Decimate by a given factor (default 2). The phase tells which
sample of the last factor samples to output. If phase is 0 (by default),
the most recent sample is the output, while if phase is the −1, the
oldest sample is the output. Note that phase has the opposite sense of
the phase parameter in the UpSample primitive, but the same sense
as the phase parameter in the FIR primitive.

Distributor Synchronously split one input stream into N output streams, where
N is the number of outputs. The primitive consumes N × B input
particles, where B is the blockSize parameter, and sends the first
B particles to the first output, the next B particles to the next output,
etc.

Repeat Repeat each input sample a specified number of times.

UpSample Upsample by a given factor (default 2), giving inserted samples the

18-18 MLDesigner Version 2.8

18.15 Conversion primitives

value fill (default 0.0). The phase parameter (default 0) tells where
to put the sample in an output block. A phase of 0 says to output
the input sample first, followed by the inserted samples. The maxi-
mum phase is equal to factor −1. Although the fill parameter is
a floating-point number, if the input is of some other type, such as
complex, then the fill particle will be obtained by casting fill to the
appropriate type.

18.14.3 Other Operations

Chop On each execution, this primitive reads a block of nread particles
and writes them to the output with the given offset. The number of
particles written is given by nwrite. The output block contains all
or part of the input block, depending on offset and nwrite. The
offset specifies where in the output block the first (oldest) particle in
the input block will lie. If offset is positive, then the first offset
output particles will be either particles consumed on previous firings
(if use past inputs parameter is YES), or zero (otherwise).
If offset is negative, then the first offset input particles will be
discarded.

ChopVarOffset This primitive has the same functionality as the Chop primitive except
the offset parameter is determined at run time by a control input.

DeMux Demultiplex one input onto any number of output streams. The primi-
tive consumes B particles from the input, where B is the blockSize.
These B particles are copied to exactly one output, determined by the
”control” input. The other outputs get a zero of the appropriate type.
Integers from 0 through N − 1 are accepted at the ”control” input,
where N is the number of outputs. If ”control” is outside this range,
all outputs get zeros.

Mux Multiplex any number of inputs onto one output stream. B particles
are consumed on each input, where B is the blockSize. But only one
of these blocks of particles is copied to the output. The one copied is
determined by the ”control” input. Integers from 0 through N − 1 are
accepted at the ”control” input, where N is the number of inputs. If
”control” is outside this range, an error is signaled.

18.15 Conversion primitives

This library shows a collection of primitives for format conversions of various types. The first two
rows contain primitives with functions that are fundamentally different from the automatic type
conversion performed by MLDesigner.

18-19

18 SDF Domain

18.15.1 Complex data type formats
CxToRect Convert a complex input to real and imaginary parts.

RectToCx Convert real and imaginary inputs to a complex output.

RectToPolar Convert real and imaginary inputs into magnitude and phase form. The
phase output is in the range −π to π.

PolarToRect Convert magnitude and phase to rectangular form.

18.15.2 Other data type formats
PCMBitCoder Encode voice samples for a 64 kbps bit stream using CCITT Recom-

mendation G.711. The input is one 8 kHz sample of voice data and the
output is the eight-bit codeword (the low- order 8 bits of an integer)
representing the quantized samples.

µLaw This primitive encodes its input into an 8 bit representation using the
nonlinear companding µ-law. It is similar to PCMBitCoder, but it
does the conversion in a single primitive, rather than a module.

PCMBitDecoder Decode 8-bit PCM codewords that were encoded using
PCM-BitCoder.

BitsToInt The integer input sequence is interpreted as a bit stream in which any
non-zero value is a ”1” bit. This primitive consumes nBits succes-
sive bits from the input, packs them into an integer, and outputs the
resulting integer. The first received bit becomes the most significant
bit of the output. If nBits is larger than the integer word size, then
the first bits received will be lost. If nBits is smaller than the word
size minus one, then the output integer will always be non-negative.

IntToBits Read the least significant nBits bits from an integer input, and output
the bits as integers serially on the output, most significant bit first.

BusToNum This primitive accepts a number of input bit streams, where this num-
ber should not exceed the word size of an integer. Each bit stream
has integer particles with values 0, 3, or anything else. These are in-
terpreted as binary 0, tri-state, or 1, respectively. When the primitive
fires, it reads one input bit from each input. If any of the input bits
is tri-stated, the output will be the previous output (or the initial value
of the previous parameter if the firing is the first one). Otherwise,
the bits are assembled into an integer word, assuming two’s comple-
ment encoding, and sign extended. The resulting signed integer is sent
to the output. This primitive is particularly useful for interfacing to
digital logic simulation domains.

NumToBus This primitive accepts an integer and outputs the low-order bits that
make up the integer on a number of outputs, one bit per output. The
number of outputs should not exceed the word size of an integer. This
primitive is particularly useful for interfacing to digital logic simula-

18-20 MLDesigner Version 2.8

18.15 Conversion primitives

tion domains.

Automatic type conversion has limitations. If a given output port has more than one destination,
then all destinations must have the same type input. This is true even if an explicit fork primitive
is used. Explicit type conversions are needed to get around this limitation. For this reason, the
library also contains a set of type conversions that behave exactly the same way the automatic type
conversions behave.

IntToFix Convert an integer input to a fixed-point output.

IntToFloat Convert an integer input to a floating-point output.

IntToCx Convert an integer input to a complex output.

FixToInt Convert a fixed-point input to an integer output.

FixToFloat Convert a fixed-point input to a floating-point output.

FixToCx Convert a fixed-point input to a complex output.

FloatToInt Convert a floating-point input to an integer output.

FloatToFix Convert a floating-point input to a fixed-point output.

FloatToCx Convert a floating-point input to a complex output.

CxToInt Convert a complex input to an integer output.

CxToFix Convert a complex input to a fixed-point output.

CxToFloat Convert a complex input to a floating-point output.

18.15.3 Matrix Conversion Primitives

The following type conversions construct a new matrix of the destination type by converting each
element of the old matrix as it is copied to the new one. For FixMatrix types, the precision
is specified as a parameter of the conversion primitive. The actual conversions are implemented
using the cast conversion in the underlying class, except for the conversions to the FixMatrix
type which are more complex because they involve possible changes in precision and require a
rounding option. The primitives provided are:

IntToFix M Convert an integer input matrix to a fixed-point output matrix.

IntToFloat M Convert an integer input matrix to a floating-point output matrix.

IntToCx M Convert an integer input matrix to a complex output matrix.

FixToInt M Convert a fixed-point input matrix to an integer output matrix.

FixToFloat M Convert a fixed-point input matrix to a floating-point output matrix.

FixToCx M Convert a fixed-point input matrix to a complex output matrix.

FloatToInt M Convert a floating-point input matrix to an integer output matrix.

FloatToFix M Convert a floating-point input matrix to a fixed-point output matrix.

FloatToCx M Convert a floating-point input matrix to a complex output matrix.

18-21

18 SDF Domain

CxToInt M Convert a complex input matrix to an integer output matrix.

CxToFix M Convert a complex input matrix to a fixed-point output matrix.

CxToFloat M Convert a complex input matrix to a floating-point output matrix.

18.16 Matrix primitives

The primitives in the matrix library operate on particles that represent matrices with floating-
point, fixed-point, complex, or integer entries. Most of the work is done in the underlying matrix
classes, FloatMatrix, ComplexMatrix, FixMatrix, and IntMatrix. These classes
are treated as ordinary particles. In MLDesigner, matrix types are indicated with thick stems,
where the color of the terminal stem corresponds to the data type of the matrix elements.

The Matrix conversion primitives are in the conversion library, see ”Matrix Conversion Primitives”
on page 5-22 for more information.

18.16.1 Matrix-Vector Conversion

MxCom M Accept input matrices and create a matrix output. Each input matrix
represents a decomposed sub-matrix of output matrix in row by row.
Note that for one output image, we will need a total
(numRows/numRowsSubMx) ? (numCols/numColsSubMx) input
matrices.

MxDecom M Decompose a portion of input matrix into a sequence of sub-matrices.
The desired portion of input matrix is specified by the parameters
startRow, startCol, numRows and numCols. Then output each
submatrix with dimension numRowsSubMx ? numColsSubMx in
row by row. Note that for one input matrix, there will be a total of
(numRows/numRowsSubMx) ? (numCols/numColsSubMx) out-
put matrices.

The following conversions perform more interesting functions. They also come in four versions,
one for each data type, and again we only list the floating-point version.

Pack M Produce a matrix with floating-point entries constructed from floating-
point input particles. The inputs are put in the matrix in rasterized
order, e.g. for a M ? N matrix, the first row is filled from left to right
using the first N input particles.

Toeplitz M Generate a floating-point data matrix X, with dimensions
(numRows,numCols), from a stream of numRows+numCols−1

18-22 MLDesigner Version 2.8

18.16 Matrix primitives

input particles organized as shown below:

X =

x(M − 1) x(M − 2) · · · x(0)

x(M) x(M − 1) · · · x(1)
...

...
. . .

...

x(N − 1) x(N − 2) · · · x(N −M)

Here numRows = N −M + 1 and numCols=M . This Toeplitz ma-
trix is the form of the matrix that is required by the SVD M primitive,
among others.

UnPk M Read a floating-point matrix and output its elements, row by row, as a
stream of floating-point particles.

18.16.2 Matrix operations
The following blocks are functions defined only for the ComplexMatrix data type.

Conjugate M Conjugate a matrix.

Hermitian M Perform a Hermitian transpose (conjugate transpose) on the input ma-
trix.

The following blocks also appear in the signal processing library.

SmithForm Decompose an integer matrix S into one of its Smith forms S = UDV ,
where U , D, and V are simpler integer matrices. The Smith form de-
composition for integer matrices is analogous to singular value decom-
position for floating-point matrices.

SVD M Compute the singular-value decomposition of a Toeplitz data matrix A
by decomposing A into A = UWV ′, where U and V are orthogonal
matrices, and V ′ represents the transpose of V . W is a diagonal matrix
composed of the singular values of A, and the columns of U and V are
the left and right singular vectors of A.

The following are usual matrix operations. They are arranged row by row, with one row for each
data type (floating point, complex, fixed point, and integer). We list below only the floating point
data types.

Add M Add two floating-point matrices.

Gain M Multiply a floating-point matrix by a static scalar gain value.

Inverse M Invert a square floating-point matrix.

Mpy M Multiply two floating-point matrices A and B to produce matrix C.
Matrix A has dimensions (numRows,x). Matrix B has dimensions
(x,numCols). Matrix C has dimensions (numRows,numCols). The
user need only specify numRows and numCols. An error will be

18-23

18 SDF Domain

generated if the number of columns in A does not match the number
of rows in B.

Sub M Subtract floating-point matrix B from A.

Transpose M Transpose a floating-point matrix read as a single particle.

SubMx M Find a submatrix of the input matrix.

MpyScalar M Multiply a floating-point matrix by a scalar gain value given in param-
eter.

18.16.3 Miscellaneous
Table M (3 primitives for floating-point, complex and integer) This primitive

implements a lookup table indexed by an integer-valued input. The
output is a matrix. The input must lie between 0 and N − 1, inclusive,
where N is the number of matrices in the table. The floatTable
parameter specifies the entries of matrices in the table. Note that the
entries of each matrix in the table should be given in row major order-
ing. The first matrix in the table is indexed by a zero-valued input. An
error occurs if the input value is out of bounds.

SampleMean Find the average amplitude of the components of the input matrix.

AvgSqrErr Find the average squared error between two input sequences of matri-
ces.

Abs M Return the absolute value of each entry of the floating-point matrix.

18.17 Matlab primitives
The Matlab primitives provide an interface between MLDesigner and Matlab, a numeric computa-
tion and visualization environment from The Math Works, Inc. Each Matlab primitive can contain
a single Matlab function, command, statement, or several statements. MLDesigner handles the
conversion of inputs into Matlab format and the results from Matlab into MLDesigner format. For
the Matlab primitives to work, Matlab version 4.1 or later must be installed.

NOTE: Matlab is not distributed with MLDesigner.�

If a Matlab primitive is run and Matlab is not installed, then MLDesigner will report an error. All
Matlab primitives send their commands to the same Matlab process.
Xavier Warzee of Thomson-CSF provided a method of running Matlab on a remote machine
and obtaining the results from within MLDesigner. If a simulation needs to start Matlab, then
the PTMATLAB REMOTE HOST environment variable is checked. If this variable is set, then its
value is assumed to be the name of the remote machine to run Matlab on. The remote Matlab
process is started up with the Unix rsh command. Once the remote process is running, if the
MATLAB SCRIPT DIR environment variable is set, then its value is passed to the remote Matlab
process as part of the command

path(path.’MATLAB_SCRIPT_DIR’)

18-24 MLDesigner Version 2.8

18.17 Matlab primitives

where MATLAB SCRIPT DIR is the value of that variable on the local machine. Internally, Mat-
lab distinguishes between real matrices and complex matrices. As a consequence, there are two
types of Matlab primitives: one outputs floating-point matrices and one outputs complex-valued
matrices. These primitives can take any number of inputs provided that the inputs have the same
data type (floating point or complex). The two types of Matlab primitives are:

Matlab M Evaluate a Matlab expression and output the result as floating-point
matrices.

MatlabCx M Evaluate a Matlab expression and output the result as complex-valued
matrices.

The implementation of Matlab primitives is built on Matlab’s engine interface. The interface is
managed by a base primitive, SDFMatlab. The base primitive does not have any inputs or out-
puts. It provides methods for starting and killing a Matlab process, evaluating Matlab commands,
managing Matlab figures, changing directories in Matlab, and passing MLDesigner matrices in
and out of Matlab. Currently, the base primitive does support real- and complex-valued matrices,
but not Matlab’s other two matrix data types, sparse and string matrices.

Figures generated by a Matlab primitive are managed according to the value of the primitive’s
DeleteOldFigures parameter. If TRUE or YES, then the Matlab primitive will close any
plots, graphics, etc., that it has generated when the Matlab primitive is destroyed (e.g., when the
run panel in the graphical interface is closed). Otherwise, the figures remain until MLDesigner
exits. It is better to set this parameter to NO so that the plots will not disappear when the standalone
program finishes.

There are several ways in which Matlab commands can be specified in the Matlab primitives. The
Matlab primitives Matlab M and MatlabCx M have a parameter MatlabFunction. If only
a Matlab function name is given for this parameter, then the function is applied to the inputs in the
order they are numbered and the output(s) of the function is (are) sent to the primitive’s outputs.
For example, specifying eig means to perform the eigen decomposition of the input. The function
will be called to produce one or two outputs, according to how many output ports there are. If
there is a mismatch in the number of inputs and/or outputs between the MLDesigner primitive and
the Matlab function, MLDesigner will report the error generated by Matlab.

The user may also specify how the inputs are to be passed to a Matlab function or how the out-
puts are taken from the Matlab function. For example, consider a two-input, two-output Matlab
primitive to perform a generalized eigen decomposition. The command

[output#2, output#1] = eig(input#2, input#1)

says to perform the generalized eigen decomposition on the two input matrices, place the gen-
eralized eigenvectors on output#2, and the eigenvalues (as a diagonal matrix) on output#1.
Before this command is sent to Matlab, the pound characters ‘#’ are replaced with underscore ‘ ’
characters because the pound character is illegal in a Matlab variable name.

The Matlab primitives also allow a sequence of commands to be evaluated. Continuing with
the previous example, we can plot the eigenvalues on a graph after taking the generalized eigen

18-25

18 SDF Domain

decomposition:

[output#2, output#1] = eig(input#2, input#1);
plot(output#1)

When entering such a collection of commands in MLDesigner, both commands would appear
on the same line without a newline after the semicolon. In this way, very complicated Matlab
commands can be built up. We can make the plot of eigenvalues always appear in the same plot
without interfering with other plots generated by other Matlab primitives:

[output#2, output#1] = eig(input#2, input#1);
if (exist(‘myEigFig’) == 0) myEigFig = figure; end;
figure(myEigFig);
plot(output#1);

18.18 Signal processing (DSP) primitives
This library contains various primitives which perform signal processing functions. These include
fixed and adaptive filters of various types.

18.18.1 Filters
Biquad A two-pole, two-zero Infinite Impulse Response filter (a biquad). The

default is a Butterworth filter with a cutoff at 0.1 times the sample
frequency. The transfer function is

H(z) =
n0 + n1z

−1 + n2z
−2

1− d1z−1 + d2z−2

Convolve Convolve two causal finite sequences of floating point numbers. The
truncationDepth parameter specifies the number of terms used in
the convolution sum. Set truncationDepth larger than the num-
ber of output samples of interest.

ConvolveCx Convolve two causal finite sequences of complex numbers.
The truncationDepth parameter specifies the number of terms
used in the convolution sum. Set truncationDepth larger than
the number of output samples of interest.

FIR A Finite Impulse Response (FIR) filter. Coefficients are specified by
the taps parameter. The default coefficients give an 8th order, linear-
phase, low-pass filter. To read coefficients from a file, replace the
default coefficients with < fileName, preferably specifying a com-
plete path. Rational sampling rate changes, implemented by polyphase
multirate filters, is also supported.

FIRCx A complex FIR filter. Coefficients are specified by the taps param-
eter. The default coefficients give an 8th order, linear phase, low-pass
filter. To read coefficients from a file, use the syntax: < fileName,

18-26 MLDesigner Version 2.8

18.18 Signal processing (DSP) primitives

preferably specifying a complete path. Real and imaginary parts should
be paired with parentheses, e.g. (1.0, 0.0). Polyphase multirate filter-
ing is also supported.

RaisedCosine An FIR filter with a magnitude frequency response that is shaped like
the standard raised cosine or square-root raised cosine used in digi-
tal communications. By default, the primitive upsamples by a fac-
tor of 16, so 16 outputs will be produced for each input unless the
interpolation parameter is changed.

FIRFix An FIR filter with fixed-point capabilities. The fixed-point coefficients
are specified by the taps parameter. The default coefficients give an
8th order, linear phase low-pass filter. To read coefficients from a file,
replace the default coefficients with < fileName, preferably speci-
fying a complete path. Polyphase multirate filtering is also supported.

Kalman M Output the state vector estimates of a Kalman filter using a one-step
prediction algorithm.

GAL A Gradient Adaptive Lattice filter.

Goertzel Second-order recursive computation of the k-th coefficient of an N -
point DFT using Goertzel’s algorithm.

GGAL Ganged Gradient Adaptive Lattice filters.

Hilbert Output the (approximate) Hilbert transform of the input signal. This
primitive approximates the Hilbert transform by using an FIR filter,
and is derived from the FIR primitive.

IIR An Infinite Impulse Response (IIR) filter implemented in direct form
II. The transfer function is of the form

H(z) = G
N(1/z)
D(1/z)

where N() and D() are polynomials. The parameter gain specifies G,
and the floating-point arrays numerator and denominator specify N()
and D(), respectively. Both arrays start with the constant terms of the
polynomial and decrease in powers of z (increase in powers of 1/z).
Note that the constant term of D is not omitted, as is common in other
programs that assume it is always normalized to unity.

IIRFix This is a fixed-point version of the IIR primitive. The coefficient pre-
cision, input precision, accumulation precision, and output precision
can all be separately specified.

Lattice An FIR lattice filter. The default reflection coefficients form the opti-
mal predictor for a particular 4th-order AR random process. To read
other reflection coefficients from a file, replace the default coefficients
with < fileName, preferably specifying a complete path.

phaseShift This module applies a phase shift to a signal according to the ”shift”
input. If the ”shift” input value is time varying, then its slope deter-

18-27

18 SDF Domain

mines the instantaneous frequency shift.

RLattice A recursive (IIR) lattice filter. The default coefficients implement the
synthesis filter for a particular 4th-order AR random process. To read
reflection coefficients from a file, replace the default coefficients with
< fileName, preferably specifying a complete path.

18.18.2 Adaptive Filters
LMS An adaptive filter using the Least-Mean Square (LMS) adaptation al-

gorithm. The initial coefficients are given by the taps parameter.
The default initial coefficients give an 8th order, linear phase low-pass
filter. To read default coefficients from a file, replace the default co-
efficients with < fileName, preferably specifying a complete path.
This primitive, which is derived from FIR, supports decimation, but
not interpolation.

LMSCx Complex version of the LMS primitive.

LMSCxTkPlot This primitive is just like the LMSCx primitive, but with an animated
Tk display of the taps, plus associated controls.

LMSLeak An LMS adaptive filter in which the step size is input (to the ”step”
input) every iteration. In addition, the mu parameter specifies a leakage
factor in the updates of the filter coefficients.

LMSPlot This primitive is just like the LMS primitive, except that, in addition
to the functions of LMS, it makes a plot of the tap coefficients. It can
produce two types of plots: a plot of the final tap values or a plot
that traces the time evolution of each tap value. The time evolution is
obtained if the value of the parameter trace is YES.

LMSTkPlot the primitive is just like the LMS primitive, but with an animated Tk
display of the taps, plus associated controls.

LMSOscDet This filter tries to lock onto the strongest sinusoidal component in the
input signal, and outputs the current estimate of the cosine of the fre-
quency of the strongest component and the error signal. It is a three-
tap LMS filter whose first and third coefficients are fixed at one. The
second coefficient is adapted. It is a normalized version of the Direct
Adaptive Frequency Estimation Technique.

LMSPlotCx Complex version of LMSPlot. Separate plots are generated for the
magnitude and phase of the filter coefficients.

18.18.3 Block Filters

The next group of primitives perform ”block filtering”, which means that on each firing, they read
a set of input particles all at once, process them, and produce a set of output particles. The number
of particles in a set is specified by the blockSize parameter.

18-28 MLDesigner Version 2.8

18.18 Signal processing (DSP) primitives

BlockAllPole This primitive implements an all pole filter with the denominator co-
efficients of the transfer function externally supplied. For each set of
coefficients, a block of input samples is processed, all in one firing.
The transfer function is

H(z) =
1

1−D(z)

where the coefficients of D(z) are externally supplied.

BlockFIR This primitive implements an FIR filter with coefficients that are peri-
odically updated from the outside. For each set of coefficients, a block
of input samples is processed, all in one firing.

BlockLattice A block forward lattice filter. It is identical to the Lattice prim-
itive except that the reflection coefficients are updated each time the
primitive fires by reading the ”coefs” input. The order parameter
indicates how many coefficient should be read. The blockSize pa-
rameter specifies how many data samples should be processed for each
set of coefficients.

BlockRLattice A block recursive (IIR) lattice filter. It is identical to the RLattice
primitive, except that the reflection coefficients are updated each time
the primitive fires by reading the ”coefs” input. The order and
blockSize parameters have the same interpretation as in the Block-
Lattice primitive.

blockPredictor A block predictor module used in speech processing.

blockVocoder A block vocoder module.

18.18.4 Vector Quantization
Quantization is the heart of converting analog signals to digital signals. Traditional techniques
are based on scalar coding which quantizes symbols, such as pixels in images, one by one. On
the other hand, vector quantization can perform better by operating the quantization on groups of
symbols instead of individual symbols.

GLA Use the Generalized Lloyd Algorithm (GLA) to yield a code-book
from input training vectors. Note that each input matrix will be viewed
as a row vector in row by row. Each row of output matrix represents a
codeword of the codebook.

MRVQCoder Mean removed vector quantization coder.

SGVQCodebk Jointly optimized codebook design for shape-gain vector quantization.
Note that each input matrix will be viewed as a row vector in row
by row. Each row of first output matrix represents a codeword of the
shape codebook. Each element of the second output matrix represents
a codeword of the gain codebook.

SGVQCoder Shape-gain vector quantization encoder. Note that each input matrix
will be viewed as a row vector in row by row.

18-29

18 SDF Domain

VQCoder Full search vector quantization encoder. It consists in finding the index
of the nearest neighbor in the given codebook corresponding to the
input matrix. Note that each input matrix will first be viewed as a row
vector in row by row, in order to find the nearest neighbor codeword in
the codebook.

18.19 Spectral analysis

This group of primitives are concerned with various signal analysis algorithms.

autocorrelation Estimate a power spectrum using the autocorrelation method, a method
that uses the Levinson-Durbin algorithm to compute linear predictor
coefficients, and then uses these coefficients to construct an approxi-
mate maximum entropy power spectrum estimate.

blockFFT An overlap and add implementation of the FFT.

burg Estimate a power spectrum using Burg’s method, a method that com-
putes linear predictor coefficients, and then uses them to construct a
maximum entropy power spectrum estimate.

Burg This primitive uses Burg’s algorithm to estimate the linear predictor
coefficients of an input random process. These coefficients are pro-
duced both in autoregressive form (on the ”lp” output) and in lattice
filter form (on the ”refl” output). The ”errPower” output is the power
of the prediction error as a function of the predictor order. This primi-
tive is used in the burg module.

DB Convert input to a decibel (dB) scale. Zero and negative values are as-
signed the value min (default -100). The inputIsPower parameter
should be set to YES if the input signal is a power measurement (vs.
an amplitude measurement).

DTFT Compute the discrete-time Fourier transform (DTFT) at frequency points
specified on the ”omega” input.

FFTCx Compute the discrete-time Fourier transform of a complex input using
the fast Fourier transform (FFT) algorithm. The parameter order
(default 8) is the log base 2 of the transform size. The parameter size
(default 256) is the number of samples read (≤ 2order). The parameter
direction (default 1) is 1 for the forward, -1 for the inverse FFT.

GoertzelPower Second-order recursive computation of the power of the kth coefficient
of an N -point DFT using Goertzel’s algorithm. This form is used in
touch-tone decoding.

LevDur This primitive uses the Levinson-Durbin algorithm to compute the lin-
ear predictor coefficients of a random process, given its autocorrelation
function as an input. These coefficients are produced both in autore-
gressive form (on the ”lp” output) and in lattice filter form (on the

18-30 MLDesigner Version 2.8

18.19 Spectral analysis

”refl” output). The ”errPower” output is the power of the prediction
error as a function of the predictor order.

MUSIC M This primitive is used to estimate the frequencies of some specified
number of sinusoids in a signal. The output is the eigen spectrum of a
signal, such that the locations of the peaks of the eigen spectrum corre-
spond to the frequencies of the sinusoids in the signal. The input is the
right singular vectors in the form generated by the SVD M primitive.
The MUSIC algorithm (multiple signal characterization) is used.

periodogram Estimate a power spectrum using the periodogram method. This con-
sists in computing the magnitude squared of the DFT of a set of obser-
vations of the signal. The FFT algorithm is used.

SmithForm Decompose an integer matrix S into one of its Smith forms S = UDV ,
where U , D, and V are simpler integer matrices. The Smith form de-
composition for integer matrices is analogous to singular value decom-
position for floating-point matrices.

SVD M Compute the singular-value decomposition of a Toeplitz data matrix A
by decomposing A into A = UWV ′, where U and V are orthogonal
matrices, and V ′ represents the transpose of V . W is a diagonal matrix
composed of the singular values of A, and the columns of U and V are
the left and right singular vectors of A.

Unwrap Unwraps a phase plot, removing discontinuities of magnitude 2. This
primitive assumes that the phase never changes by more than in one
sample period. It also assumes that the input is in the range [−π,π].

Window Generate standard window functions or periodic repetitions of stan-
dard window functions. The possible functions are Rectangle,
Bartlett, Hanning, Hamming, Blackman, Steep-Blackman
and Kaiser. One period of samples is produced on each firing. This
primitive is also found in the signal sources library.

18.19.1 Miscellaneous signal processing blocks

Autocor Estimate an autocorrelation function by averaging input samples. Both
biased and unbiased estimates are supported.

PattMatch This primitive accepts a template and a search window. The template
is slid over the window one sample at a time, and cross correlations are
calculated at each step. The cross-correlations are output on the ”val-
ues” output. The ”index” output is the value of the time-shift which
gives the largest cross correlation. This index refers to a position on
the search window beginning with 0 corresponding to the earliest ar-
rived sample of the search widow that is part of the best match with
the template.

18-31

18 SDF Domain

18.20 Communication primitives
The limited set of communication primitives that have been developed are summarized below.
Many of these are modules, and should be viewed as examples of systems that a user can create.

18.20.1 Sources and Pulse Shapers
bits Produce ”0” with probability probOfZero, else produce ”1”.

cosine.pal Produce a cosine waveform whose energy is normalized with respect
to Amplitude. It is used in simulations for binary frequency shift
keying (BFSK) demonstrations. This module differs from the cosine
primitive which computes the cosine of the input signal (see ”Non-
linear primitives” on page 5-13 for more information on the cosine
primitive).

Hilbert Output the approximate Hilbert transform of the input signal. This
primitive approximates the Hilbert transform by using an FIR filter,
and is derived from the FIR primitive. The Hilbert primitive is also in
the signal processing library.

RaisedCosine An FIR filter with a magnitude frequency response shaped like the
standard raised cosine or square-root raised cosine used in digital com-
munication. By default, the primitive upsamples by a factor of 16, so
16 outputs will be produced for each input unless the interpolation
parameter is changed.

RaisedCosineCx This module uses the RaisedCosine primitive to implement an FIR
filter for complex inputs with a raised cosine or square-root raised co-
sine transfer function.

18.20.2 Transmitter Functions
NR2Zero Binary to Nonreturn-to-Zero Signaling Converter

QAM4 Encode an input bit stream into a 4-QAM (or 4-PSK) complex symbol
sequence.

QAM16 Encode an input bit stream into a 16-QAM complex symbol sequence.

Scrambler Scramble the input bit sequence using a feedback shift register. The
taps of the feedback shift register are given by the polynomial pa-
rameter, which should be a positive integer. The n-th bit of this integer
indicates whether the n-th tap of the delay line is fed back. The low-
order bit is called the 0-th bit, and should always be set. The next
low-order bit indicates whether the output of the first delay should be
fed back, etc. The default polynomial is an octal number defining
the V.22bis scrambler.

Spread Frame synchronized direct-sequence spreader.

xmit2fsk Binary frequency shift keying (BFSK) transmitter.

18-32 MLDesigner Version 2.8

18.20 Communication primitives

xmit2pam Simple 2-level pulse amplitude modulation (PAM) transmitter.

xmit4pam Simple 4-level pulse amplitude modulation (PAM) transmitter.

xmit2psk Binary 2-level phase shift keying (BPSK) Modulator.

xmitspread Direct-sequence spreader (i.e., spread-spectrum transmitter).

18.20.3 Receiver functions
DeScrambler Descramble the input bit sequence using a feedback shift register. The

taps of the feedback shift register are given by the polynomial pa-
rameter. This is a self-synchronizing descrambler that will exactly re-
verse the operation of the Scrambler primitive if the polynomials are
the same. The low-order bit of the polynomial should always be set.

DeSpreader Frame synchronized direct-sequence despreader.

hilbertSplit This module implements a phase splitter, in which the real-valued in-
put signal is converted to an (approximate) analytic signal. The signal
is filtered by the Hilbert block to generate the imaginary part of the
output, while the real part is obtained by creating a matching delay.

qam4Slicer This module implements a slicer (decision device) for a 4-QAM (or
equivalently, 4-PSK) signal. The output decision is a complex number
with +1 or -1 for each of the real or imaginary parts.

qam16Slicer This module implements a slicer (decision device) for a 16-QAM com-
plex signal. The output decision is a complex number with +1, -1, +3,
or -3 for each of the real or imaginary parts.

qam16Decode A 16-QAM decoder similar to the CCITT V22.bis standard. The quad-
rant is differentially de-encoded.

phaseShift Shifts the phase of the input signal on the in input by the shift value
on the shift input. The phase shifting is implemented by filtering
the input signal with a complex FIR filter to convert it into an analytic
signal and the complex result is modulated by a complex exponential.
If the shift value is time varying, then its slope determines the in-
stantaneous frequency shift.

rec2fsk Binary frequency shift keying (BFSK) Receiver.

rec2pam Simple 2-level pulse amplitude modulation (PAM) receiver.

rec4pam Simple 4-level pulse amplitude modulation (PAM) receiver.

rec2psk Binary pulse shift keying (BPSK) Demodulator.

recspread Direct sequence receiver.

18.20.4 Channel Models
AWGNchannel Model an additive Gaussian white noise channel with optional linear

distortion.

18-33

18 SDF Domain

basebandEquivChannel Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order to
model channels, such as telephone channels, that suffer these impair-
ments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled proportion to the
original signal.

telephoneChannel Simulate impairments commonly found on a telephone channel, in-
cluding additive Gaussian noise, linear and nonlinear distortion, fre-
quency offset, and phase jitter.

18.21 Telecomm
This library contains primitives and modules used for processing signals in telecommunication
networks.

18.21.1 Conversion, Signal Sources, and Signal Tests
MuLaw Transform the input using a logarithmic mapping if the compress

parameter is true. In telephony, applying the µ-law to eight-bit sam-
pled data is called companding, and it is used to quantize the dynamic
range of speech more accurately. The transformation is defined in
terms of the non-negative integer parameter mu:

output =
log(1 + mu · |input|)

log(1 + mu)

DTMFGenerator Generate a dual-tone modulated-frequency (DTMF) signal by adding
a low frequency and a high frequency sinusoid together. DTMF tones
only consist of first harmonics. The default parameters generate a ”1”
on a touch tone telephone.

PostTest Return whether or not a valid dual-tone modulated-frequency has been
correctly detected based on the last three detection results.

ToneStrength Decision circuit for dual-tone modulated-frequency (DTMF) decod-
ing. It returns true if Amax is greater than or equal to Ai for i = {1, 2,
3, 4} such that i does not equal index.

18.21.2 Touch tone Decoders
DTMFDecoder Dual-tone modulated-frequency (DTMF) decoder based on post-processing

of a bank of Goertzel discrete Fourier transform filters. This module
decodes touch tones generated by a telephone.

18-34 MLDesigner Version 2.8

18.21 Telecomm

DTMFDecoderBank Implement one of the banks for detecting dual-tone frequency-modulated
(DTMF) touch tones. Touch tones are generated by adding a low fre-
quency and a high frequency sinusoid together. The module is used
to detect either the low or high frequency component, depending on
the parameter settings. This algorithm examines the magnitude of the
expected frequency components and their second harmonics. DTMF
tones do not have second harmonics, so if they are present, then the
input is likely speech and not touch tones. The valid output is true if
the input is probably a touch tone. The default parameters are used to
detect the low frequency tones.

GoertzelDetector Detect the energy of the first and second harmonic using a pair of
Goertzel filters.

lmsDTMFDecoderBank Dual-tone modulated frequency detection based on the post- pro-
cessing of the output of two LMS algorithms in cascade. These two
algorithms are used to detect the two strongest frequencies present in
the signal.

lmsDualTone Detect the location of the two strongest harmonic components in the
input signal for every input sample using the normalize direct fre-
quency estimation technique, which is based on the LMS algorithm.
This module is used in touch tone detection.

lmsDTMFDecoder Least-mean squares dual-tone modulated-frequency decoder. Dual-
tone modulated frequency detection based on the post-processing of
the output of two LMS algorithms in cascade. These two algorithms
are used to detect the two strongest frequencies present in the signal.

18.21.3 Channel Models

For more complete descriptions, see the channel models for the communications primitives given
on page 5-36.

AWGN Simulate a channel with additive Gaussian noise.

basebandEquivChannel Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order to
model channels, such as telephone channels, that suffer these impair-
ments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled proportion to the
original signal.

TelephoneChannel Telephone channel simulator with Gaussian noise and nonlinear dis-
tortion.

18-35

18 SDF Domain

18.21.4 PCM and ADPCM
ADPCMCoder Implement adaptive differential pulse code modulation using an LMS

primitive. Both the quantized and unquantized prediction-error signals
are available as outputs.

ADPCMDecoder Decode the quantized prediction error signal produced by the ADPCMCoder
module.

ADPCMFromBits Convert a bit stream encoded with the ADPCMToBits module back
to floating-point values. The 4 low-order bits of the input integer are
changed to 1 of 16 floating-point values scaled by range.

ADPCMToBits Convert the quantized prediction error of the ADPCMCoder module
into a bit stream. The quantized prediction error has 16 possible levels,
so this module produces 4 bits in each output sample.

PCMBitCoder 64kps PCM encoder (CCITT Recommendation G.711).

PCMBitDecoder 64kps PCM encoder (CCITT Recommendation G.711).

18.22 Spatial Array Processing
The spatial array processing primitives given here support a single demonstration named
RadarChainProcessing developed by Karim Khiar from Thomson CSF. The radar simula-
tion, though five-dimensional, is implemented using SDF, which is a one-dimensional data flow
model.

18.22.1 Data Models
RadarAntenna Generate a specified number of Doppler filter outputs. This module

consists of a cascade of a network of antennas, a bank of matched
filters, a bank of windows, and a Doppler filter. The bank of matched
filters convolves the antenna outputs with a filter matched to a complex
pulse train.

RadarTargets Model the observed data as the addition of the receive signal plus sen-
sor noise. The received signal consists of a summation of the emissions
of all of the targets.

GenTarget Model the reception of signals by one sensor. A complex pulse train is
delayed and then multiplied by a complex exponential.

RectCx Generate a rectangular pulse of width width (default 240). If period
is greater than zero, then the pulse is repeated with the given period.

18.22.2 Sensor and Antenna Models
SubAntenna Models a sub-antenna. It multiplies the input by a complex exponen-

tial.

18-36 MLDesigner Version 2.8

18.23 Image Processing Primitives

sensor Compute the excitation of a plane wave arriving at a sensor at the given
position with the arrival angle specified as an input. Position (0,0) is
assumed to receive phase zero for any angle of arrival.

ThermalNoise Generate thermal noise as a complex noise process whose real and
imaginary components are identically independently distributed Gaus-
sian random processes.

Psi Model sub-antenna excitation.

SpheToCart Compute the inner product of two vectors, one given by a magni-
tude and two angles in spherical components, the other given by three
Cartesian components.

18.22.3 Doppler Effects
PulseComp This module generates any number of targets and performs pulse com-

pression. It uses the original chirp to perform the pulse compression.
This output represents the output of the radar processing along the
range bin axis. The y-axis represents the target magnitude on a linear,
logarithmic scale.

OneDoppler Generate one Doppler output. This module performs an antenna to
pulse multi-projection transformation followed by a decimator.

18.22.4 Beamforming Methods
steering Multiply a sensor signal by a window sample and apply a steering

correction.

18.23 Image Processing Primitives
The image processing primitives were originally written by Paul Haskell. The image processing
infrastructure was rewritten by Bilung Lee to use matrices as the underlying image representation.

18.23.1 Displaying images
DisplayImage Accept a black-and-white input gray image represented by a float ma-

trix and generate output in PGM (portable gray-map) format. Send the
output to a user-specified command (by default, xv is used). The user
can set the root filename of the displayed image (which will proba-
bly be printed in the image display window title bar) and can choose
whether or not the image file is saved or deleted. The image frame
number is appended to the root filename in order to form the complete
filename of the displayed image.

DisplayRGB This is similar to DisplayImage, but accepts three color images
(Red, Green, and Blue) from three input float matrix and generates

18-37

18 SDF Domain

a .ppm (portable pixmap) format color image file. The image file
is displayed using a user-specified command (by default, the internal
viewer is used).

DisplayVideo Accept a stream of black-and-white images from input float matrix,
save the images to files, and display the resulting files as a moving
video sequence. This primitive requires that programs from the Utah
Raster Toolkit (URT) be in your path. Although this toolkit is not
included with MLDesigner, it is available for free. The user can set the
root filename of the displayed images (which probably will be printed
in the display window title bar) with the ImageName parameter. If no
filename is set, a default will be chosen.
The Save parameter can be set to YES or NO to choose whether the
created image files should be saved or deleted. Each images frame
number is appended to the root filename in order to form the images
complete filename.
The ByFields parameter can be set to either YES or NO to choose
whether the input images should be treated as interlaced fields that
make up a frame or as entire frames. If the inputs are fields, then the
first field should contain frame lines 1, 3, 5, etc. and the second field
should contain lines 0, 2, 4, 6, etc.

videodpy Display an image sequence in an X window. This is simply the
SDFDisplayVideo primitive encapsulated in a module so that it
can be easily used in other domains.

18.23.2 Reading images

ReadImage Read a sequence of PGM-format images from different files and send
them out in a float matrix. If present, the character # in the fileName
parameter is replaced with the frame number to be read next. For ex-
ample, if the frameId parameter is set to 2 and if the fileName
parameter is dir.#/pic# then the file that is read and output is
dir.2/pic2.

ReadRGB Read a PPM-format image from a file and send it out in three different
images; a Red, Green, and Blue image. Each image is represented in a
float matrix. The same mechanism for reading successive frames as in
ReadImage is supported.

videosrc Read in an image from a specified file. This is simply the SDFReadImage
primitive encapsulated in a module so that it can be easily used in other
domains.

SunVideo Reads frames from the SunVideo card and outputs them as 3 matrices:
one for Y,U and V components. This primitive is implemented for
future uses and is not yet fully implemented in the Linux version of
the MLDesigner, and therefore has no demos.

18-38 MLDesigner Version 2.8

18.23 Image Processing Primitives

18.23.3 Color conversions
RGBToYUV Read three float matrices that describe a color image in RGB format

and output three float matrices that describe an image in YUV format.
No downsampling is done on the U and V signals.

YUVToRGB Read three float matrices that describe a color image in YUV format
and output three float matrices that describe an image in RGB format.

18.23.4 Image and video coding
DCTImage Take a float matrix input particle, compute the discrete cosine trans-

form (DCT), and output a float matrix.

DCTImageInv Take a float matrix input, compute the inverse discrete cosine trans-
form (DCT), and output a float matrix.

DCTImgCde Take a float matrix which represents a DCT image, insert ”start of
block” markers, run-length encode it, and output the modified image.
For the run-length encoding, all values with absolute value less than
the Thresh parameter are set to 0.0, to help improve compression.
Run lengths are coded with a ”start of run” symbol and then an (inte-
ger) run-length.
The HiPri parameter determines the number of DCT coefficients per
block are sent to ”hiport”, the high-priority output. The remainder of
the coefficients are sent to ”loport”, the low-priority output.

InvDCTImgCde Read two coded float matrices (one high priority and one low priority),
invert the run-length encoding, and output the resulting float matrix.
Protection is built in to avoid crashing even if some of the coded input
data is affected by loss.

DPCMImage Implement differential pulse code modulation of an image. If the
”past” input is not a float matrix or has size 0, pass the ”input” di-
rectly to the ”output”. Otherwise, subtract the ”past” from the ”input”
(with leakage factor alpha) and send the result to ”output”.

DPCMImageInv This primitive inverts differential pulse code modulation of an image.
If the ”past” input is not a float matrix or has size 0, pass the ”diff”
directly to the ”output”. Otherwise, add the ”past” to the ”diff” (with
leakage factor alpha) and send the result to ”output”.

MotionCmp If the ”past” input is not a float matrix (e.g. dummyMessage), copy the
”input” image unchanged to the ”diffOut” output and send a null field
(zero size matrix) of motion vectors to ”mvHorzOut” and ”mvVertOut”
outputs. This should usually happen only on the first firing of the prim-
itive.
For all other inputs, perform motion compensation and write the dif-
ference frames and motion vector frames to the corresponding outputs.
This primitive can be used as a base class to implement slightly differ-
ent motion compensation algorithms. For example, synchronization

18-39

18 SDF Domain

techniques can be added or reduced-search motion compensation can
be performed.

MotionCmpInv For NULL inputs (zero size matrices) on ”mvHorzIn” and/or ”mvVertIn”,
copy the ”diffIn” input unchanged to ”output” and discard the ”pastIn”
input. (A NULL input usually indicates the first frame of a sequence.)
For non-NULL ”mvHorzIn” and ”mvVertIn” inputs, perform inverse
motion compensation and write the result to ”output”.

RunLenImg Accept a float matrix and run-length encode it. All values closer than
Thresh to meanVal are set to meanVal to help improve compres-
sion. Run lengths are coded with a start symbol of meanVal and then
a run-length between 1 and 255. Runs longer than 255 must be coded
in separate pieces.

RunLenImgInv Accept a float matrix and inverse run-length encode it.

ZigZagImage Zig-zag scan a float matrix and output the result. This is useful before
quantization.

ZigZagImageInv Inverse zig-zag scan a float matrix.

codef This module encodes a sequence of images using motion compensa-
tion, a discrete-cosine transform, quantization, and run-length encod-
ing. The outputs are split into high priority and low priority, where
corruption of the low priority data will impact the image less.

codei This module inverts the encoding of the codef block, and outputs a
reconstructed image sequence.

videofwd This module is obsolete and will probably disappear in the next re-
lease.

videoinv This module is obsolete and will probably disappear in the next re-
lease.

18.23.5 Miscellaneous image blocks

AddMotionVecs Over each block in the input image, superimpose an arrow indicating
the size and direction of the corresponding motion vector.

Contrast Enhance the contrast in the input image by histogram modification.
Input image should be in an integer matrix. The possible contrast type
are Uniform (default) and Hyperbolic.

Dither Do digital halftoning (dither) of input image for monochrome printing.
Input image should be in a float matrix. The possible dither methods
are Err-Diffusion (default), Clustered, Dispersed, and Own.
If you specify Own, then you can use your own dither mask.

EdgeDetect Detect edges in the input image. Input image should be in a float ma-
trix. The possible detectors are Sobel (default), Roberts, Prewitt,
and Frei-Chen.

18-40 MLDesigner Version 2.8

18.24 Neural Networks

MedianImage Accept an input gray image represented by a float matrix, median-
filter the image, and send the result to the output. Filter widths of 1, 3,
5 work well. Any length longer than 5 will take a long time to run.
Median filtering is useful for removing impulse-type noise from im-
ages. It also smooths out textures, so it is a useful pre-processing step
before edge detection. It removes inter-field flicker quite well when
displaying single frames from a moving sequence.

RankImage Accept an input gray image represented by a float matrix, rank filter
the image, and send the result to the output. A common example of a
rank filter is the median filter, e.g. MedianImage, which is derived
from this primitive. Pixels at the image boundaries are copied and not
rank filtered.

18.24 Neural Networks

The neural network primitives demonstrate logic functions using classical artificial neurons and
McCulloch-Pitts neuron. These primitives were written by Biao Lu (The University of Texas at
Austin), Brian L. Evans (The University of Texas at Austin).

MPNeuron This is a McCulloch-Pitts neuron. The activation of this neuron is
binary. That is, at any time step, the neuron either fires, or does not
fire.

Neuron This neuron will output the sum of the weighted inputs, as a floating
value.

ConstThreshold Output a constant signal with value given by the ”level” parameter
(default 0.0)

Binary Binary threshold of the input.

Sigmoid Compute the Sigmoid function, defined as 1
(1+exp(−r·input)) where r is

the learning rate.

MPandBinary The fact that the McCulloch-Pitts neuron is a digital device makes this
neuron well-suited to the representation of a two-valued logic, such as
AND, OR, and NAND.

MPxorBinary This example shows that a network of McCulloch-Pitts neurons has
the power of the finite state automaton known as a Turing machine.

xorBinary XOR function can be implemented by a three-layer neural network
which consists of an input layer, a hidden layer and an output layer.
A binary activation function is used.

xorSigmoid XOR function can be implemented by a three-layer neural network
which consists of an input layer, a hidden layer and an output layer.
A sigmoid activation function is used.

18-41

18 SDF Domain

18.25 Tcl primitives
Most of the primitives that interface to Tcl appear in libraries that reflect their function. For in-
stance, all the primitives beginning with Tk in the sinks library are actually Tcl primitives derived
from TclScript. This is the most generic Tcl primitive with no function on its own. It must
have a Tcl script associated with it to make it useful. Please refer to ch. 16 to learn about writing
such scripts.

18.25.1 Interactive Graphics Facilities

These primitives are multiple configurations of only six primitives. These primitives all use
the Tk toolkit associated with the Tcl language to create interactive, animated displays on the
screen.

TkPlot Plot ”Y” input(s) vs. time with dynamic updating. Two styles are cur-
rently supported: dot causes individual points to be plotted, whereas
connect causes connected lines to be plotted. Drawing a box in the
plot will reset the plot area to that outlined by the box. There are also
buttons for zooming in and out, and for resizing the box to just fit the
data in view.

TkXYPlot Plot ”Y” input(s) vs. ”X” input(s) with dynamic updating. Two styles
are currently supported: dot causes points to be plotted, whereas
connect causes connected lines to be plotted. Drawing a box in
the plot will reset the plot area to that outlined by the box. There are
also buttons for zooming in and out, and for resizing the box to just fit
the data in view.

TkShowValues Display the values of the inputs in textual form. The print method
of the input particles is used, so any data type can be handled, although
the space allocated on the screen may need to be adjusted.

TkBarGraph Dynamically display the value of any number of input signals in bar-
chart form. The first 12 input signals will be assigned distinct colors.
After that, the colors are repeated. The colors can be controlled using
X resources.

TkMeter Dynamically display the value of any number of input signals on a set
of bar meters.

TkShowBooleans Display input Booleans using color to highlight their value.

Programmable Interactive Sinks:

TclScript Invoke a Tcl script that can optionally define a procedure that is in-
voked every time the primitive fires. That procedure can read the prim-
itive’s inputs and update the value of the outputs.

MatlabCx M Evaluate a Matlab function if inputs are given or evaluate a Matlab
command if no inputs are given.

18-42 MLDesigner Version 2.8

18.26 Overview of SDF Demos

Sound:

Play Play an input stream on the workstation speaker. The gain parameter
(default 1.0) multiplies the input stream before it is µ-law compressed
and written. The inputs should be in the range of -32000.0 to 32000.0.
The file is played at a fixed sampling rate of 8000 samples per second.
When the wrapup method is called, a file of 8-bit µ-law samples is
handed to a program named ptplay which plays the file.

Textual Display:

Printer Print out one sample from each input port per line. The fileName
parameter specifies the file to be written; the special names stdout
and coutwhich specify the standard output stream, as well as stderr
and cerr which specify the standard error stream, are also supported.

TkText Display the values of the inputs in a separate window, keeping a spec-
ified number of past values in view. The print method of the input
particles is used, so any data type can be handled.

Other:

WriteVar Write the value of the input to a double-precision floating-point vari-
able in shared memory. Use the ReadVar primitive to read values
from the shared memory.

NOTE: This primitive may produce unpredictable results, since the �
results will depend on the precedences in the block diagram
in which it appears, as well as the scheduler (target) used.

18.26 Overview of SDF Demos
A rather large number of SDF demonstrations have been developed. These can serve as valuable
illustrations of the possibilities. Almost every primitive is illustrated in the demos. Because of the
large number, the demos are organized into a set of libraries. Certain demos may appear in more
than one library.

18.27 Basic demos
These demos illustrate the use of certain primitives without necessarily performing functions that
are sophisticated.

butterfly Use sines and cosines to compute a curve known as the butterfly curve,
invented by T. Fay. The curve is plotted in polar form.

chaoticNoise Chaotic Markov map example with a nonlinear feedback loop.

comparison Compare two sinusoidal signals using the Test primitive.

18-43

18 SDF Domain

complexExponential Generate and plot a complex exponential.

delayTest Illustrates the use of initializable delays.

lmsFreqDetect Illustrate the use of the LMS algorithm to estimate the dominant sinu-
soidal frequency in the input signal.

freqPhaseOffset Impose frequency jitter and phase offset on a sinusoid using the
freqPhase SDF block.

gaussian Generate a Gaussian white noise signal, and plot its histogram and
estimated autocorrelation.

integrator Demonstrate the features of the integrator primitive, such as limiting,
leakage, and resetting.

Modulo Demonstrate modulus computation for float and integer data types.

muxDeMux Demonstrate the Mux and DeMux primitives, which perform multi-
plexing and demultiplexing. Contrast with the scramble demo be-
low.

quantize Demonstrate the use of the Quantizer primitive.

scramble This system rearranges the order of samples of signal using the
Commutator and Distributor primitives. Note that because
these are multirate primitives, one iteration involves more than one
sample. Contrast with the muxDeMux demo above.

sinMod Modulate a sinusoid by multiplying by another sinusoid.

tbus Illustrate the bus facility in MLDesigner, in which multiple signals are
combined onto a single graphical connection.

18.28 Multirate demos
These demos illustrate synchronous data flow principles as applied to multirate signal processing
problems.

analytic Use a FIRCx primitive filter to reduce the sample rate of a sinusoid by
a factor of 8/5, and at the same time produce a complex approximately
analytic signal (one that has no negative frequency components).

broken Give an example of an inconsistent SDF system. It fails to run, gener-
ating an error message instead.

downSample Convert from the digital audio tape sampling rate (48 kHz) to the com-
pact disc sampling rate (44.1 kHz). The conversion is performed in
multiple stages for better performance.

filterBank Implement an eight-level perfect reconstruction one-dimensional filter
bank based on the biorthogonal wavelet decomposition.

filterBank-NonUniform Implement a simple split of the frequency domain into two
non-uniform frequency bands.

18-44 MLDesigner Version 2.8

18.29 Communications demos

interp Use an FIR filter to upsample by a factor of 8 and linearly interpolate
between samples.

multirate Upsample a sinusoidal signal by a ratio of 5/2 using a polyphase low-
pass interpolating FIR filter.

upSample Convert from the compact disc sampling rate (44.1 kHz) to the digital
audio tape sampling rate (48 kHz). The conversion is performed in
multiple stages for better performance.

18.29 Communications demos

This library contains some examples of digital communication systems and channel simulators.

constellation A 16-QAM signal is sent through a baseband equivalent channel that
simulates the following impairments: frequency offset, phase jitter and
white Gaussian noise.

DTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones and
decode the based on the Goertzel Algorithm.

eye Plot an eye diagram for a binary antipodal signal with a raised-cosine
pulse shape and user controlled noise.

lmsDTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones and
decode them based on the LMS Algorithm.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a network
(such as ATM) with 48 byte packets and a variable loss probability.
Note that this demo requires audio capability and will probably only
work on Sun workstations.

lossySpeechPrevCell Illustrate the effect on speech of a previous cell substitution pol-
icy in a network (such as ATM) with 48 byte packets and a variable
loss probability. Note that this demo requires audio capability.

modem Baseband model of a 16-QAM modem.

pseudoRandom Generate a pseudo-random sequence of zeros and ones using a maximal-
length shift register and test its randomness by estimating its autocor-
relation.

pulses Generate raised cosine and square-root raised cosine pulses and demon-
strate matched filtering with the square-root raised cosine pulse.

xmitber Bit Error determination through simulation at various noise levels.

xmit2rec Simple 2-level PAM communication system (matched filtering at the
receiver).

xmit4rec Simple 4-level PAM communication system (no filtering at the re-
ceiver).

18-45

18 SDF Domain

18.29.1 Older communications demos
qam Produce a 16-point quadrature amplitude modulated (QAM) signal and

displays the eye diagram for the in-phase part, the constellation, and
the modulated transmitted signal.

QAM4withDFE This is a model of a digital communication system that uses quadra-
ture amplitude modulation (QAM) and a fractionally spaced decision
feedback equalizer.

codeDecode Encode and decode a 16-QAM signal using differential encoding for
the quadrant and Gray coding for the point within the quadrant.

plldemo Simulate a fourth-power optical phase-locked loop with laser phase
noise and additive Gaussian white noise operating on a complex base-
band envelope model of the signal.

telephoneChannelTest Assuming a sampling rate of 8 kHz, a sinusoid at 500 Hz is
transmitted through a simulation of a telephone channel with additive
Gaussian noise, nonlinear distortion, and phase jitter.

18.30 Digital signal processing demos
A fairly large number of signal processing applications are represented in this library.

adaptFilter An LMS adaptive filter converges so that its transfer function matches
that of a fixed FIR filter.

allPole Two realizations of an all-pole filter are shown to be equivalent. One
uses an FIR filter in a feedback path, the other uses the BlockAllPole
primitive.

animatedLMS An LMS adaptive filter is configured as in the adaptFilter demo,
but this time the filter taps are displayed as they adapt.

animatedLMSCx A complex LMS adaptive filter is configured as in the adaptFilter
demo, but in addition, user-controlled noise is added to the feedback
loop using an on-screen slider to control the amount of noise. The filter
taps are displayed as they adapt.

cep Given the coefficients of any polynomial, this demo uses the cepstrum
to find a minimum-phase polynomial. Thus, given the coefficients of
the denominator polynomial of an unstable filter, this demo will com-
pute the coefficients of a stable denominator polynomial that has the
same magnitude frequency response.

chaos This is a simple demonstration of chaos, in which the phase-space plot
of the famous Henon map is given.

convolve Convolve two rectangular pulses in order to demonstrate the Convolve
primitive.

dft Compute a discrete Fourier transform of a finite signal using the FFT

18-46 MLDesigner Version 2.8

18.31 Sound demos

primitive. The magnitude and phase (unwrapped) are plotted.

doppler A sine wave is subjected to four successive amounts of doppler shift.
The doppler shift is accomplished by the phaseShift module, which
forms an analytic signal (using a Hilbert transform) that modulates a
complex exponential.

dtft Demonstrate the DTFT primitive, showing how it is different from the
FFTCx primitive. Specifically, the range, number, and spacing of fre-
quency samples is arbitrary.

freqsample This system designs FIR filters using the frequency sampling method.
Samples of the frequency response are converted into FIR filter coeffi-
cients.

iirDemo Two equivalent implementations of IIR filtering.

lattice Demonstrate the use of lattice filters to synthesize an auto-regressive
(AR) random process.

latticeDesign Use of Levinson-Durbin algorithm to design a lattice filter with a spec-
ified transfer function.

levinsonDurbin Use the Levinson-Durbin algorithm to estimate the parameters of an
AR process.

linearPrediction Perform linear prediction on a test signal consisting of three sinusoids
in colored, Gaussian noise. Two mechanisms (Burg’s algorithm and an
LMS adaptive filter) for linear prediction are compared.

overlapAddFFT Convolution is implemented in the frequency domain using overlap
and add.

phasedArray Simulate a plane wave approaching a phased array with four sensors.
The plane wave approaches from angles starting from head on and
slowly rotating 360 degrees. The response of the antenna is plotted as
a function of direction of arrival in polar form.

powerSpectrum Compare three methods for estimating a power spectrum of a signal
with three sinusoids plus colored noise. The three methods are the
periodogram method, the autocorrelation method, and Burg’s method.

timeVarSpec A time-varying spectrum is computed using the autocorrelation method
and displayed using a waterfall plot.

window Generate and display four window functions and the magnitude of
their Fourier transforms. The windows displayed are the Hanning,
Hamming, Blackman, and steep Blackman.

18.31 Sound demos

The demos in this library assume that a program called ptplay is in your path, and that it accepts
data of an appropriate format and will play it over the computer sound card at an 8 kHz sample

18-47

18 SDF Domain

rate.
The samples are written into a file before they are played. Since a large number of samples must
be generated, these demos can take some time to run.

chirpplay Chirp generator.

fmplay Sound generator using FM modulation.

speech Read a speech signal from a file, and encode it at two bits per sam-
ple using adaptive differential pulse code modulation with a feedback-
around-quantizer structure. The signal is then reconstructed from the
quantized data. The original and reconstructed speech are played.

KSchord Simulation of plucked string sounds using the Karplus-Strong algo-
rithm.

vox Coarticulation with an Adaptive Vocoder. The resulting FM synthe-
sized sound is played.

blockVox A block processed version of the vox demo.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a network
(such as ATM) with 48 byte packets and a variable loss probability.
This demo also appears in the basic demos library

lossySpeechPrevCell Illustrate the effect on speech of a previous cell substitution pol-
icy in a network (such as ATM) with 48 byte packets and a variable
loss probability.

perfectReconstuction Eight-channel perfect reconstruction one-dimensional analy-
sis/synthesis filterbank. The incoming speech signal is split into eight
adjacent frequency bins and then reconstructed. The original and re-
constructed speech are played.

subbandcoding Four channel sub-band speech coding with APCM at 16kps.

18.32 Image processing demos

The demos in this library read images from files on the hard disk, process them, and then display
them. Some of the demos process short sequences of images, thus illustrating video processing
in MLDesigner. They all use the image classes described in ”Image processing primitives”. The
set of demos in this library does not reflect the richness of possibilities. See the DE domain for
more image and video signal processing applications in the context of packet-switched network
simulations. The video demos require that the Utah Raster Toolkit be installed and available in the
user’s path.

BlendImage Combine two images and display the result.

bwDither Demonstrate four different forms of black and white dithering: error
diffusion, clustered dither, dispersed dither, and use custom mask.

cntrastEnhance Contrast enhancement by histogram modification.

18-48 MLDesigner Version 2.8

18.33 Vector Quantization demonstrations

ColorImage Convert an RGB (red-green-blue) format color image to YUV (luminance-
hue-saturation) format and back, and then display it on the screen.

CompareMedian Median filter an image to reduce artifacts due to interleaved scanning
in video sequences.

DctImage Perform discrete cosine transform (DCT) coding of an image sequence.

DpcmImage Perform differential pulse code modulation (DPCM) on an image se-
quence.

EdgeDetect Demonstrate four different forms of edge detection: Sobel, Roberts,
Prewitt, and Frei-Chen.

MC DCT Perform motion compensation and DCT encoding of video.

MotionComp Perform motion compensation video coding.

18.33 Vector Quantization demonstrations
The Vector demos perform vector quantization procedures on images.

fullVQCodebk Generate a codebook for full search vector quantization.

fullVQ Full search vector quantization using codebook generated by fullVQCodebk.

SGVQCodebk Generate codebooks for shape-gain vector quantization.

SGVQ Shape-gain vector quantization using codebook from SGVQ-Codebk.

MRVQCodeBk Generate codebooks for mean-removed vector quantization using in-
dependent quantizer structure.

MRVQmeanCB Generate codebook for mean-removed vector quantization.

MRVQshapeCB Generate the shape codebook for mean-removed quantization using
alternative structure. This system uses the codebook generated by
MRVQmeanCB

MRVQ Mean-removed vector quantization

18.34 Fix demos
These demos illustrate the use of fixed-point primitives in the SDF domain.
These primitives are used to model hardware implementations with finite precision.

fixConversion Illustration of the different masking options available.

fixFIR Effect of filter tap precision on the frequency response.

fixIIRdf Comparison of a fourth-order direct-form IIR filter implemented with
floating-point arithmetic and a similar filter implemented with fixed-
point arithmetic.

fixMpyTest Testing of fixed-point multiplication over a range of numbers by com-

18-49

18 SDF Domain

parison against floating-point multiplication. The results should be the
same.

18.35 Tcl/Tk demos
These demos allow interaction with the simulation. The interactivity is provided by the Tcl script-
ing language controlling the Tk graphics toolkit. Tcl is integrated throughout MLDesigner. Tk
has been integrated into the graphical user interfaces for MLDesigner, but not in the ptcl textual
interpreter. Therefore, these primitives do not work in ptcl.

animatedLMS See ”Digital signal processing demos”.

animatedLMSCx See ”Digital signal processing demos”.

buttons Demonstrate TkButtons.

phased Array Demonstrate TkSlider by creating a vertical array of radar sensors
that can be move in the horizontal plane. Note that small movements
of the sensors radically change the polar gain plot. This simulation
demonstrates the importance of sensor calibration to performance of
the sensor array.

sinWaves Demonstrate TkBarGraph by generating and displaying a complex
exponential.

tclScript Demonstrate TclScript by generating two interactive X windows
each with a circle that move in the playing field.

tkMeter Demonstrate TkMeter by creating three bar meters. The first oscil-
lates sinusoidally. The second displays a random number between zero
and one. The third displays a random walk.

tkShowValues Demonstrate TkShowValues and TkText by displaying the ASCII
form of two ramp sequences.

xyplot Demonstrate the dynamic plotting capabilities of the xyplot primi-
tive.

18.36 Matrix demos
These systems demonstrate the use of matrix particles in MLDesigner. Matrices are also used in
the SDF domain to represent images. See ”Image and video processing demos”. The demonstra-
tions below are primarily to test matrix operations.

MatrixTest1 Demonstrate the use of the Matrix primitives that have one input. These
include the operations inverse, transpose, and multiply by a scalar gain
for all matrix types. Also conjugate and Hermitian transpose are avail-
able for the complex matrix type.

MatrixTest2 Demonstrate the use of some simple Matrix primitives with two inputs.
These include multiply, add, and subtract.

18-50 MLDesigner Version 2.8

18.37 MATLAB Demos

MatrixTest3 Demonstrate the use of the Matrix conversion primitives. These con-
vert between the scalar particles and the matrix particles as well as
between the various matrix types.

initDelays Illustrate the use of initializable delays with the matrix class.

Kalman M Compare the convergence properties of a Kalman filter to those of an
LMS filter when addressing the problem of adaptive equalization of a
process in noise.

SVD MUSIC 1 Show the use of singular-value decomposition (SVD) and the Multiple-
Signal Characterization (MUSIC) algorithm to identify the frequency
of a single sinusoid in a signal that has two different signal to noise
ratios.

SVD MUSIC 2 Demonstrate the use of the Multiple-Signal Characterization (MUSIC)
algorithm to identify three sinusoids in noise that have frequencies
very close to each other.

18.37 MATLAB Demos
These demos demonstrate the use of the MATLAB primitives. The MATLAB primitives convert
input values into MATLAB matrices, apply a sequence of MATLAB commands to the matrices,
and output the result as MLDesigner matrices. The filterPrototype demonstration shows how to
use MATLAB to compute parameters of primitives (see sec. 18.17 for more details).

matlab hilb This demo uses MATLAB as a signal source to produce a Hilbert ma-
trix. The Hilbert matrix is an ill-conditioned matrix used to test the
robustness of numerical linear algebra routines. The matrix element
(i,j) has the value of 1/(i + j − 1). The matrix values appear similar
to the coefficients of a discrete Hilbert transformer.

matlab eig This demo shows the use of MATLAB to perform eigen decomposition
of a 2 × 2 Hermitian symmetric complex matrix. A matrix of eigen-
vectors and a matrix of eigenvalues are produced. The eigenvalues are
real because the input matrix is Hermitian symmetric

sombrero This demo is an entire system composed of a cascade of four MAT-
LAB primitives. The MATLAB primitives are used a signal source and
a signal sink. The overall system generates and plots a mathematical
model of a two-dimensional sinc function that resembles a sombrero.

filterPrototype This system uses a half-band low-pass filter prototype for the low-pass
and high-pass filters. All parameters are computed using MATLAB.

18-51

Chapter 19

DDF Domain

19.1 Introduction

The dynamic data flow (DDF) domain in MLDesigner is a superset of the synchronous data flow
(SDF) and Boolean data flow (BDF) domains. In the SDF domain, a primitive consumes and pro-
duces a fixed number of particles per invocation (or ”firing”). This static information (the number
of particles produced or consumed for each primitive) makes possible compile-time scheduling. In
the BDF domain, some actors with data-dependent production or consumption are allowed. The
BDF schedulers attempt to construct a compile-time schedule; however, they may fail to do so and
fall back on a DDF scheduler. In the DDF domain, the schedulers make no attempt to construct a
compile-time schedule. For this reason, there are few constraints on the production and consump-
tion behavior of primitives in this domain.

In DDF, a run-time scheduler detects which primitives are runnable and fires them one by one until
no primitive is runnable (the system is deadlocked), or until a specified stopping condition has
been reached. A primitive is runnable if it has enough data on its inputs to satisfy its requirements.
Thus, the only constraint on DDF primitives is that they must specify on each firing how much
data they require on each input to be fired again later.
In practice, primitives in the DDF domain are written in a slightly simpler way. They are either
SDF primitives, in which case the number of particles required at each input is a constant, or
they are dynamic, in which case they always alert the scheduler before finishing a firing that to
be refired they expect some specific number of particles on one particular input. The input that a
primitive is waiting for data on is called the waitPort.

Since the DDF domain is a superset of the SDF domain, all SDF primitives can be used in the
DDF domain. Similarly for BDF primitives. Besides the SDF primitives, the DDF domain has
some DDF-specific primitives that will be described in this chapter. The DDF-specific primitives
overcome the main modeling limitation of the SDF domain in that they can model dynamic con-
structs such as conditionals, data-dependent iteration, and recursion. All of these except recursion
are also supported by the BDF domain. It is even possible, in principle, to dynamically modify a
DDF graph as it executes (the implementation of recursion does exactly this). The lower run-time
efficiency of dynamic scheduling is the price we pay for the enhanced modeling power.

19 DDF Domain

19.2 The DDF Schedulers
In MLDesigner, a scheduler determines the order of execution of blocks. This would seem to be
a simple task in the DDF domain, since there is nothing to do at setup time, and at run time, the
scheduler only needs to determine which blocks are runnable and then fire those blocks. Experi-
ence dictates, however, that this simple-minded policy is not adequate. In particular, it may use
more memory than is required (it may even require an unbounded amount of memory when a
bounded amount of memory would suffice). It may also be difficult for a user to specify for how
long an execution should proceed.

In the SDF domain, an iteration is well-defined. It is the minimum number of firings that brings
the buffers back to their original state. In SDF, this can be found by a compile-time scheduler by
solving the balance equations. In both BDF and DDF, it turns out that it is undecidable whether
such a sequence of firings exists. This means that no algorithm can answer the question for all
graphs of a given size in finite time. This explains, in part, why the BDF domain may fail to
construct a compile-time schedule and fall back on the DDF schedulers.
There are three simple and obvious criteria that a DDF scheduler should satisfy:

1. The scheduler should be able to execute a graph forever if it is possible to execute a graph
forever. In particular, it should not stop prematurely if there are runnable primitives.

2. The scheduler should be able to execute a graph forever in bounded memory if it is possible
to execute the graph forever in bounded memory.

3. The scheduler should execute the graph in a sequence of well-defined and determinate iter-
ations so that the user can control the length of an execution by specifying the number of
iterations to execute.

Somewhat surprisingly, it turns out to be extremely difficult to satisfy all three criteria at once. The
first few versions of the DDF scheduler did not satisfy (2) or (3). The older scheduler is still avail-
able (set the useFastScheduler target parameter to YES), but its use is not recommended. Its
behavior is somewhat unpredictable and sometimes counterintuitive. For example, told to run a
graph for one iteration, it may in fact run it forever. Nonetheless, it is still available because it is
significantly faster than the newer schedulers. However, there is still no satisfying implementation
in MLDesigner which combines both the advantages of the old scheduler and the needed criteria.

The reason that these criteria are hard to satisfy is fundamental. It has already pointed out that it
is undecidable whether a sequence of firings exists that will return the graph to its original state.
This fact can be used to show that it is undecidable whether a graph can be executed in bounded
memory. Thus, no finite analysis can always guarantee (2). The trick is that the DDF scheduler
in fact has infinite time to run an infinite execution, so, remarkably, it is still possible to guarantee
condition (2). The new DDF schedulers do this.

Regarding condition (1), it is also undecidable whether a graph can be executed forever. This
question is equivalent to the halting problem, and the DDF model of computation is sufficiently
rich that the halting problem cannot always be solved in finite time.

Condition (3) is more subtle and centers around the desire for determinate execution. This means
a user should be able to tell immediately what primitives will fire in one iteration, knowing the

19-2 MLDesigner Version 2.8

19.2 The DDF Schedulers

state of the graph. In other words, which primitives fire should not depend on arbitrary decisions
made by the scheduler, like the order in which it examines the primitives.

To illustrate that this is a major issue, suppose we naively define an iteration to consist of ”firing
all enabled primitives at most once.” Consider the simple example in fig. 19.1. Primitive A is
enabled, so we can fire it. Suppose this makes primitive B enabled. Should it be fired in the same
iteration? Will the order in which we fire enabled primitives or determine whether primitives are
enabled impact the outcome?

A B

Figure 19.1: A simple example used to illustrate the notion of an iteration

Two policies have been implemented in DDF. These are explained below.

19.2.1 DDF Backward Scheduler
A Backward propagation scheduler has been introduced in the DDF domain. This scheduler com-
putes needed firings backward, from sinks to sources. The prerequisite here is that sink primitives
in the system have the EndCondition parameter set to Yes and the NumOfItems set to a reason-
able value.

Blocking for converted COSSAP primitives is also supported.

To use the useBackwardPropogationSimulator you must set the target parameter to YES and re-
set the default scheduler parameter to NO as it is only possible to use one scheduler for a simulation.
One of the target parameters ”useFastScheduler”, ”useForwardScheduler”, ”useBackwardPropa-
gationScheduler”, or ”restructure” must be set to ”YES”. An error message is displayed if more
than one scheduler is selected.
There are some subtleties in DDF scheduling. Due to these subtleties three DDF schedulers have
been implemented, all accessible by setting appropriate target parameters. In the following section
these schedulers are explained.

19.2.2 The default scheduler
The default scheduler, realized in the class DDFSimpleSched, first scans all primitives and de-
termines which are enabled. In a second pass, it then fires the enabled primitives. Thus, the order
in which the primitives fire has no impact on which ones fire in a given iteration.

Unfortunately, as stated, this simple policy still does not work. Suppose that primitive A in fig. 19.1
produces two particles each time it fires, and actor B consumes 1. Then our policy will be to fire
actor A in the first iteration and both A and B in all subsequent iterations. This violates criterion
(2), because it will not execute in bounded memory. More importantly, it is counterintuitive. Thus,
the DDFSimpleSched class implements a more elaborate algorithm.

19-3

19 DDF Domain

One iteration, by default, consists of firing all enabled and non-deferrable primitives once. If no
primitives fire, then one deferrable primitive is carefully chosen to be fired. A deferrable primitive
is one with any output arc (except a self-loop) that has enough data to satisfy the destination
actor. In other words providing more data on that output arc will not help the downstream actor
become enabled; it either already has enough data, or it is waiting for data on another arc. If a
deferrable primitive is fired, it will be the one that has the smallest maximum output buffer sizes.
The algorithm is formally given with the following algorithm:

At the start of the iteration compute {
E = enabled actors
D = deferrable actors

}

One default iteration consists of {
if (E-D != 0) fire primitives in (E-D)
else if (D != 0) fire the minimax primitive in D
else deadlocked.

}
The minimax primitive is the one with the smallest
maximum number of tokens on its output paths.

This default iteration is defined to fire actors at most once. Sometimes, a user needs several such
basic iterations to be treated as a single iteration. For example, a user may wish for a user iteration
to include one firing of an XMgraph primitive, so that each iteration results in one point plotted.
The basic iteration may not include one such firing. Another more critical example is a wormhole
that contains a DDF system but will be embedded in an SDF system. In this case, it is necessary to
ensure that one user iteration consists of enough firings to produce the expected number of output
particles.

This larger notion of an iteration can be specified using the target pragma mechanism to identify
particular primitives that must fire some specific number of times (greater than or equal to one) in
each user iteration. To use this, make sure the domain is DDF and the target is DDF-default.
Then in pigi, place the mouse over the icon of the primitive in question, and issue the edit-
pragmas command (”a”). One pragma (the one understood by this target) will appear; it is called
firingsPerIteration. Set it to the desired value. This will then define what makes up an
iteration.

19.2.3 The clustering scheduler

If you set the target parameter restructure to YES, you will get a scheduler that clusters SDF
actors when possible and invokes the SDF scheduler on them. The scheduler is implemented in
the class DDFClustSched.

NOTE: As of this writing, this scheduler will not work with wormholes, and will issue a warn-�
ing. Nonetheless, it is an interesting scheduler for two reasons, the first of which is its
clustering behavior. The second is that it uses a different definition of a basic iteration.

19-4 MLDesigner Version 2.8

19.2 The DDF Schedulers

In this definition, a basic iteration (loosely) consists of as many firings as possible sub-
ject to the constraint that no actor fires more than once and that deferrable actors are
avoided if possible.

The complete algorithm is implemented as this:

The following sets are updated every time a primitive fires:
E = enabled actors
D = deferrable actors
S = source actors
F = actors that have fired once already in this iteration

One default iteration consists of:
while (E-D-F != 0) {

fire actors in (E-D-F)
}
if (F == 0) {

// All enabled actors are deferrable.
// Try the non-sources first.
if (E-S != 0) {

fire (E-S);
} else {

fire (S);
}

}
if (F == 0) deadlock

Use of this scheduler is not advised at this time, however. For one thing, the implementation of
clustering adds enough overhead that this scheduler is invariably slower than the default scheduler.

19.2.4 The fast scheduler
In case the new definition of an iteration is inconvenient for legacy systems, we preserve an older
and faster scheduler that is not guaranteed to satisfy criteria (2) and (3) above. The basic oper-
ation of the fast scheduler is to repeatedly scan the list of primitives in the domain and execute
the runnable primitives until no more primitives are runnable, with certain constraints imposed
on the execution of sources. For the purpose of determining whether a primitive is runnable, the
primitives are divided into three groups. The first group of the primitives have input ports that
consume a fixed number of particles. All SDF primitives, except those with no input ports, are
included in this group. For this group, the scheduler simply checks all inputs to determine whether
the primitive is runnable.

The second group consists of the DDF-specific primitives where the number of particles required
on the input ports is unspecified. An example is the EndCase primitive (a multi-input version of
the BDF Select primitive). The EndCase primitive has one control input and one multiport
input for data. The control input value specifies which data input port requires a particle. Primi-
tives in this group must specify at run time how many input particles they require on each input

19-5

19 DDF Domain

port. Primitives specify a port with a call to a method called waitPort and the number of particles
needed with a call to waitNum. To determine whether a primitive is runnable, the scheduler checks
whether a specified input port has the specified number of particles.

For example, in the EndCase primitive, the waitPort points to the control input port at the
beginning. If the control input has enough data (one particle), the primitive is fired. When it is
fired, it checks the value of the particle in the control port, and changes the waitPort pointer to the
input port on which it needs the next particle. The primitive will be fired again when it has enough
data on the input port pointed by waitPort. This time, it collects the input particle and sends it
to the output port. See fig. 19.2.

Figure 19.2: (a) The EndCase primitive waits on the control port. (b) The primitive fires when
data arrives on the control port (the value of the data is 0). (c) Now the primitive waits for input to
arrive on input port 0. (d) The primitive fires again when data arrives on input port 0. (e) The data
that arrived on input port 0 is transmitted by the output port of the EndCase primitive.

The third group of primitives comprises sources. Sources are always runnable. Source primitives
introduce a significant complication into the DDF domain. In particular, since they are always
runnable, it is difficult to ensure that they are not invoked too often. This scheduler has a reasonable
but not foolproof policy for dealing with this. Recall that the DDF domain is a superset of the
SDF domain. The definition of one iteration for this scheduler tries to obtain the same results
as the SDF scheduler when only SDF primitives are used. In the SDF domain, the number of
firings of each source primitive, relative to other primitives, is determined by solving the balance
equations. However, in the DDF domain, the balance equations do not apply in the same form1.
The technique used instead is lazy-evaluation.

19.2.5 Lazy evaluation
At the beginning of each iteration of a DDF application, we fire all source primitives exactly once,
and temporarily declare them ”not runnable.” We also fire all primitives that have enough initial
tokens on their inputs. After that, the scheduler starts scanning the list of primitives in the domain.
If a primitive has some particles on some input arcs, but is not runnable yet, then the primitive ini-
tiates the (lazy) evaluation of those primitives that are connected to the input ports requiring more
data. This evaluation is ”lazy” because it occurs only if the data it produces are actually needed.
The lazy-evaluation technique ensures that the relative number of firings of source primitives is
the same under the DDF scheduler as it would be under the SDF scheduler.

We can now define what is meant by one iteration in DDF. An iteration consists of one firing of
each source primitive, followed by as many lazy-evaluation passes as possible, until the system
deadlocks. One way to view this (loosely) is that enough primitives are fired to consume all of

19-6 MLDesigner Version 2.8

19.3 Inconsistency in DDF

the data produced in the first pass, where the source primitives were each fired once. This may in-
volve repeatedly firing some of the source primitives. However, a lazy-evaluation is only initiated
if a primitive in need of inputs already has at least one input with enough tokens to fire. Because
of this, in some circumstances, the firings that make up an iteration may not be exactly what is
expected. In particular, when there is more than one sink primitive in the system, and the sink
primitives fire at different rates, the ones firing at higher rates may not be fired as many times as
expected. It is also possible for one iteration to never terminate.

When a DDF wormhole is invoked, it will execute one iteration of the DDF system contained in
it. This is a serious problem in many applications, since the user may need more control over what
constitutes one firing of the wormhole.

19.3 Inconsistency in DDF
So far, an error-free program has been assumed. In the SDF domain, compile-time analysis de-
tects errors due to inconsistent rates of production and consumption of tokens because the balance
equations cannot be solved. In DDF, however, such inconsistencies are harder to detect. Our strat-
egy is to detect them at run time, an approach that has two disadvantages. First, it is costly, as will
be explained shortly. Second, it is not easy to isolate the sources of errors.

A data flow graph is called consistent if on each arc, in the long run, the same number of particles
are consumed as produced [Lee91b]. One source of inconsistency is the sample-rate mismatch
that is common to the SDF domain. The DDF domain has more subtle error sources, however,
due to the dynamic behavior of DDF primitives. In an inconsistent graph, an arc may queue an
unbounded number of tokens in the long run. To prevent this, we examine the number of tokens
on each arc to detect whether the number is greater than a certain limit (the default is 1024). If we
find an arc with too many tokens, we consider it an error and halt the execution. We can modify
the limit by setting the target parameter named maxBufferSize. The two new schedulers will
interpret a negative number here to be infinite capacity. An inconsistent system will run until your
computer runs out of memory.

The value of the maxBufferSize parameter will be the maximum allowed buffer size. Since
the source of inconsistency is not unique, isolating the source of the error is usually not possible.
We can just point out which arc has a large number of tokens. Of course, if the limit is set too
high, some errors will take very long to detect. Note however that there exist perfectly correct
DDF systems (which are consistent) that nonetheless cannot execute in bounded memory. It is for
this reason that the new schedulers support infinite capacity.

19.4 The default-DDF target
The DDF domain only has one target. The parameters of the target are:

maxBufferSize (INT) Default = 1024
The capacity of an arc (in particles). This is used for the runtime de-
tection of inconsistencies, as explained above. If any arc exceeds this

19-7

19 DDF Domain

capacity, an error is flagged and the simulation halts. A negative num-
ber is interpreted as infinite capacity (unless useFastScheduler is YES).
The value of this parameter does not specify how much memory is al-
located for the buffers, since the memory is allocated dynamically.

schedulePeriod (FLOAT) Default = 0.0
This defines the amount of time taken by one iteration (defined above)
of the DDF schedule. This is used only for interface with timed do-
mains, such as DE. Note that if you want the count given in the debug
panel of the run control panel to indicate the number of iterations, you
should set this parameter to one.

runUntilDeadlock (INT) Default = NO
Unless useFastScheduler is set, this modifies the definition of a single
iteration to invoke all primitives as many times as possible, until the
system halts. It is risky to use this because the system may not halt.
But in wormholes it is sometimes useful.

restructure (INT) Default = NO
This specifies that the experimental scheduler DDFClustSched should
be used. This scheduler attempts to form SDF clusters for more effi-
cient execution. Its use is not advised at this time, however, since it
does not work properly with wormholes and is slower than the default
scheduler.

useFastScheduler (INT) Default = NO
This specifies that the older and faster DDF scheduler (from version
0.5.2) should be used. It is difficult, however, to control the length of
a run with this scheduler.

numOverlapped (INT) Default = 1 For the fast scheduler only, this gives the number
of iteration cycles that can be overlapped for execution. When a DDF
system starts up, it normally begins by firing each source primitive
once, as explained above. It then goes into a lazy evaluation mode.
Setting this parameter to an integer N larger than one allows the sched-
uler to begin with N firings of the source primitives instead of just
one. This can make execution more efficient, because primitives down-
stream from the sources will be able to fire multiple times in each pass
through the graph. The default value of this parameter is 1.

logFile (STRING)
The default is the empty string. If non-empty, this gives the name of a
file to be used for recording scheduler information.

19.5 An overview of DDF primitives
Case Route an input particle to one of the outputs depending on the con-

trol particle. The control particle should be between zero and N - 1,
inclusive, where N is the number of outputs.

19-8 MLDesigner Version 2.8

19.6 An overview of DDF demos

EndCase Depending on the control particle, consume a particle from one of the
data inputs and send it to the output. The control particle should have
value between zero and N - 1, inclusive, where N is the number of
inputs.

DownCounter Given an integer input with value N, produce a sequence of output
integers with values (N - 1), (N - 2), ... 1, 0.

LastOfN Given a control input with integer value N, consume N particles from
the data input and produce only the last of these at the output.

Repeater Given a control input with integer value N, and a single input data
particle, produce N copies of the data particle on the output.

Self This is a first exploration of recursion and higher-order functions in
data flow. It is still experimental, so do not expect it to be either effi-
cient or bug-free. The primitive ”represents” the module given by the
parameter recurGal, which must be above it in the hierarchy. That
is, when the Self primitive fires, it actually invokes the module that it
represents. Since that module is above the Self primitive in the hier-
archy, it contains the Self primitive somewhere within it. Thus, this
primitive implements recursion. Since the Self primitive takes an ar-
gument (recurGal) that specifies the function to invoke, it is itself a
higher-order function. The instance of the recurGal module is not
created until it is actually needed, so the number of instances (the depth
of the recursion) does not need to be known a priori. If the parameter
reinitialize is NO or FALSE, then the instance of the module is
created the first time it fires and reused on subsequent firings. If reini-
tialize is YES or TRUE, then the module is created on every firing and
destroyed after the firing. Inputs are sent to the instance of the mod-
ule and outputs are retrieved from it. The inputs of the named module
must be named ”input#?” and the outputs must be named ”output#?”,
where ”?” is replaced with an integer starting with zero. This allows
the inputs and outputs of this primitive to be matched unambiguously
with the inputs and outputs of the referenced module.

19.6 An overview of DDF demos
These demos illustrate dynamic data flow principles.

eratosthenes The sieve of Eratosthenes is a recursive algorithm for computing prime
numbers. This demo illustrates the implementation of recursion in the
DDF domain. This is a concept demonstration only.

errorDemo An example of an inconsistent DDF system. An inconsistent DDF pro-
gram is one where the long term average number of particles produced
on an arc is not the same as the average long term number of parti-
cles consumed. This error is detected by bounding the buffer sizes and

19-9

19 DDF Domain

detecting overflow.

ifThenElse This demo illustrates the use of an SDF wormhole to implement a dy-
namically scheduled construct using the DDF domain. An if-then-else
is such a dynamically scheduled construct. The top level schematic
represents an SDF system, while the inside schematic represents a
DDF system (implementing an if-then-else).

fibonnacci Generate the Fibonacci sequence using a rather inefficient recursive
algorithm that is nonetheless a good example of how to realize recur-
sion.

loop This demo illustrates data-dependent iteration. Input integers are re-
peatedly multiplied by 0.5 until the product is less than 0.5. Turn on
animation to see the iteration.

picture Construct a two-dimensional random walk using a hierarchy of nested
wormholes. The outermost SDF domain has a wormhole called ”draw-
line” which internally uses the DDF domain. That wormhole, in turn,
has a wormhole called ”display” which internally uses the SDF do-
main.

repeat This simple demo shows the effect of running a DDF scheduler on
an SDF system. The firingsPerIteration pragma is used to control the
meaning of an iteration.

repeater This is a simple illustration of the Repeater primitive, used in an SDF
wormhole (DDF inside SDF).

router This is a simple illustration of the EndCase primitive.

SDFinDDF This rather trivial demo illustrates the use of a DDF wormhole whose
inside domain is SDF. The top-level system (in the DDF domain) has
an if-then-else overall structure, implemented of a matching pair of
Case and EndCase primitives. The inside system (in the SDF domain)
multiplies the data value by a ramp.

threshtest This demo shows that Karp & Miller style thresholds are supported
in DDF. The Thresh primitive is a dummy that implements a settable
threshold.

timing This demo illustrates the use of the DDF domain to implement asyn-
chronous signal processing systems. In this case, the system performs
baud-rate timing recovery using an approximate minimum mean-square-
error (MMSE) technique.

19.7 Mixing DDF with other domains

The mixture of the DDF domain with other domains requires a conversion between different com-
putational models. In particular, some domains associate a time stamp with each particle, and
other domains do not. Thus, a common function at the EventHorizon is the addition of time

19-10 MLDesigner Version 2.8

19.7 Mixing DDF with other domains

stamps, the stripping off of time stamps, interpolation between time stamps, or removal of re-
dundant repetitions of identical particles. In this section, DDF-specific features on the domain
interface will be discussed.

A module or system implemented using DDF may have a wormhole which contains a subsystem
implemented in another domain. The DDF wormhole looks exactly like a DDF primitive from the
outside. However, there are certain technical restrictions. In particular, it cannot have dynamic
input portholes, meaning the number of particles consumed by the wormhole inputs is a compile-
time constant. The wormhole is therefore fired when all input ports have new particles. When it
is fired, it consumes the input data, invokes the scheduler of the inner domain, and retrieves the
output particles. Thus, in all respects except one, the DDF wormhole behaves like an SDF worm-
hole (see ”Wormholes” on page 12-4 for more information). The one exception is that the DDF
wormhole need not consistently produce outputs.

When a DDF system is embedded within another domain, you may need to explicitly control
what constitutes a firing of the subsystem. Specifically, by setting the firingsPerIteration
pragma of a primitive in the DDF subsystem, you control how many firings of that primitive are
required to complete an iteration. Zero means ”don’t care.”

Note that some work has been done with a CGDDF target which recognizes and implements
certain commonly used programming constructs. See ”CG Domain” on page 13-1 for more infor-
mation.

19-11

Chapter 20

BDF Domain

20.1 Introduction
Boolean-controlled data flow (BDF) is a domain that can be thought of as a generalization of
synchronous data flow (SDF). It supports dynamic flow of control but still permits much of the
scheduling work to be performed at compile time. The dynamic data flow (DDF) domain, by
contrast, makes all scheduling decisions at run time. Thus, while BDF is a generalization of SDF,
DDF is still more general. Accordingly, the BDF domain permits SDF actors to be used, and the
DDF domain permits BDF actors to be used. This chapter will assume that the reader is familiar
with the SDF domain.

The BDF domain can execute any actor that falls into the class of Boolean-controlled data flow
actors. For an actor to be SDF, the number of particles read by each input porthole, or written by
each output porthole, must be constant. Under BDF, a generalization is permitted: the number of
particles read or written by a porthole may be either a constant or a two-valued function of a par-
ticle read on a control porthole for the same primitive. One of the two values of the function must
be zero. The effect of this is that a porthole might read tokens only if the corresponding control
particle is zero (FALSE) or nonzero (TRUE). The control porthole is always of type integer, and
it must read or write exactly one particle. Although the particles on the control porthole are of
integer type, we treat them as Booleans, using the C/C++ convention that zero is false and nonzero
is true.

We say that a porthole that conditionally transfers data based on a control token is a conditional
porthole. A conditional input porthole must be controlled by a control input. A conditional output
porthole may be controlled by either a control input or a control output. These restrictions permit
the run-time flow of control to be determined by looking only at the values of particles on control
ports. The compile-time scheduler determines exactly how the flow of control will be altered at
run time by the values of these particles. It constructs what we call an annotated schedule,
which is a compile-time schedule where each firing is annotated with the run-time conditions
under which the firing should occur.
The theory that describes graphs of BDF actors and their properties is called the token flow model.
Its properties are summarized in [BL93b] and developed in much more detail in [Buc93].

The BDF scheduler performs the following functions. First, it performs a consistency check anal-

20 BDF Domain

ogous to the one performed by the SDF scheduler to detect certain types of errors corresponding
to mismatches in particle flow rates [Lee91b]. Assuming that no error is detected, it then applies a
clustering algorithm to the graph, attempting to map it into traditional control structures such as if-
then-else and do-while. If this clustering process succeeds in reducing the entire graph to a single
cluster, the graph is then executed with the quasi-static schedule corresponding to the clusters. (It
is not completely static since some actors will be conditionally executed based on control particle
values, but the result is ”as static as possible.”) If the clustering does not succeed, then the resulting
clusters may optionally be executed by the same dynamic scheduler as is used in the DDF domain.
Dynamic execution of clusters is enabled or disabled by setting the allowDynamic parameter
of the default-BDF target.

20.2 The default-BDF target
At this time, there is only one BDF target. The parameters of the target are:

logFile (STRING)
The default is the empty string. The filename to which to report various
information about a run. If this parameter is empty (the default), there
will be no reporting. If the parameter is cerr or cout, messages will
go to the Unix standard error or standard output, respectively.

allowDynamic (INT) Default = NO
If TRUE or YES, then dynamic scheduling will be used if the compile-
time analysis fails to completely cluster the graph. As shown in [Buc93],
there will always be some valid graphs that cannot be clustered.

requireStronglyConsistent (INT) Default = NO
If TRUE or YES, then a graph will be rejected if it is not ”strongly con-
sistent” [Lee91b]. This will cause some valid systems, even systems
that can be successfully statically scheduled, to be rejected.

schedulePeriod (FLOAT) Default = 10000.0
This defines the amount of time taken by one iteration of the BDF
schedule. The notion of ”iteration” is defined in the SDF chapter, in
the section 5.1.3.

20.3 An overview of BDF primitives
CondGate If the value on the ”control” input is nonzero, the input particle is

copied to output. Otherwise, no input is consumed (except the con-
trol particle) and no output is produced. This is effectively one half of
a Select.

Fork Copy the input particle to each output. The SDF fork is not used here
because the BDF domain requires some extra steps to assert that each
output of a fork is logically equivalent if the input is a Boolean signal.

Not Output the logical inverse of the Boolean input. Again, the equiva-

20-2 MLDesigner Version 2.8

20.4 An overview of BDF demos

lent SDF logic block is not adequate because extra steps are needed to
assert the logical relationship between the input and the output.

Select If the value on the ”control” porthole is nonzero, N tokens (from the
parameter N) from ”trueInput” are copied to the output; otherwise, N
tokens from ”falseInput” are copied to the output.

Switch Switch input particles to one of two outputs, depending on the value
of the control input. The parameter N gives the number of particles
read in one firing. If the particle read from the control input is TRUE,
then the values are written to ”trueOutput”; otherwise they are written
to ”falseOutput”.

20.4 An overview of BDF demos
These demos with icons illustrate Boolean-controlled data flow principles. A useful way to under-
stand these principles when running BDF demos is to display the schedule after a run. This must
be done before the control panel is dismissed, because dismissing the control panel destroys the
scheduler.

bdfTiming This demo is identical to the DDF timing demo, except that it uses
BDF Switch and Select primitives instead of DDF Case and EndCase.
The static schedule has some simple if-then constructs to implement
conditional firing.

dataIter This simple system, which does nothing interesting, is surprisingly
difficult to schedule statically. It requires nesting an if-then within a
do-while within a manifest iteration.

ifThenElse This simple system uses Switch and Select primitives to construct an
if-then-else.

insanity This peculiar system applies two functions, log and cosine, but the
order of application is chosen at random. The BDF clustering algo-
rithm fails to complete on this graph. If the allowDynamic parameter
of the target is set to YES, then the scheduler will construct four SDF
sub-schedules, which must then be invoked dynamically.

loop This system illustrates the classic data flow mechanism for implement-
ing data-dependent iteration (a do-while). A sequence of integers (a
ramp) is the overall input. Each input value gets multiplied by 0.5 in-
side the loop until its magnitude is smaller than 0.5. Then that smaller
result is sent to the output.

loopTheLoop This system is similar to the loop demo, except that a second do-while
loop is nested within the first.

mandelbrot This system calculates the Mandelbrot set and uses Matlab to plot the
output. Matlab must be installed on the local workstation to view the
output of this demo.

20-3

Chapter 21

HOF Domain

21.1 Introduction
A function is higher-order if it takes a function as an argument and/or returns a function. A classic
example is mapcar in Lisp, which takes two arguments, a function and a list. Its behavior is to
apply the function to each element of the list and to return a list of the results. The HOF domain
implements a similar function, in the form of a primitive called Map. The Map primitive replaces
itself with another primitive (or module) until all parameters of the replacement block and the
system have been fulfilled. This essentially means you can control the number of instances of a
primitive or module within a simulation by changing the buswidth on connections or you can add
more complex functions by changing one parameter in a replacement block. Many other useful
higher-order functions are also provided by this domain.

The HOF domain provides a collection of primitives designed to be usable in all other MLDesigner
domains. To preserve this generality, not all interesting higher-order functions are implemented
in the HOF domain library. As a consequence, some individual domains may also define higher-
order functions and the relevant primitives (with domain specific behavior) will be found in their
respective libraries.

A common feature shared by all the primitives in this domain is that they perform all of their
operations in the preinitialize method. Moreover, their basic operation is always to dis-
connect themselves from the graph in which they appear and then to self-destruct. Since the pre-
initialization method of the primitives in a system is invoked before the pre-initialization method
of the scheduler, the scheduler never sees the HOF primitives. They will have self-destructed by
the time the scheduler is invoked. This is why these primitives will work in any domain. In code
generation domains, an important feature of the HOF primitives is that they add no run-time over-
head at all, since they self-destruct before code generation begins, and therefore do not appear in
any form in the generated code.
Many of the HOF primitives are replaced by one or more instances of another primitive or mod-
ule, called the replacement block. Replacement blocks are generally included in the same position
originally occupied by the HOF primitive, but different HOF primitives will connect these replace-
ment blocks in different ways.

Some HOF primitives have no replacement block. Before they self destruct, they will typi-

21 HOF Domain

cally only alter the connections in the graph without adding any new blocks. An example is
the BusMerge block, which merges two busses into one wider bus. These primitives are called
bus manipulation primitives.

The experienced reader may have some difficulty connecting the concept of higher-order func-
tions, as implemented in this domain, to that used in functional programming. This issue is covered
in some depth in [LP95], but we can nonetheless give a brief motivation here. In functional lan-
guages, there is no syntactic difference between a function argument that is a data value, one that
is a stream (an infinite sequence of data values), and one that is a function. In visual programming,
however, functions typically have two very different syntaxes for their arguments. MLDesigner is
no exception. Primitives and modules in MLDesigner are functions with two kinds of arguments:
input streams and parameters. The HOF domain only contains primitives where a parameter may
be function. It does not contain any primitives that will accept functions at their input portholes as
part of an input stream, or produce functions at their output portholes. Although in principle such
higher-order functions can be designed in MLDesigner , their behavior would not be independent
of their domain, so the HOF domain would be the wrong place for them.

21.2 Using the HOF domain
The primitives contained in the HOF domain are designed for use in all MLDesigner domains.
This section covers using HOF primitives in the SDF domain only.

21.3 The Map primitive and its variants
The Map primitive is the most basic of all HOF primitives.
It has the following parameters:

blockname The name of the replacement block.

where defined The full path and facet name for the definition of blockname. Only
needed if the primitive is not a built-in primitive.

parameter map Set the parameters of the replacement block and define a function to
perform.

input map Defines how to connect the inputs.

output map Defines how to connect the outputs.

The name of the replacement block is given by the blockname parameter. If the replacement
block is a module, then the where defined parameter should give the full name (including the
full path) of a facet that, when compiled, will define the block. This path name may (and probably
should) begin with the environment variable $MLD or ˜username to avoid linking problems af-
ter changes are made to the file system. If the replacement block is a built-in primitive, then there
is no need to give a value to the where defined parameter.

The Map primitive replaces itself in the graph with as many instances of the replacement block as

21-2 MLDesigner Version 2.8

21.3 The Map primitive and its variants

needed to satisfy all of the inputs to, or outputs from, the Map primitive. Consider the following
example (see fig. 21.1).

21.3.1 Example

The system seen here is modeled in the SDF Domain. We first created a Library called HOF
Exercises and then created a system in this library called Example. If you would like to recreate
this system proceed as follows:

1. In the Library View expand the library MLD Libraries/SDF Domain/Sources and
click and drag the Impulse primitive into the system. Repeat this process until you have
three instances of the Impulse primitive in the system.

2. Expand the library MLD Libraries/SDF Domain/Sinks and drag one instance of
the XMGraph primitive into the system.

3. Expand the library MLD Libraries/HOF Domain and drag one instance of the Map
primitive into your system.

You can now connect the model instances as shown in fig. 21.1.

4. Select the Add Bus icon with a single mouse click and move the cursor to the position over
the connection between the Map model instance and XMgraph.

5. A single mouse-click places a bus on the connection. A right mouse click reverts the cursor
mode back to selection mode.

6. Select the undefined bus property with a single mouse-click.
7. Define the Bus Width in the Relation Properties window (bottom left corner of the GUI) by

typing 3 in the Bus Width input field.

You now need to define the replacement block for the Map primitive. We want to define the
replacement block as the RaisedCosine built-in primitive found in MLD Libraries/SDF
Domain/DSP. We also want to perform a function on the parameter excessBW (ex-
cess Band Width) defined in the primitive. Go to the library MLD Libraries/SDF
Domain/DSP and open the RaisedCosine primitive. The primitive’s parameter names
and input and output naming conventions must be observed. Close the primitive once you
are familiar with the parameters here.

8. Select the Map model instance with a single mouse-click.
9. The Instance Properties window is activated (bottom left corner of the GUI)

10. In the input field of the parameter blockname type RaisedCosine
11. In the input field of the parameter parameter map type

excessBW = 1.0/instance number
12. In the input fields input map and output map type signalIn and signalOut re-

spectively.

Set the RunLength to 5 and switch to simulation mode. Run the simulation and observe
the results (see fig. 21.2).

21-3

21 HOF Domain

The replacement block is specified as the built-in RaisedCosine primitive. Since this is built-
in, there is no need to specify where it is defined, so the where defined parameter is blank.
The RaisedCosine primitive has a single input named signalIn and a single output named
signalOut, so these names are given as the values of the input map and output map pa-
rameters. The parameter map parameter specifies the values of the excessBW parameter for
each instance of the replacement block to be created; excessBW specifies the excess bandwidth
of the raised cosine pulse generated by the primitive. The syntax of the parameter map param-
eter is discussed in detail below, but we can see that the value of the excessBW parameter will
be 1.0 for the first instance of the RaisedCosine primitive, 0.5 for the second, and 0.33 for the third.

Impulse#1

XMgraph#1

Impulse#3

Impulse#2 Map#1
3

Figure 21.1: An example of the use of the Map primitive to plot three different cosine pulses

The last connection on the right in fig. 21.1 is a Bus, which is much like a delay in that the icon
is placed directly over the arc. Its single parameter specifies the number of connections that the
single wire represents. Here, the bus width has to be three or the Map primitive will issue an
error message. This is because there are three inputs to the Map primitive, so three instances of
the RaisedCosine primitive will be created. The three outputs from these three instances need
somewhere to go. The block diagram in fig. 21.1 is equivalent to that in fig. 21.3. Indeed, once the
pre-initialization method of the Map primitive has run, the topology of the MLDesigner system
will be exactly as shown in fig. 21.3. The Map primitive itself will not appear in the topology,
so examining the topology after converting the system to a PTCL file , for example, the PTCL
print command will not show a Map primitive instance.

In fig. 21.3, the number of instances of the RaisedCosine primitive is specified graphically. In
fig. 21.1, it is specified by implication, through the number of instances of the Impulse primitive.
Neither of these really takes advantage of higher-order functions. The block diagram in fig. 21.4 is
equivalent to both fig. 21.1 and fig. 21.3, but can be more easily modified to include more or fewer
instances of the RaisedCosine primitive. It is only necessary to modify parameters, not the
graphical representation. For example, if the value of the bus parameters in fig. 21.4 were changed
from 3 to 10, the system would then plot ten raised cosines instead of three.

21-4 MLDesigner Version 2.8

21.3 The Map primitive and its variants

Set 0
Set 1
Set 2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

HOFCosine.XMgraph#1

Figure 21.2: The plot that results from running the system

Impulse#1
�

Impulse#2
�

Impulse#3
�

XMgraph#1�

RaisedCosine#1�

RaisedCosine#2�

RaisedCosine#3�

Figure 21.3: A block diagram equivalent to the demo above, but without higher-order functions

Map#1 XMgraph#1
3

Src#1
3

Figure 21.4: A block diagram equivalent to the two demos above, except that the number of
instances can be specified by a parameter

21-5

21 HOF Domain

The left-most primitive in fig. 21.4 is a variant of the Map primitive called Src. It has no inputs,
and is used when the replacement block is a pure source block with no input.

21.3.2 MapGR and SrcGR primitive
The MapGr and SrcGr primitives work just like the Map and Src primitives, except that the
replacement block is graphically defined rather than textually.

SrcGr#1
�

MapGr#1
�

Ramp#1� Gain#1

XMgraph#1�
10 10

Figure 21.5: A block diagram equivalent to the last demo, except that the replacement blocks are
specified graphically

A more complex application of the MapGr primitive is shown in fig. 21.6. Here, the replacement
block is a Commutator, which can take any number of inputs. The bus connected to its input
multiporthole determines how many inputs will be used in each instance created by the MapGr
primitive. In the example in fig. 21.6, it is set to 2. Thus, each instance of the replacement block
processes two input streams and produces one output stream. Consequently, the input bus must be
twice as wide as the output bus, or the MapGr primitive will issue an error message.

The Parameter parameter map should be set in order to make use of the advantages of higher
order functions. Map the parameter of the SrcGR instance to the value parameter of the Ramp
primitive and use the variable instance number to give different values to the particle on the
output port of the ramp with each iteration. Enter the following in the appropriate field.

step = instance_number

Set the RunLength to 20 and Save the system. Switch to Simulation mode and click Go. This
example produces the plot shown in fig. 21.7. A key advantage of higher-order functions becomes
apparent when we realize that the parameters can be easily changed. It is quick and easy to change
the amount of times a module or primitive is instantiated by simply changing the bus width.

21.3.3 Setting parameter values
The parameter map parameter of the Map primitive and related primitives can be used to set
parameter values in the replacement blocks. The parameter map is a string array, a list of
strings. The strings are in pairs, where the pairs are separated by spaces, and there are four accept-
able forms for each pair:

21-6 MLDesigner Version 2.8

21.3 The Map primitive and its variants

SrcGr#1 MapGr#1

Ramp#1 Commutator#1

8

2

XMgraph#1
4

Figure 21.6: A more complicated example using higher-order functions with the number of re-
placement blocks graphically defined

Set 0
Set 1
Set 2

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

Ptolemy Xgraph

Figure 21.7: The plot created by running the system above

21-7

21 HOF Domain

name value
name(number) value
name = value
name(number) = value

There should be no spaces between name and (number), and the name cannot contain spaces,
=, or (. In all cases, name is the name of a parameter in the replacement block. In the first and
third cases, the value is applied to all instances of the replacement block. In the second and fourth
cases, it is applied only to the instance specified by the instance number, (which starts with 1).
The third and fourth cases just introduce an optional equal sign, for readability. If the = is used,
there must be spaces around it.

The value can be any usual MLDesigner expression for giving the value of a parameter. If this
expression has spaces in it, however, then the value should appear in quotation marks so that the
whole expression is kept together. In case the value should contain quotes, then each of these
quotes should be preceded by a backslash:

Parameter1 = "\"string 1\" \"string 2\" \"string 3\""
Parameter2 = "Root.String{\"a data structure\"}"

In the example above, Parameter1 is of type stringarray and is initialized with an array
containing 3 strings, while Parameter2 is a data structure parameter of type Root.String.

If the string instance number appears anywhere in value, it will be replaced with the in-
stance number of the replacement block. Note that it need not be a separate token. For example,
the value xxxinstance numberyyy will become xxx1yyy for the first instance, xxx2yyy
for the second, etc. After all appearances of the string instance number have been replaced,
value is evaluated using the usual MLDesigner expression evaluator for initializing String Array
states.

For example, in fig. 21.1, the Map primitive has a blockname of RaisedCosine, and a
parameter map of

excessBW = 1.0/instance_number

When the system is run, the Map primitive will create three instances of RaisedCosine. The
first instance will have its excessBW parameter set to 1.0 (which is 1/1), the second instance of
RaisedCosine will have a excessBW of 0.5 (1/2) and the third will have an excessBW of
0.33 (1/3). Since the other RaisedCosine parameters are not mentioned in the parameter map,
they are set to their default values.

As a further example, suppose parameter map of the Map primitive in fig. 21.1 were set to

excessBW(1) 0.6 excessBW(2) 0.5 excessBW(3) 0.4 length 128

The first RaisedCosine would then have an excessBW of 0.6, the second would have an
excessBW of 0.5 and the third would have 0.4 for its excessBW. All three of the Raised-Cosine
primitives would have a length of 128 instead of the default length.

21-8 MLDesigner Version 2.8

21.4 Other higher-order control structures

21.3.4 Number of replacement blocks
The number of instances of the replacement block is determined by the number of input or output
connections that have been made to the Map primitive. Suppose the Map primitive has MI inputs
and MO outputs connected to it. Suppose further that the replacement block has BI input ports
and BO output ports. Then

N =
MI

BI
=

MO

BO

is the number of instances that will be created. This must be an integer. Moreover, the number of
input and output connections must be compatible (must satisfy the above equality), or you will get
an error message like: ”too many inputs for the number of outputs.”

21.3.5 How the inputs and outputs are connected
The first BI inputs to the Map primitive will be connected to the inputs of the first instance of the
replacement block. To determine in what order these BI connections should be made, the names
of the inputs to the replacement block should be listed in the input map parameter in the order
in which they should be connected. There should be exactly BI names in the input map list.
The next BI inputs to the Map primitive will be connected to the next replacement block, again
using the ordering specified in input map. Similarly for the outputs. If there are no inputs at all,
then the number of instances is determined by the outputs, and vice versa.

For MapGr and its variants, there is no input map or output map parameter; all connections
are specified graphically.
For both Map and MapGr, if you want to replicate a module then you need to create a module
representing the group to be replicated. The same is true of the remaining HOF primitives that
generate multiple instances of a block.)

21.3.6 A note about data types
All the HOF primitives show their input and output data types as ANYTYPE. In reality, the type
constraints are those of the replacement blocks, which might have portholes of specific types.
The HOF primitives rewire the schematic before any attempt is made to determine porthole types,
so the actual assignment of particle types is the same as if the schematic had been written out in
full without using any HOF primitives.

21.4 Other higher-order control structures
The Map primitive and its variants apply instances of their replacement block in parallel to the set
of input streams. Another alternative is provided by the Chain primitive, which strings together
some specified number of instances of the replacement block in series. The parameters are similar
to those of the Map primitive, except for the addition of internal map. The internal map
parameter specifies connections made between successive instances of the replacement block in
the cascade. It should consist of an alternating list of output and input names for the replacement

21-9

21 HOF Domain

block.

An example of the use of the Chain primitive is a string of biquad filters in series. The IIR
filter primitive, which can be used to create a biquad filter, has an input named signalIn and
an output named signalOut. To have a string of these primitives in series, one would want the
output of the first IIR primitive in the series to be connected to the input of the second primitive.
And the output of the second primitive should be connected to the input of the third, etc. Thus, a
Chain primitive that is a series of biquad filters would have an internal map of

signalOut signalIn

to specify that the output of one block is connected to the input of the next.

Another variant is the IfElse block. This primitive is just like Map, except that it has two
possible replacement blocks. If the condition parameter is TRUE, then the true block is used.
Otherwise, the false block is used. It is important to realize that the condition parameter
is evaluated at pre-initialization time. Once a replacement block has been selected, it cannot be
changed. There are two uses for this block. It can be used to parameterize a module in such a
way that the parameter determines which of two functions is used within the computation. More
interestingly, it can be used to implement statically-evaluated recursion.

21.5 Statically evaluated recursion
The Map primitive and its variants replace themselves with an instance of the block specified as
the replacement block. What if that block is a module within which the very Map primitive in
question sits? This is a recursive reference to the module, but a rather awkward one. In fact, in
such a configuration, the pre-initialization phase of execution will never terminate. The user has
to manually abort such an execution in order to get it to terminate.
The IfElse primitive, however, can conditionally specify one of two replacement blocks. The
condition parameter determines which block. One of the two replacement blocks can be a recur-
sive reference to a module as long as the condition parameter is modified. When the condition
parameter changes state, going from TRUE to FALSE or FALSE to TRUE, then the choice of re-
placement block inside the new module instance will change. This can be used to terminate the
recursion.

Consider the example shown in fig. 21.8. This module has a single parameter, log2framesize.
It will read 2log2framesize input particles and rearrange them in bit reversed order. That is, they
will emerge from the module as if their binary address had been interpreted with the high-order
bit reinterpreted as a low-order bit, and vice versa. Suppose for example that log2framesize
= 3, and that the input sequence is 10,11,12,13,14,15,16,17. Then the output sequence will be
10,14,12,16,11,15,13,17.
1 To accomplish this, the bit reverse module uses two IfElse primitives, each with a con-
ditional recursive reference to the bit reverse module.

1 For those unfamiliar with bit-reversed addressing, here is a quick introduction. Since log2framesize is 3, the
module will read in 23 = 8 values at a time. The first value (10) has address 0 (since computers always seem to count
from zero) which is 000 in binary. Reversed, its address is still 000 so it is output first. The second value (11) has
address 1 which is 001 in binary. Reversed, its address is 100 binary which is 4. Thus the value (11) is output in the

21-10 MLDesigner Version 2.8

21.6 Bus manipulation primitives

IfElse

IfElse

CommutatorDistributor

outin

blockSize: 1 blockSize: 2^(log2framesize-1)

key parameters
condition: log2framesize-1

true_block: bit_reverse
true_parameter_map: log2framesize=log2framesize-1

false_block: Gain
false_parameter_map: gain=1.0

Figure 21.8: A recursive system, where the IfElse HOF primitive replaces itself with an instance
of the same system until its condition parameter gets to zero

The condition is log2framesize-1, and the log2framesize parameter for the inside in-
stances of the module is set to log2framesize-1. When log2framesize gets to zero, the
replacement block becomes a Gain primitive with unity gain (which of course has no effect). This
terminates the recursion.

The bit reverse module performs the sort of data manipulation that is at the heart of the
decimation-in-time FFT algorithm. See [Lee94] for an implementation of that algorithm using
these same techniques (or see the demos).

21.6 Bus manipulation primitives
One consequence of the introduction of higher-order functions into MLDesigner is that busses
have suddenly become much more useful than they used to be.

Fortunately, while increasing the demand for busses, higher-order functions also provide a cost
effective way to manipulate busses. Like the Map primitive and its variants, the bus manipulation
primitives in the HOF domain modify the graph at pre-initialization time and then self-destruct.
Thus, they can operate in any domain, and they introduce no run-time overhead.
An example of the use of the BusMerge primitive is shown in fig. 21.9. The BusMerge primitive
rewires the graph at pre-initialization time and then self-destructs. Thus, it introduces zero run-
time overhead. A good example can be found in

fifth spot. As a final example, the seventh value (16) has address 6 which is 110 in binary. Reversed, its binary value
is 011 which is 3 and the value (16) is output forth. After the first 8 values are read, the cycle is repeated for the next 8
values.

21-11

21 HOF Domain

MLD Libraries/Demos/HOF Demo/sdf.
The system fft2d shows how versatile the bus mechanism can be.

Const#1

Const#2

Rect#1

Waterfall#1

BusMerge#1 BusMerge#2
MapGr#1

FFTCx#1 FFTCx#2

Commutator#1Fork#1

Fork#2

Fork#3

8

4

12

4

16 16

2-D FFT of a dark square in a light background

Figure 21.9: System with BusMerge instances

21.6.1 NOP Primitives
A more interesting bus manipulation primitive is the Nop primitive, so called because it really
performs no function at all. It can have any number of inputs, but the number of outputs must be
the same as the number of inputs. All it does is connect its inputs to its outputs (at pre-initialization
time) and then self-destruct.
The icon on the left has three individual input ports, and simply combines them into an output
multiporthole. This multiporthole would normally be connected to a bus, which must be of width
three. Thus, this icon provides a way to create a bus from individual connections. The next icon
is similar, except that it has five input lines. The next two icons do the reverse. They are used to
break out a bus into its individual components.

Examples of the uses of Nop primitives are shown in fig. 21.10. Three signals are individually
generated at the left by three different source primitives. These signals are then combined into a
bus of width three using a Nop primitive. The bus is then broken out into three individual lines,
which are fed to three Gain primitives. The most interesting use of the Nop primitive, however,
is the one on the right. The XMgraph primitive shown there has a multiporthole input. The Nop
primitive is simply deposited on top of the multiporthole to provide it with three individual inputs.
Why do this? Because when connecting multiple signals to a multiporthole input, it is difficult to
control which input line goes to which specific porthole in the multiporthole set. Putting the Nop
primitive on the porthole gives us this control with no additional runtime cost.
Recall that many primitives in MLDesigner , that have multiportholes, have special primitives
that define the number of input or output ports that are visible in a design. The long lists of
primitives have been replaced with a Select Special Primitive dialog. When you drag a primitive
with multiple ports into a system or module you have the option to choose from a number of
predefined port layouts. If the particular primitive you need is not in the list, you can create a
special primitive by selecting the appropriate menu option from the context menu of the primitive
in question.

21-12 MLDesigner Version 2.8

21.7 An overview of the HOF primitives

Gain#1

Gain#2

Gain#3IIDUniform#1

Rect#1

XMgraph#1Nop.input=3#1 Nop.input=3#2Nop.output=3#1singen#1
1

Illustration of the Nop star
used for manipulating busses

and multiportholes

Note the combination of signals into
a bus. Also note the breakout of the
multiporthole on the XMgraph star.

Figure 21.10: The Nop primitive is used to create busses from individual connections, to break
busses down into individual lines and to break out multiportholes into individual ports

21.7 An overview of the HOF primitives

21.7.1 Bus manipulation primitives

The top group in the main HOF library are the bus manipulation primitives, summarized below:

BusMerge Bridge inputs to outputs and then self-destruct. This primitive merges
two input busses into a single bus. If the input bus widths are M1 and
M2, and the output bus width is N , then we require that N = M1+M2.
The first M1 outputs come from the first input bus, while the next M2

outputs come from the second input bus.

BusSplit Bridge inputs to outputs and then self-destruct. This primitive splits
an input bus into two. If the input bus width is N , and the output bus
widths are M1 and M2, then we require that N = M1+M2. The first
M1 inputs go the first output bus, while the next M2 inputs go to the
second output bus.

BusInterleave Bridge inputs to outputs and then self-destruct. This primitive inter-
leaves two input busses onto a single bus. The two input busses must
have the same width, which must be half the width of the output bus.
The input signals are connected to the output in an alternating fashion.

BusDeinterleave Bridge inputs to outputs and then self-destruct. This primitive de-
interleaves a bus, producing two output busses of equal width. The
input bus must have even width. The even numbered input signals are
connected to the first output bus, while the odd numbered input signals
are connected to the second output bus.

21-13

21 HOF Domain

Nop Bridge inputs to outputs and then self-destruct. This primitive is used
to split a bus into individual lines or combine individual lines into a
bus. It is also used to break out multi-inputs and multi-outputs into in-
dividual ports. These icons are labeled BusCreate and BusSplit,
suggesting their usual function.

21.7.2 Map-like primitives

Map Map one or more instances of the named block to the input stream(s)
to produce the output stream(s). This is implemented by replacing the
Map primitive with one or more instances of the named block at pre-
initialization time. The replacement block(s) are connected as speci-
fied by input map and
output map, using the existing connections to the Map primitive.
Their parameters are determined by parameter map.

Src This is identical to the Map primitive, except that the replacement
block is a source block (it has no inputs).

MapGr A variant of the Map primitive where the replacement block is spec-
ified by graphically connecting it. There must be exactly one block
connected in the position of the replacement block. The Nop primi-
tives are the only exception: they may be used in addition to the one
replacement block in order to control the order of connection.

SrcGr This is identical to the MapGr primitive, except that the replacement
block is a source block (it has no inputs)

Chain Create one or more instances of the named block connected in a chain.
This is implemented by replacing the Chain primitive with instances
of the named blocks at pre-initialization time. The replacement block(s)
are connected as specified by input map, internal map, and output map.
Their parameters are determined by parameter map. If pipeline
is YES, then a unit delay is put on all internal connections.

IfElse This primitive is just like Map, except that it chooses one of two named
blocks to replace itself. If the condition parameter is TRUE, then
the true block is used. Otherwise, the false block is used.
This can be used to parameterize the use of a given block, or, more
interestingly, for statically evaluated recursion.

IfElseGr A variant of the IfElse primitive where the two possible replace-
ment blocks are specified graphically rather than textually. There must
be exactly one block connected in the position of each of the two the
replacement blocks. The Nop primitives are the only exception: they
may be used in addition to the two replacement blocks in order to con-
trol the order of connection. As of this writing, this primitive cannot
be used with recursion.

21-14 MLDesigner Version 2.8

21.8 An overview of HOF demos

21.8 An overview of HOF demos
The HOF demos at MLD Libraries/HOF Domain/Demos are divided by domain. As of this
writing, only the SDF,DE, and CGC domains have demos in this library.

21.8.1 HOF demos in the SDF domain
addingSinWaves This demo generates a number of sine waves given by the parameter

number of sine waves and adds them all together. The ampli-
tude of each sine wave is controlled by a Tk slider that is inserted into
the control panel when the system is run. The frequency in radians of
each sine wave (relative to a sample rate of 2π) is instance number
multiplied by π/32. Thus, the first sine wave will have a period of 64
samples. The second will have a period of 32. The third will have a pe-
riod of 16, etc. The sum of these sine waves is displayed in bar-graph
form.

busManipulations This demo illustrates the use of the Nop primitive for manipulating
busses and multiportholes. Note the combination of signals into a bus
and the breakout of the multiporthole on the XMgraph.

cascadedBiquads The ChainHOF primitive is used to construct a cascade of two second-
order direct-form recursive filters (biquads). The frequency response
of the cascade is compared against the frequency response of a direct-
form fourth-order filter with the same transfer function.

fft This system implements a recursive definition of a decimation-in-time
fast Fourier transform, comparing its output against that of a direct im-
plementation in C++. The system is configured to use 32 point FFTs
to implement a 256 point FFT. The granularity is controllable with the
parameters, and can be taken all the way down to the level of multipli-
ers and adders. This system is discussed in detail in [Lee94].

fft2d This system generates a square as in the square demo, and then com-
putes its two-dimensional FFT.

fourierSeries This system generates a number of sinusoids as given by the
number of terms parameter. These are then weighted by the ap-
propriate Fourier series coefficients so that the sum of the sinusoids
gives the finite Fourier series approximation for a square wave with
period given by the period parameter.

fourierSeriesMma This system is similar to the fourierSeries system above, but
uses Mathematica to calculate parameter values. Mathematica must be
licensed on the local workstation for this demo to run.

phased array This system models a planar array of sensors with beamforming and
steering, such as might be used with a microphone array or a radar
system. The sensors can be positioned arbitrarily in a plane. With the
default parameters, 16 sensors are uniformly spaced along the vertical

21-15

21 HOF Domain

axis, half a wavelength apart, except for one, the fourth, which is offset
along the horizontal axis by one tenth of a wavelength. The gain of the
array as a function of direction is plotted in both polar and rectangular
form (the latter in dB). A Hamming window is applied to the sensor
data, as is a steering vector which directs the beam downwards. Zoom
into the center of the polar plot to see the effect of the offset sensor.
Try changing the parameter map of the left-most MapGr higher-
order function to realign the offset sensor, and observe the effect on
the gain pattern.

RadarChainProcessing This system simulates radar without beamforming. In this sim-
ulation, we simulate the effect of an electromagnetic signal traveling
from a transmitter to targets and going back to receivers.The delay of
the returned signal is used to provide information on the range of the
target. The frequency shift, or Doppler effect, is used to provide infor-
mation on the speed of the target. Thus, with these parameters, we es-
timate the targets properties as in a narrow band radar. The system has
been converted from a data parallel form that uses a five-dimensional
data array to a functional parallel form that uses higher-order func-
tions to produce streams of streams. The five dimensions are range
bin, doppler filters, number of sensors, number of targets and number
of pulses.

sawtooth This demo generates increasing sawtooth waveforms by interleaving
pairs of ramps with slopes differing by one.

scramble This system demonstrates the bit reverse module shown above in
fig. 21.8 and explained in the accompanying text.

square This system demonstrates the BusMerge HOF primitive. It generates
an image consisting of a light square on a dark background. The im-
age is first represented using a bus, where each connection in the bus
represents one row. The Commutator primitive then rasterizes the
image.

wildColors Creates a number of random sequences and plots them in a pair of bar
graphs.

21.8.2 HOF demos in the DE domain
At this time, there are only two simple demos in the DE domain. These can be found in the Library
view MLD Libraries/Demos/HOF Demo/de

poisson This system generates any number of Poisson processes (default 10)
and displays them together. To distinguish them, each process pro-
duces events with a distinct value.

exponential Combine a number of Poisson processes and show that the inter-arrival
times are exponentially distributed by plotting a histogram. Notice
that the histogram bin centered at zero is actually only half as a wide

21-16 MLDesigner Version 2.8

21.8 An overview of HOF demos

as the others (since the inter-arrival time cannot be negative), so the
histogram displays a value for the zero bin that is half as high as what
would be expected.

21.8.3 HOF demos in the CGC domain
These Demos are not supported at present and may contain bugs.

busses Create a set of ramps of different slopes and display them in both a bar
chart and using pxgraph.

scrambledCGC This system demonstrates recursion in code generation by taking a
ramp in and reordering samples in bit-reversed order.

soundHOF This system produces a sound made by adding a fundamental and its
harmonics in amounts controlled by sliders.

wildColorsCGC This system is a CGC version of the SDF demo wildColors. It
creates a number of random sequences and plots them in a pair of bar
graphs.

21-17

Chapter 22

DE Domain

22.1 Introduction

The discrete event (DE) domain in MLDesigner provides a general environment for time-oriented
simulations of systems such as queuing networks, communication networks, and high-level mod-
els of computer architectures. In this domain, each Particle represents an event that corresponds
to a change of the system state. The DE schedulers process events in chronological order. Since
the time interval between events is generally not fixed, each particle has an associated time stamp.
Time stamps are generated by the block producing the particle based on the time stamps of the
input particles and the latency of the block.

22.2 The DE target and its schedulers

The DE domain, at this time, has only one target. This target has three parameters:

timeScale (FLOAT) Default = 1.0
A scaling factor relating local simulated time to the time of other do-
mains that might be communicating with DE.

usedScheduler (Enum) Default = Priority Free Scheduler
Indicates which scheduler to use to simulate the model: Calendar
Queue Scheduler, Mutable Calendar Queue Scheduler, Priority Free
Scheduler, Priority Scheduler, Resource Contention Scheduler, Sim-
ple DE Scheduler.

The DE schedulers in MLDesigner determine the order of execution of the blocks. There are six
schedulers that have been implemented which are distributed with the domain. They expect par-
ticular behavior (operational semantics) on the part of the primitives. In this section, we describe
the semantics.

22 DE Domain

22.3 Events and chronology
A DE primitive models part of a system response to a change in the system state. The change
of state, which is called an event, is signaled by a particle in the DE domain. Each particle is
assigned a time stamp indicating when (in simulated time) it is to be processed. Since events are
irregularly spaced in time and system responses are generally very dynamic, all scheduling actions
are performed at run-time. At run-time, the DE scheduler processes the events in chronological
order until simulated time reaches a global ”stop time.”

Each scheduler maintains a global event queue where particles currently in the system are sorted
in accordance with their time stamps; the earliest event in simulated time being at the head of the
queue. The difference between the two schedulers is primarily in the management of this event
queue. The default DE Scheduler mechanism handles large event queues much more efficiently
than the alternative, a more direct DE scheduler, which uses a single sorted list with linear search-
ing. The alternative scheduler can be selected by changing a parameter in the default DE target.

Each scheduler fetches the event at the head of the event queue and sends it to the input ports of
its destination block. A DE primitive is executed (fired) whenever there is a new event on any of
its input portholes. Before executing the primitive, the scheduler searches the event queue to find
out whether there are any simultaneous events at the other input portholes of the same primitive,
and fetches those events. Thus, for each firing, a primitive can consume all simultaneous events
for its input portholes. After a block is executed it may generate some output events on its output
ports. These events are put into the global event queue. Then the scheduler fetches another event
and repeats its action until the given stopping condition is met.

It is worth noting that the particle movement is not through Geodesics, as in most other domains,
but through the global queue in the DE domain. Since the geodesic is a FIFO queue, we cannot
implement the incoming events which do not arrive in chronological order if we put the particles
into geodesics. Instead, the particles are managed globally in the event queue.

22.4 Event generators
Some DE primitives are event generators that do not consume any events, and hence cannot be
triggered by input events. They are first triggered by system-generated particles that are placed
in the event queue before the system is started. Subsequent firings are requested by the primitive
itself, which gives the time at which it wishes to be refired. All such primitives are derived from
the base class RepeatStar.

RepeatStar is also used by primitives that do have input portholes, but also need to schedule
themselves to execute at particular future times whether or not any outside event will arrive then.
An example is PSServer.

In a RepeatStar, a special hidden pair of input and output ports is created and connected together.
This allows the primitive to schedule itself to execute at any desired future time(s), by emitting
events with appropriate time stamps on the feedback loop port. The hidden ports are in every

22-2 MLDesigner Version 2.8

22.5 Simultaneous events

way identical to normal ports, except that they are not visible in the graphical user interface. The
programmer of a derived primitive sometimes needs to be aware that these ports are present. For
example, the primitive must not be declared to be a delay primitive (meaning that no input port can
trigger a zero-delay output event) unless the condition also holds for the feedback port (meaning
that refire events don’t trigger immediate outputs either). See the Programmer’s Manual for more
information on using RepeatStar.

22.5 Simultaneous events
A special effort has been made to handle simultaneous events in a rational way. As noted above,
all available simultaneous events at all input ports are made available to a primitive when it is
fired. In addition, if two distinct primitives can be fired because they both have events at their
inputs with identical time stamps, some choice must be made as to which one to fire. A common
strategy is to choose one arbitrarily. This scheme has the simplest implementation, but can lead to
unexpected and counter-intuitive results from a simulation.

The choice of which to fire is made in MLDesigner by statically assigning priorities to the primi-
tives according to a topological sort. Thus, if one of two enabled primitives could produce events
with zero delay that would affect the other, as shown in fig. 22.1, then that primitive will be fired
first. The topological sort is actually even more sophisticated than we have indicated. It follows
triggering relationships between input and output portholes selectively, according to assertions
made in the primitive definition. Thus, the priorities are actually assigned to individual portholes,
rather than to entire primitives. See the Programmer’s Manual for further details.

A

B

C

Figure 22.1: When DE primitives are enabled by simultaneous events, the choice of which to fire
is determined by priorities based on a topological sort. Thus if B and C both have events with
identical time stamps, B will take priority over C. The delay on the path from C to A serves to
break the topological sort.

There is a pitfall in managing time stamps. Two time stamps are not considered equal unless they
are exactly equal, to the limit of double-precision floating-point arithmetic. If two time stamps
were computed by two separate paths, they are likely to differ in the least significant bits, unless
all values in the computation can be represented exactly in a binary representation. If simultaneity
is critical in a given application, then exact integral values should be used for time stamps. This
will work reliably as long as the integers are small enough to be represented exactly as double-
precision values. Note that the DE domain does not enforce integer timestamps – it is up to the
primitives being used to generate only integer-valued event timestamps, perhaps by rounding off
their calculated output event times.

22-3

22 DE Domain

22.6 Delay-free loops
Many primitives in the DE domain produce events with the same time stamps as their input events.
These zero-delay primitives can create some subtleties in a simulation. An event-path consists
of the physical arcs between output portholes and input portholes plus zero-delay paths inside the
primitives, through which an input event instantaneously triggers an output event. If an event-path
forms a loop, we call it a delay-free loop. While a delay-free loop in the SDF domain
results in a deadlock of the system, a delay-free loop in the DE domain potentially causes un-
bounded computation. Therefore, it is advisable to detect the delay-free loop at compile time. If a
delay-free loop is detected, an error is signaled.

Detecting delay-free loops reliably is difficult. Some primitives, such as Server and Delay,
take a parameter that specifies the amount of delay. If this is set to zero, it will fool the scheduler.
It is the user’s responsibility to avoid this pathological case. This is a special case of a more gen-
eral problem, in which primitives conditionally produce zero-delay events. Without requiring the
scheduler to know a great deal about such primitives, we cannot reliably detect zero-delay loops.
What appears to be a delay-free path can be safe under conditions understood by the programmer.
In such situations, the programmer can avoid the error message placing a delay element on some
arc of the loop. The delay element is the small green diamond found at the top of every primitive
library. It does not actually produce any time delay in simulated time. Instead, it declares to the
scheduler that the arc with the delay element should be treated as if it had a delay, even though it
does not. A delay element on a directed loop thus suppresses the detection of a delay-free loop.

Another way to think about a delay marker in the DE domain is that it tells the scheduler that
it’s OK for a particle crossing that arc to be processed in the ”next” simulated instant, even if the
particle is emitted with timestamp equal to current time. Particles with identical timestamps are
normally processed in an order that gives data flow-like behavior within a simulated instant. This
is ensured by assigning suitable firing priorities to the primitives. A delay marker causes its arc to
be ignored while determining the data flow-based priority of primitive firing; so a particle crossing
that arc triggers a new round of data flow-like evaluation.

22.7 Wormholes
”Time” in the DE domain means simulated time. The DE domain may be used in combination
with other domains in MLDesigner , even if the other domains do not have a notion of simulated
time. A given simulation, therefore, may involve several schedulers, some of which use a notion
of simulated time, and some of which do not. There may also be more than one DE scheduler
active in one simulation. The notion of time in the separate schedulers needs to be coordinated.
This coordination is specific to the inner and outer domains of the wormhole. Important cases are
described below.

22.7.1 SDF within DE
A common combination of domains pairs the SDF domain with the DE domain. There are two
possible scenarios. If the SDF domain is inside the DE domain, as shown in fig. 22.2, then the SDF

22-4 MLDesigner Version 2.8

22.7 Wormholes

subsystem appears to the DE system as a zero-delay block. Suppose, for example, that an event
with time stamp T is available at the input to the SDF subsystem. Then when the DE scheduler
reaches this time, it fires the SDF subsystem. The SDF subsystem runs the SDF scheduler through
one iteration, consuming the input event. In response, it will typically produce one output event,
and this output event will be given the time stamp T .

If the SDF subsystem in fig. 22.2 is a multirate system, the effects are somewhat more subtle.
First, a single event at the input may not be sufficient to cycle through one iteration of the SDF
schedule. In this case, the SDF subsystem will simply return, having produced no output events.
Only when enough input events have accumulated at the input will any output events be produced.
Second, when output events are produced, more than one event may be produced. In the current
implementation, all of the output events that are produced have the same time stamp. This may
change in future implementations.

DE

SDF

zero time delay

Figure 22.2: When an SDF domain appears within a DE domain, events at the input to the SDF
subsystem result in zero-delay events at the output of the SDF subsystem. Thus, the time stamps
at the output are identically to the time stamps at the input

More care has to be taken when one wants an SDF subsystem to serve as a source primitive in
a discrete-event domain. Recall that source primitives in the DE domain have to schedule them-
selves. One solution is to create an SDF ”source” subsystem that takes an input, and then connect
a DE source to the input of the SDF wormhole. We are considering modifying the wormhole
interface to support mixing sources from different domains automatically.

22.7.2 DE within SDF
The reverse scenario is where a DE subsystem is included within an SDF system. The key re-
quirement, in this case, is that when the DE subsystem is fired, it must produce output events,
since these will be expected by the SDF subsystem. A very simple example is shown in fig. 22.3.
The DE subsystem in the figure routes input events through a time delay. The events at the output
of the time delay, however, will be events in the future. The Sampler primitive, therefore, is intro-
duced to produce an output event at the current simulation time. This output event, therefore, is
produced before the DE scheduler returns control to the output SDF scheduler.
The behavior shown in fig. 22.3 may not be the desired behavior. The Sampler primitive, given
an event on its control input (the bottom input), copies the most recent event from its data input
(the left input) to the output. If there has been no input data event, then a zero-valued event is

22-5

22 DE Domain

input1 output1�

Server#1� Sampler#1�

Figure 22.3: A typical DE subsystem intended for inclusion within an SDF subsystem. When a
DE subsystem appears within an SDF system, the DE subsystem must ensure that the appropriate
number of output events are produced in response to input events. This is typically accomplished
with a “Sampler” primitive

produced. There are many alternative ways to ensure that an output event is produced. For this
reason, the mechanism for ensuring that this output event is produced is not built in. The user must
understand the semantics of the interacting domains, and act accordingly.

22.7.3 Timed domains within timed domains
The DE domain is a timed domain. Suppose it contains another timed domain in a DE wormhole.
In this case, the inner domain may need to be activated at a given point in simulated time even
if there are no new events on its input portholes. Suppose, for instance, that the inner domain
contains a clock that internally generates events at regular intervals. Then these events need to
be processed at the appropriate time regardless of whether the inner system has any new external
stimulus.

The mechanism for handling this situation is simple. When the internal domain is initialized
or fired, it can, before returning, place itself on the event queue of the outer domain, much the
same way that an event generator primitive would. This ensures that the inner event will be pro-
cessed at the appropriate time in the overall chronology. Thus, when a timed domain sits within a
timed domain wormhole, before returning control to the scheduler of the outer domain, it requests
rescheduling at the time corresponding to the oldest time stamp on its event queue, if there is such
an event.

When an internal timed domain is invoked by another time domain, it is told to run until a given
”stop time,” usually the time of the events at the inputs to the internal domain that triggered the
invocation. This ”stop time” is the current time of the outer scheduler. Since the inner scheduler
is requested to not exceed that time, it can only produce events with time stamp equal to that time.
Thus, a timed domain wormhole, when fired, will always either produce no output events, or pro-
duce output events with time stamp equal to the simulated time at which it was fired.

To get a time delay through such a wormhole, two firings are required. Suppose the first firing is
triggered by an input event at time T , then the inside system generates an internal event at a future
time T + τ . Before returning control to the outer scheduler, the inner scheduler requests that it
be reinvoked at time T + τ . When the ”current time” of the outer scheduler reaches T + τ , it
reinvokes the inner scheduler, which then produces an output event at time T + τ .

22-6 MLDesigner Version 2.8

22.8 DE Performance Issues

With this conservative style of timed interaction, we say that the DE domain operates in the syn-
chronized mode. Synchronized mode operation suffers significant overhead at run time, since the
wormhole is called at every time increment in the inner timed domain. Sometimes, however, this
approach is too conservative.

In some applications, when an input event arrives, we can safely execute the wormhole into the
future until either (a) we reach the time of the next event on the event queue of the outer domain,
or (b) there are no more events to process in the inner domain. In other words, in certain situations,
we can safely ignore the request from the output domain that we execute only up until the time
of the input event. As an experimental facility to improve run-time efficiency, an option avoids
synchronized operation. Then, we say that the DE domain operates in the optimized mode. We
specify this mode by setting the target parameter syncMode to FALSE (zero). This should only
be done by knowledgeable users who understand the DE model of computation very well. The
default value of the syncMode parameter is TRUE (one), which means synchronized operation.

22.8 DE Performance Issues

DE Performance can be an issue with large, long-running systems. Below we discuss a few po-
tential solutions.

The calendar queue scheduler is not always the one to use. It works well as long as the ”density”
of events in simulated time is fairly uniform. But if events are very irregularly spaced, you may get
better performance with the simpler scheduler, because it makes no assumptions about timestamp
values. For example, it has been reported that the CQ scheduler did not behave well in a simulation
that had a few events at time zero and then the bulk of the events between times 800000000 and
810000000 – most of the events ended up in a single CQ ”bucket”, so that performance was worse
than the simple scheduler.

It also has been pointed out that both the CQ and simple schedulers ultimately depend on simple
linear lists of events. If your application usually has large numbers of events pending, it might be
worth trying to replace these lists with genuine priority queues (i.e., heaps, with O(log N) rather
than O(N) performance). But you ought to profile first to see if that’s really a time sink.

Another thing to keep in mind that the overhead for selecting a next event and firing a primitive
is fairly large compared to other domains such as SDF. It helps if your primitives do a reasonable
amount of useful work per firing; that is, DE encourages ”heavyweight” primitives. One way to
get around this is to put purely computational subsystems inside SDF wormholes. As discussed
previously, an SDF-in-DE wormhole acts as a zero-delay primitive.

One way to gain a slight amount of speed is to avoid the GUI interface entirely by using ptcl,
which does not have Tk primitives.

22-7

22 DE Domain

22.9 DE Libraries

The model of computation in the DE domain makes it amenable to high-level system modeling.
For this reason, primitives in the DE domain are often more complicated, and more specialized
than those in the SDF domain.

We have made every attempt to include in the distribution all of the reasonably generic primitives
that have been developed, plus a selection of the more esoteric ones (as examples). Keep in mind
that the primitive libraries of the other domains are also available through the wormhole mecha-
nism. Users that find themselves frequently needing primitives from other domains may wish to
build a library of single-primitive modules. Such modules can be used in any domain, regardless
of the domain in which the single primitive resides. MLDesigner automatically implements them
as a wormhole.

22.10 Source primitives

Strictly speaking, source primitives are primitives with no inputs. They generate signals, and may
represent external inputs to the system, constant data, or synthesized stimuli. By convention, these
primitives are fired once at time zero automatically. During this and all subsequent firings, the
primitive itself must determine when its next firing should occur. It schedules this next firing with
a call to the method refireAtTime(time).

Clock Generate events at regular intervals, starting at time zero.

Impulse Generate a single event at time zero.

Null Do nothing. This is useful for connecting to unused input ports.

Poisson Generate events according to a Poisson process. The first event is gen-
erated at time zero. The mean inter-arrival time and magnitude of the
events are given as parameters.

PulseGen Generate events with specified values at specified moments. The events
are specified in the value array, which consists of time-value pairs,
given in the syntax of complex numbers.

TclScript Invoke a Tcl script. The script is executed at the start of the simulation,
from within the primitive’s begin method. It may define a procedure
to be executed each time the primitive fires, which can in turn produce
output events.

TkButtons Output the specified value when buttons are pushed. If the
allow simultaneous events parameter is YES, the output events
are produced only when the button labeled ”PUSH TO PRODUCE
EVENTS” is pushed. The time stamps of each output event is set to
the current time of the scheduler when the button is pushed.

TkSlider Output a value determined by an interactive on-screen scale slider.

22-8 MLDesigner Version 2.8

22.11 Sink primitives

For convenience, some primitives are included in the source library that are not really source
primitives, in the above sense. They require an input event in order to produce an output. These
are listed below. The value of the input event is ignored; it is only its time stamp that matters.

Const Produce an output event with a constant value (the default value is
zero) when stimulated by an input event. The time stamp of the output
is the same as that of the input.

Ramp Produce an output event with a monotonically increasing value when
stimulated by an input event. The value of the output event starts at
value and increases by step each time the primitive fires.

RanGen Generate a sequence of random numbers. Upon receiving an input
event, it generates a random number with uniform, exponential,
or normal distribution, as determined by the distribution pa-
rameter. Depending on the distribution, other parameters spec-
ify either the mean and variance or the lower and upper extent of the
range.

singen Generate a sample of a sine wave when triggered. This DE module
contains an SDF singen module (i.e., a wormhole).

WaveForm Upon receiving an input event, output the next value specified by the
array parameter value (default ”1 -1”). This array can periodically
repeat with any period, and you can halt a simulation when the end of
the array is reached. The following table summarizes the capabilities:
The first line of the table gives the default settings. The array may be

haltAtEnd periodic period operation

No YES 0 The period is the length of the array

No YES N > 0 The period is N

NO NO anything Output the array once, then zeros

YES anything anything Stop after outputting the array once

Table 22.1: WaveForm capabilities

read from a file by simply setting value to something of the form <
filename.

22.11 Sink primitives
The sink primitives have no outputs. They display signals in various ways, or write them to files.
Several of the primitives in this library are
based on the pxgraph program. This program has many options described in ch. 8.3.
The differences between primitives often amount to little more than the choice of default options.
Some, however, preprocess the signal in useful ways before passing it to the pxgraph program.

22-9

22 DE Domain

BarGraph Generate a plot with the pxgraph program that uses a zero-order hold
to interpolate between event values. Two points are plotted for each
event, one when the event first occurs, and the second when the event
is supplanted by a new event. A horizontal line then connects the two
points. If draw line to base is YES then a vertical line to the
base of the bar graph is also drawn for each event occurrence.

Printer Print the value of each arriving event, together with its time of arrival.
The fileName parameter specifies the file to be written; the special
names stdout and cout (specifying the standard output stream),
and stderr and cerr (specifying the standard error stream), are
also supported.

Xhistogram Generate a histogram with the pxgraph program. The parameter
binWidth determines the width of a bin in the histogram. The num-
ber of bins will depend on the range of values in the events that arrive.
The time of arrival of events is ignored. This primitive is identical to
the SDF primitive Xhistogram, but is used often enough in the DE
domain that it is provided here for convenience.

XMgraph Generate a plot with the pxgraph program with one point per event.
Any number of event sequences can be plotted simultaneously, up to
the limit determined by the XGraph class. By default, a straight line
is drawn between each pair of events.

TclScript Invoke a Tcl script. The script is executed at the start of the simulation,
from within the primitive’s begin method. It may define a procedure to
be executed each time the primitive fires, which can in turn read input
events. There is a chapter of the Programmer’s Manual that explains
how to write these scripts.

TkBarGraph Take any number of inputs and dynamically display their values in
bar-chart form.

TkMeter Dynamically display the value of any number of input signals on a set
of bar meters.

TkPlot Plot Y input(s) vs. time with dynamic updating. Retracing is done to
overlay successive time intervals, as in an oscilloscope. The style
parameter determines which plotting style is used: dot causes indi-
vidual points to be plotted, whereas connect causes connected lines
to be plotted. The repeat border points parameter determines
whether rightmost events are repeated on the left. Drawing a box in
the plot will reset the plot area to that outlined by the box. There are
also buttons for zooming in and out, and for resizing the box to just fit
the data in view.

TkShowEvents Display input event values together with the time stamp at which they
occur. The print method of the input particles is used to show the value,
so any data type can be handled, although the space allocated on the
screen may need to be adjusted.

22-10 MLDesigner Version 2.8

22.12 Control primitives

TkShowValues Display the values of the inputs in textual form. The print method of
the input particles is used, so any data type can be handled, although
the space allocated on the screen may need to be adjusted.

TkStripChart Display events in time, recording the entire history. The supported
styles are hold for zero-order hold, connect for connected dots,
and dot for unconnected dots. An interactive help window describes
other options for the plot.

TkText Display the values of the inputs in a separate window, keeping a spec-
ified number of past values in view. The print method of the input
particles is used, so any data type can be handled.

TkXYPlot Plot Y input(s) vs. X input(s) with dynamic updating. Time stamps
are ignored. If there is an event on only one of a matching pair of
X and Y inputs, then the previously received value (or zero if none) is
used for the other. The style parameter determines which plotting style
is used: dot causes individual points to be plotted, whereas connect
causes connected lines to be plotted.
Drawing a box in the plot will reset the plot area to that outlined by the
box. There are also buttons for zooming in and out, and for resizing
the box to just fit the data in view.

Beep Cause a beep on the terminal when fired.

22.12 Control primitives
Control primitives manipulate the flow of tokens. All of these primitives are polymorphic; they
operate on any data type.

Discard Discard input events that occur before the threshold time. Events after
the threshold time are passed immediately to the output. This primitive
is useful for removing transients and studying steady-state effects.

Fork Replicate input events on the outputs with zero delay.

LossyInput Route inputs to the sink output with the probability
lossProbability set by the user. All other inputs are sent imme-
diately to the save output.

Merge Merge input events, keeping temporal order. Simultaneous events are
merged in the order of the port number on which they appear, with port
#1 being processed first.

PassGate If the gate (bottom input) is open, then particles pass from input
(left input) to output. When the gate is closed, no outputs are
produced. If input particles arrive while the gate is closed, the most
recent one will be passed to output when the gate is reopened.

Router Route an input event randomly to one of its outputs. The probability is
equal for each output. The time delay is zero.

22-11

22 DE Domain

Sampler Sample the input at the times given by events on the clock input. The
data value of the clock input is ignored. If no input is available at the
time of sampling, the latest input is used. If there has been no input,
then a zero particle is produced. The exact meaning of zero depends
on the particle type.

LeakBucket Discard inputs that arrive too frequently. That is, any input event that
would cause a queue of a given size followed by a server with a given
service rate to overflow are discarded. Inputs that are not discarded are
passed immediately to the output.

Case Switch input events to one of N outputs, as determined by the last
received control input. The value of the control input must be between
0 and N − 1, inclusive, or an error is flagged.

EndCase Select an input event from one of N inputs, as specified by the last
received control input. The value of the control input must be between
0 and N − 1 inclusive, or an error is flagged.

22.13 Conversion primitives
This library is intended to house a collection of primitives for format conversions of various types.
As of this writing, however, this collection is very limited. The first two primitives in the con-
version library illustrate the consolidation of multiple data sample into single particles that can be
transmitted as a unit. These primitives use the class FloatVecData, which is simply a vector of
floating-point numbers.

Packetize Convert a number of floating-point input samples into a packet of type
FloatVecData. A packet is produced when either an input appears
on the demand input or when maxLength data values have arrived.
Note that a null packet is produced if a demand signal arrives and there
is no data.

UnPacketize Convert a packet of type FloatVecData into a number of floating-
point output samples. The data input feeds packets to the primitive.
Whenever a packet arrives, the previous packet, if any, is discarded;
any remaining contents are discarded. The demand input requests
output data. If there is no data left in the current packet, the last out-
put datum is repeated (zero is used if there has never been a packet).
Otherwise the next data value from the current input packet is output.

MxtoImage Convert a Matrix to a GrayImage output. The double values of the
FloatMatrix are converted to the integer values of the GrayImage
representation.

ImageToMx Accept a black-and-white-image from an input image packet, and copy
the individual pixels to a FloatMatrix. Note that even though
the GrayImage input contains all integer values, we convert to a
FloatMatrix to allow easier manipulation.

22-12 MLDesigner Version 2.8

22.14 Queues, servers, and delays

22.14 Queues, servers, and delays

This library contains primitives that model queues, servers, and time delays of various types. In
the DE domain, the delay icon (the small green diamond) does not represent a time delay.

Delay Send each input event to the output with its time stamp incremented
by an amount given by the delay parameter.

VarDelay Delay the input by a variable amount. The delay parameter gives the
initial delay, and the delay is changed using the newDelay input.

PSServer Emulate a deterministic, processor-sharing server. If input events ar-
rive when it is not busy, it delays them by the nominal service time.
If they arrive when it is busy, the server is shared. Hence prior ar-
rivals that are still in service will be delayed by more than the nominal
service time.

Server Emulate a server. If input events arrive when it is not busy, it delays
them by the service time (a constant parameter). If they arrive when
it is busy, it delays them the service time plus however long it takes to
become free of previous tasks.

VarServer Emulate a server with a variable service time. If input events arrive
when it is idle, they will be serviced immediately and will be delayed
only by the service time. If input events arrive while another event is
being serviced, they will be queued. When the server becomes free, it
will service any events waiting in its queue.

FIFOQueue Implement a first-in first-out (FIFO) queue with finite or infinite length.
Events on the demand input trigger a dequeue on the outData port
if the queue is not empty. If the queue is empty, then a demand
event enables the next future inData particle to pass immediately
to outData. The first particle to arrive at inData is always passed
directly to the output, unless numDemandsPending is initialized to
0. If consolidateDemands is set to TRUE (the default), then
numDemandsPending is not permitted to rise above one. The size
of the queue is sent to the size output whenever an inData or demand
event is processed. Input data that doesn’t fit in the queue is sent to the
overflow output.

FlushQueue Implement a FIFO queue that when full, discards all inputs until it
empties completely.

PriorityQueue Emulate a priority queue. Inputs have priorities according to the num-
ber of the input, with inData#1 having highest priority, inData#2
being next, etc. When a demand is received, outputs are produced
by selecting first based on priority, and then based on time of arrival,
using a FIFO policy. A finite total capacity can be specified by setting
the capacity parameter to a positive integer. When the capacity
is reached, further inputs are sent to the overflow output, and not

22-13

22 DE Domain

stored. The numDemandsPending and consolidateDemands
parameters have the same meaning as in other queue primitives. The
size of the queue is sent to the size output whenever an inData or
demand event is processed.

Stack Implement a stack with either finite or infinite length. Events on the
”demand” input pop data from the stack to outData if the stack is
not empty. If it is empty, then a demand event enables the next fu-
ture inData particle to pass immediately to outData. By default,
numDemandsPending is initialized to 1, so the first particle to ar-
rive at inData is passed directly to the output.
If consolidateDemands is set to TRUE (the default), then
numDemandsPending is not permitted to rise above one. The size
of the stack is sent to the size output whenever an inData or demand
event is processed. Input data that doesn’t fit on the stack is sent to the
overflow output.

The following primitive does not appear in the library.

QueueBase Serve as the base class for FIFO and LIFO queues. This primitive is
not intended to be used except to derive useful primitives. All inputs
are simply routed to the ”overflow” output. None are stored.

22.15 Timing primitives
This library contains primitives that are primarily concerned with either simulated or real time.

MeasureDelay Measure the time difference between the first arrival and the second
arrival of an event with the same value. The second arrival and the
time difference are each sent to outputs.

MeasureInterval The value of each output event is the simulated time since the last input
event (or since zero, for the first input event). The time stamp of each
output event is the time stamp of the input event that triggers it.

StopTimer Generate an output at the stopTime of the DEScheduler under
which this block is running. This can be used to force actions at the
end of a simulation. Within a wormhole, it can used to force actions at
the end of each invocation of the wormhole. An input event is required
to enable the primitive.

Timeout Detect time-out conditions and generate an alarm if too much time
elapses before resetting or stopping the timer. Events arriving on the
Set input reset and start the timer. Events arriving on the ”Clear”
input stop the timer. If no Set or Clear events arrive within timeout
time units of the most recent Set, then that Set event is sent out the
alarm output.

TimeStamp The value of the output events is the time stamp of the input events.

22-14 MLDesigner Version 2.8

22.16 Logic primitives

The time stamp of the output events is also the time stamp of the input
events.

Synchronize Hold input events until the time elapsed on the system clock since the
start of the simulation is greater than or equal to their time stamp. Then
pass them to the output.

Timer Upon receiving a trigger input, output the elapsed real time in seconds,
divided by timeScale, since the last reset input, or since the start of
the simulation if no reset has been received. The time stamp of the
output is the same as that of the trigger input. The time in seconds
is related to the scheduler (simulated) time through the scaling factor
timeScale.

The following primitive does not appear in the library, because it is not intended to be used directly
in MLDesigner applications.

TimeoutPrimitive Serve as the base class for primitives that check time-out conditions.
The methods set, clear and expired are provided for setting and
testing the timer.

22.16 Logic primitives
Logic Apply a logical operation to any number of inputs. The inputs are

integers interpreted as Booleans, where zero is a FALSE and nonzero
is a TRUE. The logical operations supported are {NOT AND NAND
OR NOR XOR XNOR}.

TestLevel Detect threshold crossings if the crossingsOnly parameter is TRUE.
Otherwise, it simply compares the input against the threshold.
If crossingsOnly is TRUE, then: (1) a TRUE is sent to ”output”
when the ”input” particle exceeds or equals the ”threshold” value, hav-
ing been previously smaller; (2) a FALSE is sent when the ”input” par-
ticle is smaller than ”threshold” having been previously larger. Other-
wise, no output is produced.
If crossingsOnly is FALSE, then a TRUE is sent to output
whenever any input particle greater than or equal to threshold
is received, and a FALSE is sent otherwise.

FlipFlop Primitives Binary state is afforded in the DE logic library with the inclusion
of flip flop circuits. Three synchronous sequential circuit components,
FlipFlopJK, FlipFlopT and FlipFlopD, serve as basic mem-
ory elements.

22.17 Networking primitives
This library includes primitives that have been designed to model communication networks. These
are illustrative of a common use of the DE domain, for modeling packet-switched networks. How-

22-15

22 DE Domain

ever, many of the primitives are specialized to a particular type of network design. Thus, they
should be viewed as illustrative examples, rather than as a comprehensive library.
A NetworkCell class is used in many of these primitives. It models packetized data that is
transmitted through cell-relay networks. Each NetworkCell object can carry any user data of
type Message. In addition to this user data, the NetworkCell contains a destination address and
a priority. These are used by primitives and modules to route the cell through the network. The
definition of the NetworkCell class may be found in
$MLD/src/domains/sdf/image/kernel,
since it is used in the SDF and DE domains, and was developed primarily for modeling packet-
switched video.

22.17.1 Cell creation and access
CellLoad Read in an Envelope, extract its Message, and output that Message

in a NetworkCell. Append a destination and priority to the packet.

CellUnload Remove a Message from a NetworkCell.

ImageToCell Packetize an image. Each image is divided up into chunks no larger
than CellSize. Each cell is delayed from its predecessor
by TimePerCell. If a new input arrives while an older one is being
processed, the new input is queued.

CellToImage Read NetworkCell packets containing image data and output whole
images. The current image is sent to the output when the primitive
reads image data with a higher frame id than the current image. For
each frame, the fraction of input data that was lost is sent to the ”lossPct”
output.

22.17.2 Cell routing, control, and service
CellRoute Read NetworkCell packets from multiple input sources and route

them to the appropriate output using a routing table that maps ad-
dresses into output ports.

PriorityCheck Read NetworkCell packets from multiple input sources. If the pri-
ority of an input NetworkCell is less than the most recent ”priority”
input, then the cell is sent to the ”discard” output. Otherwise it is sent
to the ”output” port.

Switch4x4 Implement a four-input, four-output network switch that can process
objects of type
NetworkCell, or any type derived from NetworkCell. Each
NetworkCell object contains a destination address. This module
uses the destination address as an index into its Routes array parame-
ter to choose an output port over which the input object will leave. A
prioritized queuing scheme is used.

VirtClock Read a NetworkCell. It identifies which virtual circuit number the
cell belongs to and then computes the virtual time stamp for the cell

22-16 MLDesigner Version 2.8

22.17 Networking primitives

by applying the virtual clock algorithm (see the source code in
$MLD/src/domains/de/primitives/DEVirtClock.pl).
It then outputs all cells in order of increasing virtual time stamp.
Upon receiving a ”demand” input, the cell with the smallest time stamp
is output. An output packet is generated for every demand input unless
all of the queues are empty. Demand inputs arriving when all queues
are empty are ignored. The number of stored cells is output after the
receipt of each ”input” or ”demand.”
When a cell arrives and the number of stored cells equals MaxSize
then the cell with the biggest virtual time stamp is discarded. This cell
may or may not be the new arrival. If MaxSize is zero or negative,
then infinitely many cells can be stored.

22.17.3 Lost cell recovery
The primitives in this subgroup implement a variety of mechanisms for replacing lost cells in a
packet-switched network. They use a class called SeqATMCell that is designed to model packets
in the proposed broadband integrated services digital network (BISDN). The class is derived from
Message, but has added facilities for marking the packet with a sequence number, and setting and
reading individual bits. The sequence number is used to determine when packets have been lost.

PCMVoiceRecover Input a stream of SeqATMCell objects. All the information bits in
objects received with correct sequence numbers are sent to output.
If a missing SeqATMCell object is detected, this primitive sends the
most recent 8 ∗ tempSize received bits to the temp output, and the
most recent 8 ∗ searchWindowSize + numInfoBits received bits
to the window output. The bits output on the window and temp
outputs can be used by the PatternMatch module to implement
lost-speech recovery.

SeqATMSub Read a sequence of SeqATMCells. It will check sequence numbers,
and if a SeqATMCell is found missing, the information bits of the
previously arrived SeqATMCell will be output in its place.
The information bits from each correctly received SeqATMCell are
unloaded and sent to the output port.

SeqATMZero Read a sequence of SeqATMCell objects. For each object input cor-
rectly in sequence, headerLength bits are skipped over and the
next numInfoBits bits in the cell are output. If this primitive finds,
by checking sequence numbers, that a SeqATMCell is missing, it
will substitute numInfoBits 0-bits for the missing bits.

22.17.4 Wireless network simulation
Ether (Not shown in the library.) This is the base class for transmitter and re-

ceiver primitives that communicate over a shared medium. Each trans-
mitter can communicate with any or all receivers that have the same

22-17

22 DE Domain

value for the ”medium” parameter. The communication is accom-
plished without graphical connections, and the communication topol-
ogy can be continually changing. This base class implements the data
structures that are shared between the transmitters and receivers.

EtherRec Receive floating-point particles transmitted to it by an EtherSend
primitive. The particle is produced at the output after some duration of
transmission specified at the transmitter.

EtherRecMes See the explanation for the EtherRec primitive. The only dif-
ference is that this primitives forces the output to be a message.

EtherSend Transmit particles of any type to any or all receivers that have the same
value for the medium parameter. The receiver address is given by the
”address” input, and it must be an string. If the string begins with a
dash ”-”, then it is interpreted as a broadcast request, and copies of the
particle are sent to all receivers that use the same medium.
The transmitter ”occupies” the medium for the specified duration. A
collision occurs if the medium is occupied when a transmission is re-
quested. In this case, the data to be transmitted is sent to the ”collision”
output.

22.18 Miscellaneous primitives

22.18.1 Hardware modeling
Arbitrate Act as a non-preemptive arbitrator, granting requests for exclusive con-

trol. If simultaneous requests arrive, priority is given to port A. When
control is released, any pending requests on the other port will be
serviced. The requestOut and grantIn connections allow inter-
connection of multiple arbitration primitives for more intricate control
structures.

HandShake Cooperate with a possibly preemptive arbitrator through the request
and grant controls. Input particles are passed to output, and an
ackIn particle must be received before the next output can be sent.
This response is made available on ackOut.

handShakeQ Handshake with queued input events.

TclScript Invoke a Tcl script. The script is executed at the start of the simulation,
from within the primitive’s begin method. It may define a procedure to
be executed each time the primitive fires, which can in turn read input
events and produce output events.

22.18.2 Statistics and monitoring
Statistics Calculate the average and variance of the input values that have arrived

since the last reset. An output is generated when a demand input is

22-18 MLDesigner Version 2.8

22.19 Multi-Valued Logic in DE Domain

received. When a reset input arrives, the calculations are restarted.
When demand and reset particles arrive at the same time, an output
is produced before the calculations are restarted.

UDCounter Implement an up/down counter. The processing order of the ports
is: countUp → countDown → demand → reset. Specifically, all si-
multaneous countUp inputs are processed. Then all simultaneous
countDown inputs are processed. If there are multiple simultaneous
demand inputs, all but the first are ignored. Only one output will be
produced.

22.19 Multi-Valued Logic in DE Domain
The MultiValuedLogic(MVL) Library in the DE domain contains various sub-libraries that per-
form logic functions on data. The primitives in this library are based on four element logic that
includes the two states 0 and 1 as well as the states X and Z.
The Value of the ErrorHandle parameter determines the action(s) that are taken by the
primitive:

1. - The primitive outputs a bit vector with X elements
2. - A warning message is generated and a bit vector with X elements is output
3. - An error message is generated and the primitive outputs nothing
4. - The primitive generates an error message and the simulation is terminated.

22.20 An overview of DE demos
The number of DE demos is considerably smaller than SDF. Many of the demos, however, are
much more complex, often incorporating SDF subsystems to accomplish audio or
video encoding.

22.21 Basic demos
These demos illustrate the use of certain primitives without necessarily performing functions that
are particularly interesting. The individual demos are summarized below.

caseDemo Demonstrates the Case primitive by de-constructing a Poisson count-
ing process into three subprocesses.

conditionals Demonstrate the use of the Test block in its various configurations
to compare the values of input events with floating-point values. The
input test signal is a pair of ramps, with each event repeated once after
some delay. Since the ramps have different steps, they will cross.

logic Demonstrate the use of the Logic primitive in its various instantia-
tions as AND, NAND, OR, NOR, XOR, XNOR and inverter gates.
The three test signals consist of square waves with periods 2, 4, and 6.

22-19

22 DE Domain

merge Demonstrate the Merge primitive. The primitive is fed two streams
of regular arrivals, one a ramp beginning at 10.0, and one a ramp be-
ginning at 0.0. The two streams are merged into one, in chronological
order, with simultaneous events appearing in arbitrary order.

realTime Demonstrate the use of the Synchronize and Timer blocks. In-
put events from a Clock primitive are held by the Synchronize
primitive until their time stamp, multiplied by the system parameter
timeScale, is equal to or larger than the elapsed real time since the
start of the simulation. The Timer primitive then measures the actual
(real) time at which the Synchronize output is produced. The closer
the resulting plot is to a straight line with a slope of one, the more
precise the timing of the Synchronize outputs are.

router Randomly route an irregular but monotonic signal (a Poisson count-
ing process) through two channels with random delay, and merge the
channel outputs.

sampler Demonstrate the Sampler primitive. A counting process with reg-
ular arrivals at intervals of 5.0 is sampled at regular intervals of 1.0.
As expected, this produces 5 samples for each level of the counting
process.

statistics Compute the mean and variance of a random process using the Statis-
tics primitive. The mean and variance are sent to the standard output
when the simulation stops. This action is triggered by an event pro-
duced by the StopTimer primitive.

switch Demonstrate the use of the Switch primitive. A Poisson counting
process is sent to one output of the switch for the first 10 time units,
and to the other output of the switch for the remaining time.

testPacket Construct packets consisting of five sequential values from a ramp,
send these packets to a server with a random service time, and then
deconstruct the packets by reading the items in the packet one by one.

timeout Demonstrate the use of the Timeout primitive. Every time unit, a
timer is set. If after another 0.5 time units have elapsed, the timer is
not cleared, an output is produced to indicate that the timer has expired.
The signal that clears the timer is a Poisson process with a mean inter-
arrival time of one time unit.

upDownCount Demonstrate the UDCounter primitive. Events are generated at two
different rates to count up and down. The up rate is faster than the
down rate, so the trend is upwards. The value of the count is displayed
every time it changes.

binaryCounter Demonstrate the FlipFlopJK primitive.

4BitDownCounter Demonstrate the use of the other Flip Flop primitives.

22-20 MLDesigner Version 2.8

22.22 Queues, servers, and delays

22.22 Queues, servers, and delays

The library of demos illustrating queuing systems includes:

blockage Demonstrate a blocking strategy in a queuing network. In a cascade of
two queues and servers, when the second queue fills up, it prevents any
further dequeuing of particles from the first queue until it once again
has space.

delayVsServer Illustrate the difference between the Delay and Server blocks. The
Delay passes the input events to the output with a fixed time offset.
The Server accepts inputs only after the previous inputs have been
served, and then holds that input for a fixed offset.

measureDelay Demonstrate the use of the MeasureDelay block to measure the so-
journ time of particles in a simple queuing system with a single server
with a random service time.

priority Demonstrate the use of the PriorityQueue block together with a
Server. The upper input to the PriorityQueue has priority over
the lower input. Thus, when the queue overflows, data is lost from the
lower input.

psServer Demonstrate the processor-sharing server. Unlike other servers, this
server accepts new inputs at any time, regardless of how busy it is.
Accepting a new input, however, slows down the service to all particles
currently being served.

qAndServer Demonstrate the use of the FIFOQueue and Stack primitives to-
gether with Servers. A regular counting process is enqueued on
both primitives. The particles are dequeued whenever the server is
free. The Stack is set with a larger capacity than the FIFO-Queue, so
it overflows second. Overflow events are displayed.

queue Demonstrate the use of the FIFOQueue and Stack primitives. A Pois-
son counting process is enqueued on both primitives, and is dequeued
at a regular rate, every 1.0 time units. The output of the FIFOQueue
is always monotonically increasing, because of the FIFO policy, but
the output of the Stack need not be. The Stack is set with a smaller
capacity than the FIFOQueue, so it overflows first. Overflow events
are displayed.

testServers Demonstrate servers with random service times (uniform and expo-
nential).

22.23 Networking demos

A major application of the DE domain is the simulation of communication networks. The demos
are:

22-21

22 DE Domain

FlushNet Simulate a queue with ”input flushing” during overflow. If the queue
reaches capacity, all new arrivals are discarded until all items in the
queue have been served.

LBTest Simulate leaky bucket network rate controllers. These controllers mod-
erate the flow of packets to keep them within specified rate and bursti-
ness bounds.

VClock Model a network with four inputs and virtual clock buffer service.

wirelessNetwork Demonstrate shared media communication without graphical connec-
tivity, using EtherSend and EtherRec primitives. Two clusters on
the left transmit to two clusters on the right over two distinct media,
radio and infrared. The communication is implemented using shared
data structures between the primitives.

22.24 Miscellaneous demos
This library shows miscellaneous demos. The first two of these model continuous-time random
processes, although only discrete-time samples of these processes can be displayed.

shotNoise Generate a continuous-time shot-noise process and display regularly
spaced samples of it. The shot noise is generated by feeding a Poisson
process into a Filter primitive.

hdShotNoise Generate a high-density shot noise process and verify its approximately
Gaussian distribution by displaying a histogram.

The following demos illustrate the use of the DE domain for high-level modeling of protocols for
sharing hardware resources.

roundRobin Simulate shared memory with round-robin arbitration at a high level.

prioritized Simulate a shared memory with prioritized arbitration at a high level.

The following demos have sound output.

speechcode Perform speech compression with a combination of silence detection,
adaptive quantization, and adaptive estimation. After speech samples
are read from a file, they are encoded, packetized, unpacketized, de-
coded, and played on the workstation speaker.

shave Demonstrate the Synchronize primitive to generate a beeping sound
with a real-time rhythm.

22.25 Wormhole demos
This library shows some simple demonstrations of multiple domain simulations. Each of these
combines SDF with DE.

22-22 MLDesigner Version 2.8

22.26 Tcl/Tk Demos

distortion Show the effects on real-time signals of a highly simplified packet-
switched network. Packets can arrive out of order, and they can also
arrive too late to be useful. In this simplified system, a sinusoid is
generated in the SDF domain, launched into a communication network
implemented in the DE domain, and compared to the output of the
communication network. Plots are given in the time and frequency
domains of the sinusoid before and after the network.

distortionQ Similar to the distortion demo. The only difference is in the reorderQ
wormhole, which introduces queuing.

worm Show how easy it is to use SDF primitives to perform computation on
DE particles. A Poisson process where particles have value 0.0 is sent
into an SDF wormhole, where Gaussian noise is added to the samples.

four level A four level SDF/DE/SDF/DE system.

sources Show how to use an SDF primitive as a source by using a dummy input
into the SDF system. The SDF subsystem fires instantaneously from
the perspective of DE. The schedulePeriod SDF target parameter
has no effect.

block The schedulePeriod parameter of the SDF target determines how
the inside of the DE system interprets the timing of events arriving
from SDF. When several samples are produced in one iteration, as
here, the time stamps of the corresponding events are uniformly dis-
tributed over the schedule period.

22.26 Tcl/Tk Demos
buttons Demonstrate TkButtons by having the buttons generate events asyn-

chronously with the simulation.

displays Demonstrate some of the interactive displays in the DE domain.

slider Demonstrate TkSlider by having the slider produce events asyn-
chronously. The asynchronous events are plotted together with a clock,
which produces periodic outputs in simulated time. Notice that the be-
havior is roughly the same regardless of the interval of the clock.

sources A Tcl script writes asynchronously to its output roughly periodically
in real time (using the Tk ”after” command). The asynchronous events
are plotted together with a clock, which produces periodic outputs in
simulated time. Notice that the plot looks roughly the same regardless
of the interval of the clock.

stripChart Demonstrate the TkStripChart by plotting several different sources.

xyplot Display queue size as a function of time with an exponential ran-
dom server. Note that the TkPlot primitive overlays the plots as
time progresses, which the TkXYPlot primitive does not. Thus, the

22-23

22 DE Domain

points on the TkXYPlot primitive go off the screen to the right. The
TkStripChart primitive records the entire history.

22-24 MLDesigner Version 2.8

Chapter 23

CTDE Domain

23.1 Purpose of the domain
The purpose of the Continuous-Time and Discrete-Event (CTDE) domain is to simulate continuous-
time and mixed signal systems and to combine these systems with existing MLDesigner domains.

23.2 Introduction to the CTDE domain
As the name CTDE Continuous Time/Discrete Event suggests, two distinct models of computation
are combined into one domain. The next two sections describe each of the models of computation.
These descriptions are followed by a discussion of how the two models are linked in the CTDE
domain.

23.3 Continuous-Time Computation Models

23.3.1 Computation model
The characteristic property of continuous-time formalisms is that the trajectories of input-, output-
and state-values are continuous in time. Mathematically, this class of systems is modeled by
systems of ordinary differential equations (ODE). The change of a state variable is described by
its time derivative

ẋ(t) = f(x(t), u(t), t) (23.1)

y(t) = g(x(t), u(t), t) (23.2)

A system model is described by its differential equation (23.1) and an output equation (23.2),
where u(t) is the input, x(t) is the state and y(t) is the systems output.

23.3.2 Signal Form
At every instant of the simulation interval, inputs, outputs and states have a distinct value. There-
fore, signals in continuous-time models are continuous functions. The resulting signal form is
shown in Figure 23.1.

23 CTDE Domain

v

t

Figure 23.1: A continuous-time signal

23.3.3 Example: Spring-Mass system

Continuous-Time models are often used to model mechanical or electrical systems. As an exam-
ple, see the simple mechanical model in figure 23.2: Two bodies are connected by springs and
dampers and accelerated by an external Force F .

Figure 23.2: Example: Spring-Mass System

Mathematically, this system is described by the following set of ordinary differential equations

23-2 MLDesigner Version 2.8

23.3 Continuous-Time Computation Models

(abbr. ODE):

ẋ1(t) = x2(t)

ẋ2(t) = −k1 + k2

m1
x1(t)−

b1 + b2

m1
x2(t) +

k2/m1

x 3
(t) +

b2

m1
x4(t)

ẋ3(t) = x4(t)

ẋ4(t) =
k2
m2

x1(t) +
b2

m2
x2(t)−

k1

m2
x3(t)−

b1

m2
x4(t) +

1
m2

F (t)

Here, m1 and m2 are the masses of the bodies, k1 and k2 the spring constants and b1 and b2 the
damping constants of the springs and dampers, respectively.
The simulation results are shown in figure 23.3.

2
x10

Set 0
Set 1
Set 2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

State trajectory of a spring-mass system

Figure 23.3: Spring-Mass Example: Simulation results

23.3.4 Modeling
The CTDE domain uses the MLDesigner graphically oriented hierarchical block style of model-
ing. Models are created and manipulated as interconnected blocks, defining the dynamics of the
system. Complex models can be organized hierarchically by combining blocks into submodules,
submodules into modules and modules into systems. This simplifies the structure of complex mod-
els and increases usability of existing components. Besides the easy-to-use interface, the visual
representation reflects the structure of the modeled system.
The state derivatives are represented by integrator blocks, while the derivative equation and the
output function are modeled by networks of primitives that perform arithmetic operations. In
figure 23.4, the CTDE model of the spring-mass-system is shown.

23.3.5 Simulation
Simulation of continuous-time models uses numerical methods for solving systems of ordinary
equations, more precisely initial value problems. These algorithms are often called numerical

23-3

23 CTDE Domain

SquareWaveGen#1

Integrator#1

Integrator#2

Integrator#3

Integrator#4

-(k1+k2)/m1

-(b1+b2)/m1

-k2/m2

-b2/m2

k2/m1

b2/m1

k2/m2

b2/m2

F/m1

+

+

MUX Xgraph#2

x1

x2

x3

x4

Figure 23.4: Example: CTDE Model of the Spring-Mass system

23-4 MLDesigner Version 2.8

23.4 The Combined Continuous Time/Discrete Event Model of Computation

integration methods or ODE solver.
A numeric integration method starts with an initial value of xO and approximates the state and
output values at a finite number of time points in the simulation interval. Numerical methods for
solving ODE systems are an area of extensive research. A large number of different algorithms
are available, with different levels of accuracy, computational effort and suitability for distinct
classes of problems. The CTDE domain supports multiple integration algorithms and a variety of
configuration options to support them.

23.3.6 Limitations of purely continuous-time models

The numerical methods mentioned above generally require that the differential equation f(x(t), u(t), t)
and input trajectory u(t) to be smooth. More precisely, these functions must be sufficiently differ-
entiable (depending on the used ODE solver.)
Real systems seldom meet these requirements. One cause is discontinuity in the state transition
function. (Systems with friction or hysteresis effects show such behavior.)
Input signals often change their values discontinuously, especially in systems where continuous
components interact with digital devices.
Most numerical algorithms fail or have significantly reduced accuracy when stepping over discon-
tinuity points. Therefore, practical simulation software must offer facilities to manage discontinu-
ity points and handle them appropriately. This is typically done via breakpoint handling.

23.4 The Combined Continuous Time/Discrete Event
Model of Computation

To overcome the limitations described above, the continuous-time model of computation is ex-
tended by adding Discrete-Event semantics.
The Discrete-Event-part of the CTDE-domain is similar to the computational model implemented
in the MLDesigner DE domain.
Model components typically transfer information between different blocks as real-value-timestamped
messages. These messages are also called discrete events and, therefore, Discrete Event models
depict signals as sequences of events as shown in Figure 23.5.
Combined continuous/Discrete-Event models of computation form a well-defined and especially
expressive extension of pure continuous-time formalisms. This computational model is usually
referred to as Discrete-Event/Differential Equation Specified System (DEV&DESS) or Mixed-
Signal simulation. For more information, see references [Cel79, ZPK00].

23.4.1 The CTDE Computational Model

As depicted in Figure 23.6, a combined model consists of a continuous and a Discrete-Event
component. Both model parts may contain inputs, outputs and states of their respective types. The
CT/DE combined model of computation explicitly defines the way these components influence
each other. These interactions are also called events and can occur as time events, external input
events or state events.

23-5

23 CTDE Domain

v

t

Figure 23.5: A Discrete-Event signal

d
Y

c
Y

c
U

d
U d

X

c
X

Figure 23.6: Structure of a combined model

23-6 MLDesigner Version 2.8

23.4 The Combined Continuous Time/Discrete Event Model of Computation

Time events are related to events in pure Discrete-Event models. They are initiated in the discrete
part, but could possibly change the state in the continuous part.
External input events are input messages that occur at the input ports of the Discrete-Event-
partition. They are similar to time events and are handled in the same way.
State events are initiated by the continuous model. A state event is triggered when a condition
that depends on continuous state or input values, is satisfied. In general, this condition can be
expressed by a state event equation:

C(u(t), x(t), t) = 0 (23.3)

Note that it is only possible to determine if a state event occurred within a specific time period
after an integration-step algorithm has been completed because the event condition depends on
values that change continuously. The scheduler in the CTDE domain ensures that the exact time
of a state event is accurately determined, and the discrete and the continuous parts of the model
are synchronized properly.

23.4.2 Model Structure
CT/DE models, primitives as well as modules and systems, may contain both continuous and
discrete-event elements, and may have an arbitrary combination of discrete and continuous input
and output ports. As an example of a general hybrid block, the limited integrator block is shown
in Figure 23.7. Beside the continuous input and state output of a pure continuous integrator, it
contains a discrete input for resetting the state value and a saturation output which signals reaching
the upper or lower limit as a discrete event.

∫
Max

Min

Reset

Saturation

Figure 23.7: The LimitedIntegrator primitive as example of a general hybrid block

Pure continuous or discrete blocks are special cases of the general hybrid and can be modeled using
this atomic element. This allows a uniform representation of all blocks in a combined model. The
CTDE-domain supports two distinct signal forms. Continuous waveforms with value-semantics
are passed between continuous time ports; messages, transmitted as discrete events, are passed
between discrete event ports. Conversion blocks connect ports of unlike ports and convert the
signals from one form to the other.

23-7

23 CTDE Domain

23.5 Modeling in the CTDE domain
The CTDE domain supports all the modeling features that are found in other domains. Models are
represented by block diagrams; the block diagrams are assembled, the domains supports all the
modeling features and model-building commands that are available in other domains.
The domain supports both continuous and discrete signals, but a direct connection between ports of
different types is not allowed. Primitives in the Event Interpreters library convert discrete signals
into continuous signals; primitives in the Event Generators library convert continuous signals into
discrete signals.

23.5.1 Vectorial continuous signals
Continuous signals are vectors of real numbers. Many primitives can operate on vectorial inputs.
For example, the add primitive can add an arbitrary number of vectors. The vectors can be of
arbitrary width, but must all be the same size. The system checks to ensure that vector widths are
consistent before the simulation starts.
Usage of vectorial signals often simplifies models and speeds up simulation. For example, in figure
23.8 the spring-mass system is modeled using a StateSpace primitive that operates on vectorial
signals.

SquareWaveGen#1
MUX

StateSpace#1
Xgraph#1

Figure 23.8: Spring-Mass model using vectorial signals and a StateSpace Block

23.5.2 Simulation Algorithm
The simulator is divided into a Discrete-Event and a Continuous-Time component much like the
model structure. These parts interact as follows:

At a given time in the simulation interval the simulator starts in Discrete Event mode. The
Discrete-Event scheduler processes all events with the current time stamp. When all events have
been processed, the simulator shifts to continuous mode. In this mode, the trajectory of the contin-
uous states is approximated by a numerical ODE solver. At the time of the next scheduled discrete
event, execution shifts back to the Discrete-Event scheduler.

Detection and processing of state events requires special treatment. In the graphical model rep-
resentation used in the CTDE domain, state event conditions are modeled as Blocks, called state
event generators. Since state event conditions depend on continuous variables, they must be han-
dled in the continuous part of the simulator. After each step of the ODE solver, the state event
generator blocks are queried to determine if a state event occurred during the current step. If this

23-8 MLDesigner Version 2.8

23.6 Example: Bouncing Ball-Model

is the case, this integration step has to be rejected. Integration will be repeated with adjusted step
sizes until the event condition is met with sufficient accuracy. When this occurred, the simulator
immediately changes into the Discrete-Event mode and executes the action triggered by the state
event as an ordinary discrete event.

23.6 Example: Bouncing Ball-Model

Here, we show an example commonly used for demonstrating the handling of state-events. A
ball bounces repeatedly on a surface. The impact is modeled by the block ZeroCrossingDetector
state event generator, which ensures that the time of the hit is determined accurately. This CTDE
(figure 23.9) model shows the combination of continuous and discrete dynamics clearly. Whereas
the movement of the ball is modeled with continuous elements and signals; the signaling of impact,
calculation of the reflected velocity and inverting the movement is modeled using discrete logic.

ResetIntegrator#1

-0.7

g
Display

TriggeredSampler#1

LimitedIntegrator#1

ZeroCrossingDetector#1

Figure 23.9: Bouncing Ball System Model

Set 0

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A Plot

Figure 23.10: Bouncing Ball output

23-9

23 CTDE Domain

23.7 User-adjustable parameters

The CTDE domain has several unique simulation parameters that can be edited in the model
properties window.

23.8 The ODE solver

The CTDE domain provides several different mathematical methods for solving the ordinary dif-
ferential equations (ODEs) used to simulate continuous or mixed-signal systems. (These methods
are commonly called ODE solvers.) The ODE solver choice is user-selectable at execution time.
Currently MLDesigner provides the four ODE solvers seen in table 23.1. Additional solvers will
be added in future versions.

abbr. name Description

DOPRI5 Dormand Prince A Dormand-Prince method with-order 5(4), em-
bedded error estimation, and variable step size
control

FE Forward Euler One-step Euler-Cauchy Method

RK2 Runge-Kutta 2 Second order Runge-Kutta method

RK4 Runge-Kutta 4 Classical Runge-Kutta method of order 4

Table 23.1: ODE solvers

At the moment, the ODE solver choice has to be entered as text into the Solver edit box of the
model properties window. A multiple choice dialog will be provided in a future version.

23.8.1 Solver parameters

Several parameters can be used to control the operation of the ODE solver. These parameters are
listed table 23.2. (We assume that the reader is familiar with basic terms of ODE solvers shown
in this table.)

NOTE: The meaning of some of these parameters may be different for different ODE solvers,�
and some parameters are not supported in some ODE solvers (and have no influence
there).

Several other ODE solver parameters currently appear in the CTDE model properties window.
These are artifacts of a previous version. They are not useful in this release and likely to change
or to be removed in subsequent releases.

23-10 MLDesigner Version 2.8

23.9 The CTDE domain in mixed-signal simulations

Type Parameter Description

Float StepSize Initial step size of the ODE solver. For fixed-step solvers,
this step size is used throughout the whole simulation

Float MinStep Smallest allowed step size. If the error bounds cannot be
met using this step size, the simulation is aborted

Float MaxStep The largest allowed step size. MinStep and MaxStep are
used only in variable-step solvers

Int MaxNum Maximum number of iteration per step. This parameter
applies only to implicit solvers (not implemented yet).

Float RelTol Allowed relative local truncation error of the solver. This
value is useful when the absolute value of different states
differs significantly (i.e, by several orders of magnitude).

Float AbsTol Maximum absolute local truncation error. Note that RelTol
and AbsTol are used in conjunction if both values are non-
zero. In this case, a weighted sum of these parameters is
used as the maximum allowed local truncation error.

Table 23.2: ODE solver parameters

23.9 The CTDE domain in mixed-signal simulations

One of the most distinguishing features of MLDesigner is its ability to simulate heterogeneous
systems, i.e. systems composed using different domains. The CTDE domain is designed to fit
well into this concept.
The following example illustrates the concept. The model is a simple control system consisting
of a plant process and a closed loop control system. The continuous process plant is modeled in
the CTDE domain. The controlling algorithm is formulated as a data flow graph formulated in the
SDF domain. The plant process model is shown in Figure 23.11.

Int1 Int2

K2

K1
Xgraph#1

Square ZOHSampler DBC1#1

Sampler

Mux
+

Figure 23.11: Plant Process model

23-11

23 CTDE Domain

The control system is depicted in figure 23.12.

IIR#1Sub#1

XMgraph.input=3#1

Gain#1

Gain#2
input1

input2

output1

Figure 23.12: Control System model

Normally, one would use a ZeroOrderHold primitive to convert a Discrete-Event signal from the
wormhole boundary into a continuous waveform. The opposite conversion would usually be done
with a sampler block, e.g. a PeriodicSampler or a TriggeredSampler primitive.
An output from the Xgraph block of the control system is shown in figure 23.13.

Set 0
Set 1
Set 2

-3

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20

Deadbeat output

Figure 23.13: Plant process output graph showing the effects of the control system

23.10 Current limitations
The CTDE domain is in the early-stages of development and currently has several limitations:

• The suite of ODE solvers is currently limited; we intend to add a suite of more sophisticated
numerical methods in a future release.

23-12 MLDesigner Version 2.8

23.10 Current limitations

• The primitive library is incomplete and insufficiently generic. We will add primitives in
future releases.

• CTDE works only as the outer domain in multi-domain systems today. Future releases will
provide the ability to use the CTDE domain in arbitrary model hierarchies (e.g., embedded
in any other domain.)

• The application programmers interface for writing user-defined primitives is not complete
at the moment and likely to change.

23-13

Chapter 24

FSM Domain

24.1 What is a Finite State Machine?
A finite state machine is a conceptual machine with a finite number of states. It can be in only
one of the states at any specific time. A state transition is a change in state that is caused by an
input event. In response to any input event, the finite state machine might transition to a different
state. Alternatively, the event has no effect and the finite state machine remains in the same state.
The next state depends on the current state as well as on the input event. Optionally, an output
action may result from the state transition. 1

The MLDesigner finite state machine domain includes a graphical editor and an action language
for defining and managing states, transitions and interface elements. It supports the UML State-
chart semantic, hierarchical states and special events, as well as key MLDesigner features such as
data types and data structures, shared memory, and interaction with other design domains.

24.2 The MLDesigner FSM Domain
The new MLDesigner FSM Domain offers the following features:

• Input Events
• Special Events
• Internal Events
• Memory arguments
• Parameter arguments
• FSM action language
• Hierarchical States
• State Entry Action
• State Exit Action
• State Slave Process
• Transition Event Expression
• Transition Guard Condition
• Transition Action
• Transition Preemptive Flag

1from: “Designing Concurrent, Distributed and Real-Time Applications with UML” by Hassan Gomaa

24 FSM Domain

• Transition Entry Type
• static / recursive History States
• Default Entrance Action
• Support of the UML Statechart semantic

24.3 MLDesigner FSM Semantic

The FSM semantic provided by MLDesigner supports synchronous and asynchronous behavior,
additional events, variables and parameters for various runs of simulations.

24.3.1 Basic FSM Elements

The FSM mechanism provided by MLDesigner supports all the basic standard elements of a finite
state machine.

24.3.1.1 Events

Events are used as triggers to cause a finite state machine to undergo state changes. In doing so,
the presence of an event is interpreted as logical true and the absence of an event as logical false.
The MLDesigner FSM supports 3 different kinds of events:

Input Ports

The basic events are represented by data parsed into an input port of the FSM model interface.

Special Events

If an FSM model is embedded into a discrete event (DE) environment, MLDesigner Special Event
arguments can be used to trigger the FSM model.

Internal Events

In context with the FSM state slave process mechanism, internal events can be set or reset inside an
FSM model, without influence of the outer environment of the finite state machine. These internal
events are represented by a boolean flag associated with the name of the event. If a state slave
model contains an input port with the name of an internal event, this input port gets the current
flag value (true or false) of the associated internal event, before the slave model executes. If a
state slave model contains an output port with the name of an internal event and this output port
contains new data after execution of the slave model, the associated internal event flag is set to the
integer cast (unequal zero = true, equal zero = false) of the new data. If the output port, associated
with an internal event, contains no new data after execution of the slave model, the internal event
flag is reset to false.

24-2 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

24.3.1.2 States

States represent conditions or periods characterized by the concepts of duration and stability. A
finite state machine can have an arbitrary number of states but at any time of execution, the FSM
must reside in only one state.

Name

In the scope of a single FSM, each state of this FSM must have a unique name. This name is
centered at the top of the rounded rectangle in the graphical notation of a state.

Hierarchical States

Each state can have an arbitrary number of sub-states and the sub-states can also be hierarchical.
All states on the same level of a hierarchy are sibling states. States up the hierarchy are called
ancestor states and states down the hierarchy are called descendant states. Leaf states are states
without sub-states. In the graphical representation of hierarchical states, the borders of a sub-state
must reside completely inside the boundaries of all ancestor states.

Current State

At any time during simulation, a finite state machine must reside in only one state. This state is
called the current state. If the current state is a hierarchical state, then only one of its sub-states
must be the current sub-state. This rule goes down the hierarchy until a leaf state is the current
sub-state of a level of the hierarchy.

State Actions

Together with each state, it is possible to define two sets of operations. The entry action is executed
whenever the state is entered and the exit action is a set of operations performed whenever the state
is exited. These actions are defined using the C/C++ like FSM action language.

Slave Process

The MLDesigner FSM provides a slave process associated with leaf states. An MLDesigner mod-
ule or a different FSM model can be used as a slave process. The slave process of the current state
executes if the FSM receives new events and no preemptive transition, possessed by the current
state, fires.
The following conventions must be met.

• Every input port of the slave process model must have the same name and data type as an
input port of the superordinate FSM model, or the name of a slave process model input port
must be the same as the name of an Internal Event of the superordinate FSM model.

• Every Output port of the slave process model must have the same name and data type as an
output port of the superordinate FSM model, or the name of a slave process model output
port must be equal to the name of an Internal Event of the superordinate FSM model.

• Every external memory argument of the slave process model must have the same name and
data type as a memory argument of the superordinate FSM model.

24-3

24 FSM Domain

• The external memory arguments of the slave process are linked to the associated memory
arguments of the superordinate FSM model.

• The slave process model must have neither internal nor external special event arguments, as
the execution of the slave process depends only on the execution of the superordinate FSM
model.

24.3.1.3 Transitions

State changes in finite state machines are described via transitions. Each transition specifies a
source state and a target state. The graphical notation is a line or multiple line segments between
the source and target state with an arrow on one end, pointing to the target state.

Figure 24.1: Transition with Label

Self Transition

If the source and target state of a transition is the same state, the transition is called a self transition.

Figure 24.2: An FSM Self Transition

Inherited Transitions

Each state possesses all transitions for which it is the transition’s source state as well as those
possessed by its ancestor states. Latter transitions are called inherited transitions.

Preemptive Transitions

Associated with each transition is a boolean property called preemptive. All the preemptive transi-
tions, possessed by the current state, are checked for firing, before the slave process of the current
state is performed. In that way, the slave process executes only, if no preemptive transition fires.

24-4 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

Entry Type

In context with the FSM state slave process mechanism, every transition contains a property called
Entry Type. If a transition fires, the entry type of this transition specifies in which way the slave
process of the next current state will be executed. The entry type can be either Default or History.
For example, a leaf state containing another FSM model as slave process. If this state is entered
via a Default entry type transition, the slave process FSM model will always be reset to its initial
state, before execution. In the case, this state is entered via a History entry type transition, the
slave process FSM model continues the execution in the last current state.

Event Expression

Each transition can have an event expression E described by the grammar:
Se := ε|E
E := e|¬E|E ∧ E|E ∨ E|(E) e ∈ Events
Events = {Input Ports, Special Events, Internal Events}

In doing so, complex and nested event expressions can be defined using brackets and the C/C++
logical operators ! (NOT), || (OR) and && (AND). For instance, an event expression consisting
of two events, combined by a logical AND (Event1 && Event2), only evaluates to true when both
events are present. If instead two events are combined by a logical OR (Event1 || Event2), just
one of them needs to be present for satisfaction.

NOTE: The applicability of the different logical operators within transition event expressions �
depends on the outer domain of the associated FSM model. See section 24.11.2 for
details.

MLDesigner provides a special Event Expression Dialog (section 24.9.2) for easy event expression
composition.
If the event expression evaluates to true, while the current state is a transition’s source state or one
of its sub-states, the transition is triggered and becomes a candidate for firing.
A transition without an event expression (E = ε) is immediately triggered after its source state
entry action is executed. These transitions are called synchronous transitions.

Guard Condition

Optionally associated with each transition is a guard condition C, specified by an FSM Action
expression. If the guard condition of a triggered transition evaluates to true, the transition fires
and the finite state machine’s next state becomes the transition’s target state.
A triggered transition without a guard condition fires immediately.

NOTE: Triggering does not automatically cause transitions to fire, it merely enables firing. If �
a triggered transition cannot fire, because the guard condition evaluates to false, the
transition must be triggered again by a satisfied event expression to become a candidate
for firing.

24-5

24 FSM Domain

Transition Action

Each transition can also have an action A, which is a set of FSM Action statements. Whenever a
transition fires, its action is performed before the transition’s target state entry action is executed.

Transition Label

Unlike states, transitions have no unique name. They are specified by an automatically generated
label. The syntax of the label is: E [C] / A. The label is also visible in the transition properties
window.

Transition Priority

If more than one transition possessed by the current state is triggered, the inherited transitions up
the hierarchy have a higher priority to fire.

Transition Conflict

A transition conflict occurs, when two or more transitions with the same priority are triggered and
no transition with a higher priority is candidate for firing. In this case of nondeterminism, the FSM
scheduler fires the first one, which guard condition evaluates to true.

24.3.1.4 Default Entrances

The Default entrance is a special state which indicates the point of entry to that level of the state
hierarchy. Each level of the state hierarchy, including the FSM top level, has one default entrance,
which is depicted by a small solid circle. A default entrance must not have any incoming tran-
sitions and must have only one outgoing transition to designate the default sub-state destination.
The top level default entrance designates the initial state of the finite state machine.
The Top Level Default Entrance designates the initial state of the finite state machine. The Top
Level Default Entrance may be linked to a set of FSM Action statements that initialize the state
machine (e.g. initialize memories.) Note: Upon simulation startup, the entry action of the initial
state is not performed.

Figure 24.3: Default Entrance

24-6 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

24.3.1.5 Histories

Histories are special states, used to resume the last sub-state of a hierarchical state. An FSM can
have an arbitrary number of histories, placed at any level of the state hierarchy. The graphical
notation is a circle containing either an H for static or H* for recursive histories.

Figure 24.4: Recursive(*) and Static History symbols

A history must have at least one incoming transition and must not have any outgoing transitions.

Static History

A static history memorizes only the previous sub-state of its hierarchy level. If this sub-state is a
hierarchical state, then its default entrance destination becomes the current sub-sub-state and so
on, until a leaf state becomes the current state.

Recursive History

Recursive histories apply to all descendant states and refer to the previous current state of their
state hierarchy. So the state, memorized by a recursive history, is always a leaf state on the same
or lower level of the state hierarchy.

NOTE: If a transition, pointing to a history fires, actions are performed as if the transition is �
pointing to the state stored in the history. Trying to enter a hierarchical state via an
empty history, when the hierarchical state was never visited before, results in an error
being displayed and the simulation aborts.

24.3.1.6 Arguments

In addition to the basic elements, the MLDesigner FSM semantic supports typical MLDesigner
arguments associated with finite state machines.

Memory Arguments

Memories can be used to represent variables in a finite state machine. The MLDesigner FSM
supports memories of both scopes: internal and external, and all types and data structures as is the
case elsewhere in an MLDesigner block. FSM action statements have read as well as write access
to the value of a memory argument.

Special Event Arguments

In addition to events, represented by the inputs of a finite state machine, the MLDesigner FSM
supports special event arguments of both scopes, internal and external, and of all types and data
structures. These events can also be used in the event expression of transitions and can be accessed

24-7

24 FSM Domain

via FSM action statements to schedule or cancel an event argument. Events of external scope can
generate events in other MLDesigner models, i.e. other FSM models.

NOTE: Using MLDesigner special event arguments in context with finite state machines makes�
sense only if the FSM model is embedded into a discrete event (DE) environment.

Parameter Arguments

Like memories and special events, parameters are fully supported in MLDesigner finite state ma-
chines. FSM action statements have only read access to the value of a parameter.

24.3.2 FSM Action Language
24.3.2.1 Overview

The actions associated with states, transitions and default entrances as well as transition guard
conditions are defined using statements of the FSM action language.
Likewise the source code to define the functionality of MLDesigner primitive models, the FSM
action language is based on the C/C++ syntax. Additionally, the FSM action language includes a
set of built-in functions, mainly to provide a comfortable handling of FSM interface elements and
MLDesigner data structures.
In doing so, the FSM action language supports the following operations:

• read access to data of input ports

• write access to data of output ports

• read and write access to data of memory arguments

• read and write access to data of event arguments

• schedule and cancel special event arguments

• read access to data of parameter arguments

• read and write access to data structure member fields

• relational and logical expressions

• math operations

• control structures and loops (if, else, switch, for, while, etc.)

• built-in functions for number generators

• built-in functions for queue and vector operations

• built-in functions for simulation reports

24-8 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

24.3.2.2 Action Examples

This section exemplifies the usage of the different categories of built-in functions, given by the
FSM action language. In doing so, these action examples are also used to show, how the different
built-in functions can be nested to create complex action statements. Like other C/C++ functions,
MLDesigner FSM built-in-functions can be nested in such a way, that a function parameter of a
specific data type can be set by another function, which returns a value of that data type.

NOTE: In connection with data structures, nesting of FSM built-in functions is only working, �
if the data structure, returned by the inner-function, is compatible to the data struc-
ture expected by the parameter of the outer-function. For instance, it is not possible to
set a data structure field of type Root.Address.IPAddress with a data structure of type
Root.FloatVector. Such action statements are indeed compilable but lead to run-time
errors!

The action examples are based on an FSM model with the following interface:

• Input port PacketInput of type Root.NetworkProtocol.TCPProtocol

• Output port PacketOutput of type Root.NetworkProtocol.TCPProtocol

• Output port IntOutput of type Root.Integer

• Output port FloatOutput of type Root.Float

• Output port StringOutput of type Root.String

• Output port EnumOutput of type Root.ENUM.Boolean

• Memory PacketMemory of type Root.NetworkProtocol.TCPProtocol

• Memory IntMemory of type Root.Integer

• Memory FloatMemory of type Root.Float

• Memory StringMemory of type Root.String

• Memory VectorOfPacketsMemory of type Root.Vector.VectorOfPackets

• Memory IntVectorMemory of type Root.IntVector

• Memory FloatVectorMemory of type Root.FloatVector

• Memory EnumMemory of type Root.ENUM.Boolean

• Memory ListOfPacketsMemory of type Root.List

• Special Event PacketEvent of type Root.NetworkProtocol.TCPProtocol

• Special Event IntEvent of type Root.Integer

• Parameter IntParameter of type int

• Parameter FloatParameter of type float

• Parameter EnumParameter of type Root.ENUM.Boolean

24-9

24 FSM Domain

Base Structures

//for-loop structure
WriteMemory(StringMemory,"Byte");

for (IntMemory = 1; (int)IntMemory <= 4; IncMemory(IntMemory))
{
InsertFieldDS(SelectFieldDS(PacketMemory, "SourceIP"),

ReadStringMemory(StringMemory) << (int)IntMemory,
IntParameter + (int)IntMemory);

InsertFieldDS(SelectFieldDS(PacketMemory, "DestIP"),
ReadStringMemory(StringMemory) << (int)IntMemory, 0);

}

//while-loop structure
IntMemory = 0;

while ((int)IntMemory < (int)LengthOfVector(IntVectorMemory))
{
SetElementIntVector(IntVectorMemory, (int)IntMemory,

(int)IntMemory * (int)IntMemory);
IncMemory(IntMemory);

}

//do-while-loop structure
IntMemory = 0;

do
{
Enqueue(ListOfPacketsMemory, PacketMemory, 0, (int)IntMemory);
InsertFieldDS(PacketMemory, "DestPort", (int)IntMemory);
IntMemory = (int)IntMemory + 1;

}
while ((int)IntMemory <= 3);

//if-else structure
if ((int)SelectFieldDS(PacketMemory, "SourcePort") < (int)IntMemory)
{
InsertFieldDS(PacketMemory, "SourcePort", (int)IntMemory);
IntToEnum(EnumMemory, 0);

}
else
{
InsertFieldDS(PacketMemory, "SourcePort", IntParameter);
IntToEnum(EnumMemory, 1);

}

24-10 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

//switch structure
switch (IntParameter)
{
case 0:

InsertFieldDS(PacketMemory, "SourcePort", 10);
break;

case 1:
InsertFieldDS(PacketMemory, "SourcePort", 20);
break;

default:
InsertFieldDS(PacketMemory, "SourcePort", 0);
break;

}

Composite Data Structure Handling

InsertFieldDS(PacketMemory, "SourcePort", DSToInt(IntMemory));
InsertFieldDS(PacketMemory, "DestPort", (int)IntMemory + 10);

InsertFieldDS(SelectFieldDS(PacketMemory, "SourceIP"), "Byte1", IntParameter);

InsertFieldDS(SelectFieldDS(PacketMemory, "DestIP"), "Byte2", 162);

InsertFieldDS(PacketMemory, "Name", DSToString(StringMemory));

WriteMemory(StringMemory, DSToString(SelectFieldDS(PacketMemory, "Name")));

IntMemory = SelectFieldDS(SelectFieldDS(PacketMemory, "DestIP"), "Byte4");

Enumeration Data Structure Handling

IntMemory = EnumToInt(EnumMemory);

InsertFieldDS(PacketMemory, "SourcePort", EnumToInt(EnumParameter));

WriteMemory(StringMemory, EnumToString(EnumMemory));

InsertFieldDS(PacketMemory, "Name", EnumToString(EnumParameter));

IntToEnum(EnumMemory, ((int)IntMemory + 1) % 2);

StringToEnum(EnumMemory, "TRUE");

Vector Data Structure Handling

ChangeLengthVector(VectorOfPacketsMemory, IntParameter);

24-11

24 FSM Domain

WriteMemory(StringMemory, "Packet");

for (IntMemory = 0; (int)IntMemory < IntParameter; IncMemory(IntMemory))
{
InsertFieldDS(PacketMemory, "Name",

ReadStringMemory(StringMemory) << (int)IntMemory);
SetElementVector(VectorOfPacketsMemory, (int)IntMemory, PacketMemory);

}

if (LengthOfVector(VectorOfPacketsMemory) > 10)
{
PacketMemory = AccessElementVector(VectorOfPacketsMemory, 10);
RemoveElementVector(VectorOfPacketsMemory, 10);

}

IntMemory = 0;

while ((int)IntMemory < (int)LengthOfVector(FloatVectorMemory) - 1)
{
FloatMemory = AccessElementFloatVector(FloatVectorMemory,

(int)IntMemory + 1);

if ((double)FloatMemory < FloatParameter)
FloatMemory = FloatParameter;

SetElementFloatVector(FloatVectorMemory, (int)IntMemory,
(double)FloatMemory);

IncMemory(IntMemory);
}

RemoveElementFloatVector(FloatVectorMemory,
LengthOfVector(FloatVectorMemory) - 1);

Memory Access

ResetMemory(IntMemory);

while ((int)IntMemory > 2)
DecMemory(IntMemory);

do
IncMemory(IntMemory);

while ((int)IntMemory < 4);

InsertFieldDS(PacketMemory, "SourcePort", ReadMemory(IntMemory));
InsertFieldDS(PacketMemory, "SourcePort", ReadIntMemory(IntMemory));

24-12 MLDesigner Version 2.8

24.3 MLDesigner FSM Semantic

InsertFieldDS(PacketMemory, "SourcePort", (int)IntMemory);
InsertFieldDS(PacketMemory, "SourcePort", IntMemory);

WriteMemory(IntMemory, IntParameter + 10);

Port Handling

if (DataNew(PacketInput))
{
PacketMemory = ReadNewInput(PacketInput);
StringToEnum(EnumMemory, "TRUE");

}
else
{
PacketMemory = ReadBufferedInput(PacketInput);
StringToEnum(EnumMemory, "FALSE");

}

WriteOutput(FloatOutput, e() + pi());
WriteOutput(IntOutput, (int)SelectFieldDS(PacketMemory, "SourcePort"));
WriteOutput(PacketOutput, PacketMemory);
WriteOutput(StringOutput, "Hello World!");
WriteOutput(EnumOutput, EnumMemory);

Special Event Handling

PacketMemory = ReadCurrentEvent(PacketEvent);
InsertFieldDS(PacketMemory, "Name", StringMemory);

ScheduleEvent(PacketEvent, FloatParameter, PacketMemory, 0);

if (EventIsScheduled(IntEvent, (int)IntMemory))
{
FloatMemory = EventResidualTime(IntEvent, (int)IntMemory);
CancelEvent(IntEvent, (int)IntMemory);
IncMemory(IntMemory);
ScheduleEvent(IntEvent, (double)FloatMemory, (int)IntMemory);

}
else
{
IntMemory = IntParameter;
ScheduleEvent(IntEvent, ExpRangen(FloatParameter), (int)IntMemory);

}

Queue Operations

ClearQueue(ListOfPacketsMemory);

24-13

24 FSM Domain

InitQueue(ListOfPacketsMemory, 10);

for (IntMemory = 0; (int)IntMemory < 2; IncMemory(IntMemory))
{
InsertFieldDS(PacketMemory, "SourcePort", IntMemory);
Enqueue(ListOfPacketsMemory, PacketMemory, 0, (int)IntMemory);

}

if (QueueCheck(ListOfPacketsMemory, 0))
{
PacketMemory = Dequeue(ListOfPacketsMemory, 0);
StringToEnum(EnumMemory, "TRUE");

}
else if (QueueLength(ListOfPacketsMemory) > 0)
{
PacketMemory = PeekQueue(ListOfPacketsMemory, 0);
InsertFieldDS(PacketMemory, "DestPort", 10);
PokeQueue(ListOfPacketsMemory, PacketMemory, 0);

}

RemoveElement(ListOfPacketsMemory, 0);

Number Generators

FloatMemory = TNow() + ExpRangen(FloatParameter) + e() * pi();

InsertFieldDS(PacketMemory, "DestPort",
(int)BinomialRangen(IntParameter, 0.5));

Simulation Report Handling

InfoNumber("Current time stamp: ", TNow(), "");
InfoNumber("Current IntMemory value: ", (int)IntMemory, "");

if ((int)IntMemory > IntParameter)
{
InfoString("Value is ok!");
DecMemory(IntMemory);

}
else if ((int)IntMemory == IntParameter)
{
WarningString("Value has reached threshold!");
IncMemory(IntMemory);

}
else
{

24-14 MLDesigner Version 2.8

24.4 FSM Execution Semantics

ErrorString("Value is below threshold!");
}

24.3.2.3 Transition Guard Condition Examples

Basically, transition guard conditions are boolean C/C++ expressions, which either evaluate to true
or false. In doing so, the FSM built-in functions can be used to access FSM interface elements
and data structure fields within transition guard conditions. In connection with the C/C++ logical
operators ! (NOT), || (OR) and && (AND), complex condition statements can be created.

NOTE: Guard condition statements must not be terminated by a semicolon (;) character. �

The example transition guard conditions are referring to the example FSM interface elements,
introduced in section 24.3.2.2.

EnumToString(EnumMemory) == "TRUE"

EnumToInt(EnumMemory) == 0

DSToInt(SelectFieldDS(ReadNewInput(PacketInput), "SourcePort")) > 0

QueueLength(ListOfPacketsMemory) != 0 &&
(int)SelectFieldDS(ReadNewInput(PacketInput), "DestPort") == IntParameter

(int)IntMemory >= 0 &&
(int)LengthOfVector(IntVectorMemory) > (int)IntMemory

!((int)SelectFieldDS(SelectFieldDS(PacketMemory, "SourceIP"),
"Byte1") == 192 &&

(int)SelectFieldDS(SelectFieldDS(PacketMemory, "SourceIP"),
"Byte2") == 162) ||

((int)SelectFieldDS(PacketMemory, "SourcePort") == IntParameter &&
(int)SelectFieldDS(PacketMemory, "DestPort") != (int)IntMemory &&
EnumToString(EnumParameter) == "TRUE")

24.4 FSM Execution Semantics

This section describes, how the FSM scheduler responds to new events caused by arriving data on
input ports or via internal or special events.

24-15

24 FSM Domain

24.4.1 Initialization

Upon simulation startup, any action associated with the top level default entrance is performed and
the initial state becomes the finite state machine’s current state, without execution of the initial
state’s entry action. While the initial state is a hierarchical state, its default entrance action is
executed and its default sub-state becomes the initial state.

24.4.2 Execution Steps

After an FSM block received new events, the FSM scheduler passes through the following steps:

1. All transitions, possessed by the current state and triggered by the received events, are
searched.

NOTE: Synchronous transitions are triggered by any event.�

2. In order of the priority of the triggered preemptive transitions, the guard conditions are
evaluated. The first transition, whose guard condition evaluates to true fires.

3. If a preemptive transition fires, goto step 7.

4. If the current state contains a slave process, this slave process is executed.

5. In order of the priority of the triggered non-preemptive transitions, the guard conditions are
evaluated. The first transition, whose guard condition evaluates to true, fires.

6. If no non-preemptive transition fires, goto step 13.

7. The exit actions of all states, left by the firing transition, are performed in order up the
hierarchy, starting with the current state.
Additionally all histories of the leaving hierarchy are updated.

8. The action of the firing transition is executed.

9. If the firing transition points to a non-empty history, the state stored in the history becomes
the new current state, otherwise the target state of the firing transition becomes the new
current state.

10. While the new current state is a hierarchical state, its default entrance destination becomes
the new current state.

11. The entry actions of all states, entered by the firing transition, are performed in order down
the hierarchy, ending with the new current state.

NOTE: In case a state hierarchy is entered by its default sub-state, the default entrance�
action is executed before the entry action of the default sub-state is performed.

12. If the new current state possesses synchronous transitions, goto step 2.

13. The current state memory is updated.

24-16 MLDesigner Version 2.8

24.5 Elevator Example

24.5 Elevator Example
In this example, a finite state machine is used to describe a simple elevator. The control panel of
the elevator contains N buttons, to select a target level. These buttons are labeled 0,...,N-1,
where N is the total number of levels. In addition there is a Stop and a Go button available to
stop and run the elevator. There is also a display to show the current level the elevator is on.

E TimerM CurrentState = Idle M CurrentLevel = 0M TargetLevel = 0

LevelIn

Stop

Go

DisplayLevel

Move

Direction

H

Down

Up

Stop

Idle

[CurrentLevel==TargetLevel]

LevelIn

T1

S1

S2

S3

S4

S5

S6

StopGo

Time/CurrentLevel=CurrentLevel - 1;

Time/CurrentLevel=CurrentLevel + 1;

[CurrentLevel < TargetLevel]

[CurrentLevel > TargetLevel]

T2

T3

T4

T6

T5

T7T8

Figure 24.5: FSM Example, Simple Elevator

24.5.1 Interface
The elevator FSM contains the following interface elements:

• Input port LevelIn of type Root.Integer

• Input port Stop of type ANYTYPE

• Input port Go of type ANYTYPE

• Output port DisplayLevel of type Root.Integer

• Internal Memory CurrentLevel of type Root.Integer

• Internal Memory TargetLevel of type Root.Integer

• Internal Special Event Timer of type Root

24.5.2 Execution
Upon simulation startup, the initial state S1 becomes the finite state machine’s current state. The
FSM remains in state S1 until a LevelIn event occurs, to undergo a state change to S2. State S3,

24-17

24 FSM Domain

as the default entrance destination of state S2, becomes the next current state and the entry action
associated with state S3 is performed. In this case the TargetLevel memory is assigned with
the integer value of the LevelIn input port. Possessed by state S3 are 4 transitions T2, T7, T3
and T4, whereas T2 and T7 are inherited transitions of a higher priority then T3 and T4. The tran-
sitions T2, T3 and T4 are synchronous transitions and triggered immediately after S3 is entered.
One of the three synchronous transitions fires, dependent on the value of the TargetLevel
memory. If the value of the TargetLevel memory is unequal to the value of the value of the
CurrentLevel memory, the finite state machine goes either to state S4 or S5. If the value of
the TargetLevel memory is greater than the value of the CurrentLevel memory, state S4
becomes the next current state, and its entry action is performed. The entry action of state S4
schedules the Timer event to occur 5 time steps later than the current time. This time frame
simulates the time the elevator needs to move from one level to the next. The integer value of the
CurrentLevel memory is placed on the DisplayLevel output port. Possessed by state S4
are the 3 transitions T2,T7 and T5. The synchronous transition T2 can not fire immediately, since
the values of the CurrentLevel and TargetLevel memories are unequal. The finite state
machine remains now in state S4 until a Timer or Stop event occurs. In the case of a Timer
event, the state S4 is exited. After the value of the CurrentLevel memory is incremented by
the action associated with transition T5, state S4 is re-entered and its entry action is performed
again, since transition T5 is a self transition of state S4. If now the value of the CurrentLevel
memory is equal to the value of the TargetLevel memory, the synchronous transition T2 fires
immediately and the states S4 and S2 are exited and state S1 is entered. In the case of a Stop
event, while the elevator is in between two levels, so the FSM is either in S4 or S5, the current state
and its ancestor state S2, are exited with the exit action of state S2 to cancel the current Timer
event and state S6 is entered. After a Go event, the state S6 is exited and the state, stored in the
history, either S4 or S5, becomes again the current state. A new Timer event is scheduled by the
entry action of either state S4 or state S5. When this new Timer event occurs, the elevator moves
on, in the same direction, as before the Stop event.

24.6 The FSM Model
An FSM model contains all the elements associated with a finite state machine. From the view of
these model elements, an FSM model splits up into two different model types, the interface and
the state transition diagram of a finite state machine.

24.6.1 FSM Model Interface
The interface of an FSM model differs slightly from a typical MLDesigner model interface, spe-
cially of models of the discrete event (DE) domain. It contains the elements of a finite state ma-
chine to interact with an outer environment or to represent constants and variables. The following
interface elements are available for FSM models:

• single Input Ports

• single Output Ports

• Internal / External Memory arguments

24-18 MLDesigner Version 2.8

24.6 The FSM Model

• Internal / External Special Event arguments

• Parameter arguments

NOTE: These elements can be of any type or data structure. �

24.6.2 FSM Model Design
The FSM model design represents the state transition diagram of a finite state machine. It contains
all the state objects, like normal states, history states, or default entrance states, and their relations
via transition objects. The graphical representation of the state transition diagram is completely
embedded into the associated FSM model.

24.6.3 Current State Data Structure
Associated with each FSM model is a special data structure called current state data structure.
This data structure is derived from the MLDesigner Root.ENUM data structure and named by de-
fault of the FSM model name followed by CS (e.g. SimpleElevatorCS). Each item of this enumer-
ation data structure represents the logical name of a state of the associated state transition diagram.
The current state data structure of an FSM model is generated automatically and updated, if the
set of states or the logical name of a state has changed.

24.6.4 Current State Memory
Each FSM model must contain a memory argument called current state memory. This Memory
argument is added automatically to a new FSM model and contains the default name CurrentState.
In this context, the current state memory can not be deleted from the FSM model. The type of this
memory argument is always set to the associated current state data structure. During execution,
the value of the current state memory is always the logical name of the current state. If the scope
of this memory argument is external, another block linked to this memory argument can change
the finite state machine’s current state.

NOTE: Changing the value of the current state memory from outside of the FSM block or via �
an FSM action statement causes no action execution.

The state, specified by the value of the current state memory, becomes the current state. If this
state is a hierarchical state, its default entrance destination becomes the current state and so on,
until the destination of a default entrance is a leaf state.

24.6.5 CurrentStateDS Property
The CurrentStateDS property can be used to change the name of the current state data structure
associated with every FSM model. In this context, the old current state data structure is removed
from the parent library model of the FSM model and a new generated current state data structure
based on the new specified name is added to the parent library.
The type of the current state memory is automatically updated to the new current state data struc-
ture.

24-19

24 FSM Domain

NOTE: Because the old current state data structure is deleted, any other elements (e.g. ports,�
memories), using this data structure will lose the reference to the old current state data
structure and they are not automatically updated to the new current state data structure.

24.6.6 Internal Event Property
In addition to the basic properties of MLDesigner models, an FSM model contains a string prop-
erty called Internal Events. The value of this property is a space separated list of the names of
the internal events of the finite state machine. Each time the value of this property changes, every
item on the list of internal events is checked to see if it is unique in the scope of the FSM Model
and not equal to the name of any interface element.

24.6.7 Additional Code Property
The Additional Code property is a powerful feature for advanced usage of the MLDesigner FSM
model. It provides the facility to define additional ptlang primitive source code in context
with a finite state machine. Likewise for MLDesigner primitive models, it is possible to include
additional header files or to define global variables and functions. These functions can be called
in any action associated with states, transitions or default entrances. Global variables can be read
and written in any action and used in expressions of transition guard conditions.

Example

//This code section can be used to define additonal
//ptlang source code, e.g. global methods, variables
//or additional header includes, used in context with
// State Entry and Exit Actions, Transition Actions
//and Guard Conditions and the Action of the FSM top
//level Default Entrance.
//NOTE: The methods: constructor, destructor, go,
//begin, setup and wrapup are reserved and cannot
//be defined in this section !!!

hinclude {}
ccinclude {}

public
{
double mArc;
double mAngle;

}

method
{
name { RadianToDegree }

24-20 MLDesigner Version 2.8

24.7 FSM Model Editor

access { public }
type { "double" }
arglist { "(double pArc)" }
code
{
return 180 / pi() * pArc;

}
}

method
{
name { DegreeToRadian }
access { public }
type { "double" }
arglist { "(double pAngle)" }
code
{
return pi() / 180 * pAngle;

}
}

The variables mArc and mAngle can be written and read in any action and used in transition guard
conditions, e.g.

mAngle >= 90

Furthermore, the functions RadianToDegree and DegreeToRadian can be called in any
action, e.g.

mAngle = RadianToDegree(mArc);

NOTE: As described in the comment at the beginning of the additional code example, it is not �
possible to define reserved methods: constructor, destructor, go, begin,
setup and wrapup. Furthermore it is highly recommended to check the additional
code section for validity before editing any action or transition guard condition. Parse
or compiling errors are often caused by source code from this section.

24.7 FSM Model Editor

The FSM model editor provides all the functionality needed to create the graphical representation
of a finite state machine. Additional icons, specific to the FSM domain, become available on the
toolbar when you create a new FSM or open an existing FSM model. Parameter arguments can
also be added to an FSM model as elsewhere in MLDesigner.

24-21

24 FSM Domain

Add State Add Transition Add History Add Default
Entrance

Figure 24.6: Additional Icons for FSM models

24.8 FSM Design Objects
This section introduces all the FSM design objects and their behavior inside the FSM model edit
window.

NOTE: The interface elements of an FSM model are not introduced, since they can be used in�
context with finite state machines as elsewhere in MLDesigner.

The picture below shows an example with all kinds of FSM design objects.

Figure 24.7: FSM Design Objects

24.8.1 States

States are depicted by a rounded rectangle. If a state is the only selected object, a size grip, located
in every corner, is visible. The size grips can be used to change the size of the state view object.
Each state must have a unique name, centered at the top of the graphical state object.

24-22 MLDesigner Version 2.8

24.9 FSM Dialogs

24.8.2 Transitions
Transitions between different state objects are depicted by a single line or multiple line segments,
like connections between ports in other MLDesigner models. An arrow is located on one end of
the transition, pointing to the transition’s target state. The start and the end point of a transition
resides on the shape boundary of a state, history or default entrance view object. Self transitions
are depicted by a semi ellipse on one side of the associated state.

24.8.3 Default Entrance Transitions
Default entrance transitions are only used to specify either the top level default entrance or the
default entrance of a hierarchical state. In this context, a default entrance transition possesses
neither a transition label nor any other transition property and is never active while running a finite
state machine.

24.8.4 Transition Labels
Associated with each transition (exempted default entrance transitions) is a transition label, which
is depicted like any other text label in M LDesigner, but with fixed font, color and size. The
transition label is located near its associated transition in the FSM model edit window.

24.8.5 Default Entrances
A default entrance is depicted by a full circle with fixed radius. The radius of the default entrance
view object is greater than the radius of transition points and less than the radius of the history
view object.

24.8.6 Histories
Histories are depicted by a circle with fix radius and either a H* (for recursive history), or a H (for
non-recursive history) placed in the middle of the circle.

24.9 FSM Dialogs

24.9.1 Action Dialog
The FSM action dialog is a custom dialog for creating FSM action statements. The major reason
for the FSM Built-In Functions and FSM Interface Elements sub-dialog is, to prevent syntax errors
in FSM action statements. These sub-dialog can be used to include either an FSM built-in function
or the name of an FSM interface element at the current text cursor position.
The FSM action statements can be verified, using the corresponding tool button. If the statements
contain syntax errors, the verification output window becomes visible and all errors with their
associated line number are listed.

24-23

24 FSM Domain

Figure 24.8: FSM Action Dialog with Sub-Dialogs

24.9.2 Event Expression Dialog

Like the FSM action dialog, the event expression dialog is another custom dialog, in this case
used to create logical event expressions for transitions. The major part is the line edit at the top of
the dialog, used to enter an event expression. All the elements below the line edit are helpful for
creating an expression. In this context, the 3 combo boxes contain all the names of the input ports,
special event arguments, and internal events of the associated FSM model. Closing the dialog by
the Ok button, the expression is checked for validation and an error message occurs in case of
parse errors are present.

Figure 24.9: Event Expression Dialog

24-24 MLDesigner Version 2.8

24.10 FSM Design Check

24.9.3 Slave Model Dialog
The slave model dialog is a custom dialog to select a slave process model for leaf states. Since a
slave process model must be either another FSM model or an MLDesigner module, only these two
specific model types and their associated library models are listed in the tree view of the dialog. If
the selected slave process model is the same FSM model as the superordinate finite state machine,
an error message occurs and no new slave process model is set for the leaf state.

Figure 24.10: Slave Model Dialog

24.10 FSM Design Check
The Check Design tool button in the FSM model editor toolbar is used to check the FSM design
for semantic errors. If the FSM design contains errors, a message occurs and all semantic errors
are listed. This FSM design check is done automatically while saving a finite state machine model.
The following semantic rules for states, default entrances, and histories are checked in association
with the FSM design objects.

24.10.1 States
• each state must be reached by at least one non-self transition

• each state must be left by at least one non-self transition

• each state hierarchy level and the FSM top level must have exactly one default entrance

• each state must not have any synchronous self transitions without a guard condition

NOTE: Hierarchical states can also be reached by transitions, whereas the source state is a state �
outside the hierarchical state and the target state is a descendant state of the hierarchi-
cal state. Hierarchical states can also be left by inherited transitions or by transitions,

24-25

24 FSM Domain

whereas the source state is a descendant state of the hierarchical state and the target state
is a state outside of the hierarchical state. States must not have synchronous self transi-
tions without a guard condition, since such transitions are 100% candidates for infinite
loops. There are a lot of ways to create infinite loops in a finite state machine, but they
can not all be detected by the FSM semantic check.

24.10.2 Default Entrances
• each default entrance must have exactly one outgoing transition

• the target of the default entrance must reside at the same hierarchy level

• the target of the default entrance must not be a history

24.10.3 Histories
• each history must have at least one incoming transition

24.11 FSM and Concurrency Domains
In MLDesigner, a finite state machine is always combined with other MLDesigner models, since
an FSM model is always embedded into a wormhole of a concurrency domain or different MLDe-
signer models can be used as a slave process inside an FSM model. This section describes, how
FSM models interact with the Discrete Event (DE) domain, the Synchronous Data Flow (SDF)
domain and the Finite State Machine (FSM) domain.

24.11.1 FSM and DE
The MLDesigner DE domain uses an event driven model of computation. Events occur at a point
in time. A time stamp, possessed by every event, indicates the time, at which the associated event
occurs.

24.11.2 FSM inside DE
An FSM model, embedded in a DE domain environment, behaves like any other DE model. New
data on an FSM model input port represent the presence of a new event to trigger the FSM model
and new data on an FSM model output port, generated during FSM execution, are interpreted as
new events for the DE environment, whereas the FSM model reacts to the outer DE domain as a
zero delayed system. In this context, output events, generated by the FSM model, get the same
time stamp as the input event, which triggered the execution of the FSM model. A DE outer do-
main is the only case where an FSM model is able to use special event arguments to cause state
changes inside the finite state machine, because all other domains do not support special events.
In case of an outer DE environment, the usage of the logical AND (&&) operator within transition
event expressions is only practical for internal events in connection with FSM slave models. Event
expressions of AND-combined FSM input ports or special events are only evaluating to true in the
special case, the involved events are all present at the same time in the outer DE event queue and

24-26 MLDesigner Version 2.8

24.11 FSM and Concurrency Domains

scheduled for the same time stamp. But basically, FSM models inside DE react immediately on
an incoming port event or dispatched special event. In doing so, all present events are consumed
during FSM execution, independent if a transition has been able to fire on these events or not. In
other words, FSM models do not queue events and are not waiting for missing events to satisfy
event expressions including AND-combined input ports or special events. Therefore event expres-
sions of non-synchronous transitions should only consist of a single event name, if the associated
FSM model is embedded in a DE environment.

24.11.3 FSM outside DE
If a DE domain module is used as a slave process inside an FSM model, the supply of the input
ports of the slave process, before execution, depends on the outer domain of the FSM model. In
case, the outer domain is also a DE domain and there is currently no event on an input port of
the FSM model, the appropriate input port of the DE slave process model gets also no event. In
all other cases, each input port of the slave process gets a new event, before the slave process
executes. All the input events of the slave process get the current time stamp of the superordinate
FSM model. If the outer domain of the FSM model is also a DE domain, the current time stamp of
the FSM model is the same, as the time stamp of the FSM model triggering event. Otherwise, the
time stamp of the FSM model is zero. Output events, produced by the DE slave process model,
are placed on the appropriate FSM model output ports. Again with the current, zero delayed time
stamp of the FSM model.

24.11.4 FSM and SDF
An SDF system consists of a set of modules or primitives interconnected by directed arcs. MLDe-
signer SDF models represent computational functions that map input data into output data. Unlike
the DE domain, the SDF domain is not event driven and there exist always data on each input and
output port of the SDF model.

24.11.5 FSM inside SDF
An FSM model, embedded into an SDF domain environment, behaves like any other SDF model.
To ensure this behavior, the FSM model needs an approach to differ between the presence and
absence of an event, since there exist always data on each input port of the FSM model. In this
context, the FSM model determines the presence and absence of an event via the integer cast of
the appropriate input data. If this data cast returns zero, the associated event is interpreted absent
and in the case of a non zero result, the associated event is interpreted present. If the FSM model
execution produces no data for an associated output port, a zero valued data is placed on this
output, to ensure that there are always data available on each FSM output port, as required by the
semantic of the outer SDF domain.

24.11.6 FSM outside SDF
If an SDF domain module is used as a slave process inside an FSM model, each input port of the
slave process model gets the same data as currently available on the appropriate FSM model input
port, before the slave Process executes. Each execution of an SDF domain slave process model

24-27

24 FSM Domain

is interpreted as one iteration. The output data, produced by the slave process, are placed on the
appropriate output ports of the superordinate FSM model.

24.11.7 FSM inside FSM
If an FSM model is used as a slave process inside another FSM model, each input port of the slave
FSM model gets the same data as currently available on the appropriate input port of the master
FSM model, before the slave Process executes. In the case, the master FSM model is embedded
into an DE domain environment and there is currently no event on an input port, the appropriate
input port of the slave FSM model gets a zero valued data, to specify the absence of the associated
event. Likewise an FSM model is embedded into an SDF domain environment, the slave FSM
model determines the presence and absence of an event via the integer cast of the associated input
data. output data, produced by the slave FSM model, are placed on the appropriate output ports of
the master FSM model.

24.12 Creating an FSM
A commonly used example for control-intensive software environments is the so-called “reflex
game” found in the Library view under MLD Libraries/Demos/FSM Demos/ReflexGame2/ReflexGame2.
In this example we demonstrate how to create the FSM instance game2 FSM#1 used in the Demo.
We then instantiate the FSM in a copy of this system (saved in your user library) and reference
slave processes. These are the fundamental principles of the FSM domain and following the ex-
ample here will demonstrate the MLDesigner FSM interface simply and effectively.

24.12.1 System Description
This version of the reflex game has two players. Each player has two buttons to press during the
game: player one has coin and go and player two has ready and stop. The normal game-play
should proceed as follow:

1. Player1 presses coin to begin. The status light turns blue.
2. When Player2 presses ready; the status light turns yellow.
3. Player1 presses go to start the game. When the status light turns green player2 has to press

stop as fast as possible.
4. The game ends after player2 presses stop. The status light turns red. The time between

Player 1 pressing go and Player2 pressing stop is indicated in the Time elapsed display of
the game control console.

The game times-out, indicated by the light display area of the Tcl display becoming light grey, if:

1. Player2 does not press ready within a certain time from the moment player1 pressed coin.
2. Player2 presses stop before or exactly when player1 presses go
3. After player1 presses go, player2 does not press stop within a certain amount of time

Another additional rule is that if player1 does not press go within an amount of time after player2
presses ready, then go will be asserted by the system and the game advances to the next step and
player2 is expected to press stop.

24-28 MLDesigner Version 2.8

24.12 Creating an FSM

24.12.2 Example
The reflex game is a mixture of FSM machines, some modules in the DE domain, one module in
the SDF domain and some Tcl scripts.

NOTE: The Tcl scripts and the implementation of the DE and SDF domains are not discussed �
extensively in this chapter. For more information on combining models refer to the
Modeling Guide. This chapter only implements the FSM machines and the interface of
each FSM to the other modules.

The ReflexGame2 is the topmost system, as shown in fig. 24.11.The reflex game is a real-time
game and is therefore modeled in the DE domain. A brief explanation of the system is:

• The module clock generates a sequence of clock ticks which are synchronized by the
module Synchronize.

• The modules Player1, Player2 and Display are Tcl scripts to create the buttons and
output lights.

• The module Game2 FSM#1 models the main behavior of the game, this module consists of
two state FSM (see fig. 24.12.)

game2_FSM#1

Clock#1� Synchronize#1�

TclScript.input=0#1
�

TclScript.input=0#2
�

TclScript.output=0#1�Nop.input=6#1�Nop.output=2#1�

Nop.output=2#2�

Display�

Reflex�

Player1�

Player2�

Clock� Synchronize

Figure 24.11: ReflexGame2 System in the DE domain

To create this FSM module in your user-libraries proceed as follows:

1. Click the New Model icon on the upper toolbar.
2. Create a Library called MyFSM as a sub-library of MyLibrary.
3. Click OK.
4. Click the New Model icon on the upper toolbar.
5. Select FSM from the Type of Model drop-down menu.
6. Type MyReflex in the Logical Name input field.
7. Click OK.

The new FSM module is now open in the Model Editor Window and has a Memory model
instance called CurrentState. In this context, the Current State Memory can not be
deleted from the FSM model. The type of this Memory argument is always set to the as-

24-29

24 FSM Domain

sociated Current State Data Structure. During execution, the value of the Current State
Memory is always the logical name of the current state of the finite state machine. If the
scope of this Memory argument is external, another block linked to this Memory argument
can change the finite state machine’s current state.

NOTE: Changing the value of the Current State Memory from outside of the FSM block�
or via an FSM Action statement causes no action execution.

The state, specified by the value of the Current State Memory, becomes the current state.
If this state is a hierarchical state, its default entrance destination becomes the current state
and so on; until the destination of a default entrance is a leaf state.

We now need to create the two states called Game On and Game Off.

8. Click the Add State icon and place the cursor inside the Model Editor Window.
9. Click the mouse twice to create two states with the default names State0 and State1.

A right click of the mouse returns the cursor to selection mode.
10. Arrange the states so you can see both clearly.
11. Select one state instance to activate the Model Properties window and change the Logical

Name to Game On. Repeat this step with the second state instance and call it Game Off.

It is not possible to define expressions for transitions before you have created events and
attempting to do so will result in an Invalid Event Expression warning being displayed.
Events are generated by input ports, event arguments, or by internal events. Internal events
are set by Slave Processes and are not connected to the interface of this FSM module. The
first step here is to create the input/output ports and then the internal events. Proceed as
follows:

12. Select the Add Input Port icon on the toolbar and click the mouse five times with the cursor
placed over the left edge of the bounding box. Move the cursor slightly after each click to
space the input ports evenly.

13. Repeat the previous step but select the Add Output Port icon and click six times over the
right edge of the Model Editor Window.

The ports are all named Input1 to Input5 and Output1 to Output6. We need to rename the
ports so it is easy to identify which port is which when we instantiate the FSM module into
the system, and to define the event names for the transition expressions. See fig. 24.12 and
rename the ports in the Port Properties window. Here the port name is the event identifier.
At the same time change the Data Type of the ports to int except for the time input port
which has type float.

14. Click on the module background to activate the Model Properties window.
15. In the Internal Events property type exit error to define the two events.

Now the FSM model need a Default Entrance. Click the Default Entrance icon on the tool-
bar to change the cursor mode. Click once in the Model Editor Window to place the default

24-30 MLDesigner Version 2.8

24.12 Creating an FSM

entrance (a black dot) close to the Game Off instance. A right click of the mouse returns
the cursor to selection mode. You do not need to set any action for the default entrance but
you do need to define which state is the starting point of the FSM module. Draw a transition
from the default entrance to the Game Off state to define the starting point. The next step is
to create the transitions needed for the FSM to function.

16. Select the Add Transition icon on the toolbar and move the cursor over the Game On state.
17. Click the left mouse button once to see the Self Transition appear as a loop back to itself.

Another left mouse click anchors the transition on the state.
18. Click the left mouse twice on the edges of the Game Off state to create another Self Tran-

sition.
19. Click on the Game On state once and move the cursor towards the Game Off state. Click

the mouse once to complete the transition. Repeat the procedure from Game On to Game Off
but first move the cursor slightly up and click the mouse once on the model background to
create a node anchor so that the two transitions do not overlap. Now perform the same pro-
cedure in the opposite direction to create a transition from Game Off to Game On.

NOTE: The transition is directional so the direction the connections are made in plays an �
important role.

Return the cursor to selection mode with either a right mouse click or by selecting the Select
Tool icon from the toolbar. The transitions may need to be arranged so they look neat and
do not overlap one another. There are sliding nodes on the transitions that are visible as soon
as a transition is highlighted and the cursor is moved with depressed mouse button. Arrange
the transitions to look something like those in fig. 24.12.

Figure 24.12: game2 FSM#1 FSM

The next step is to define the Conditions and Actions for each transition.

20. Select the transition going from Game Off to Game On.

24-31

24 FSM Domain

21. In the Event Expression input field type coin
22. In the Action input field type WriteOutput(blueLt,1);
23. Select the transition going from Game Off to Game On. Change the Entry Type in the

Transition properties window from History to Default.

24. Select one of the transitions going from Game On to Game Off
25. In the Event Expression input field type error
26. In the Action input field type

WriteOutput(flashTilt,1); WriteOutput(redLt,1);
27. Select the other transitions going from Game On to Game Off
28. In the Event Expression input field type exit
29. In the Action input field type

WriteOutput(ringBell,1); WriteOutput(redLt,1);
30. Select the self transition of the Game Off state. In the Event Expression input field type

!coin. The same is entered in the Label input field automatically.
31. Select the self transition of the Game On state. In the Event Expression input field type

!exit && !error. The same is entered in the Label input field automatically.

32. Save the model.
The next step would be to create the slave processes which are needed for this system to
run. For this exercise, however, we will merely show how the slave processes are referenced
by the top level FSM. When the system is running with your FSM you can look at all the
instances and analyze how the slave processes work. It makes sense to read the rest of this
chapter while going through the system.

The simplest way to get this system running is to open the Demo system
MLD Libraries/Demos/FSM Demo/ReflexGame2/ReflexGame2 and select Save
As from the main File menu. Save the system in your MyFSM library. With the newly saved
system open in the Model Editor Window, select the MyReflex FSM and click and drag it
over the Game2 FSM#1 instance. You will see the color of the model instance change in-
dicating it is possible to replace the instance with your FSM. Release the mouse button to
replace the model instance while keeping all connections between ports intact. If all port
names were typed correctly as per the example, all connections will be replaced as well. If
any connections are not intact, check your FSM port names and make sure they are the same
as the demo FSM.

The Slave Process must now be defined:

33. Double-click the MyReflex model instance.
34. Select the state Game On to activate the State Properties window.
35. Click on the field Slave Path and click the Module icon to open the Select Slave Model

dialog.
36. Select MLD Libraries/Demos/FSM Demo/Reflex Game2/GameOn as the slave

process and click OK

37. Save the model.

24-32 MLDesigner Version 2.8

24.12 Creating an FSM

The game can now be started using your FSM and the GameOn slave process.

NOTE: At the moment, MLDesigner is not able to determine internal events. Always check that �
the field is properly set (to use the events) and that these events are properly controlled
by slave processes.

rule1_FSM#1
�

rule2_FSM#1
�

Fork.output=2#1� 1

2

time

ready

stop

go

exit

error

greenLt

yellowLt

Rule1

Rule2

Figure 24.13: the GameOn slave module, in DE domain

The Game On module is a slave process consisting of the rules for the two players, as shown in
fig. 24.13. This module is implemented in the DE domain and is nothing more than a divert to two
other FSMs that implement two rules of the game.

If we analyze the GameOn module, we can see how the interfaces to FSMs are implemented.
Once again, the events to be controlled are implemented as input and output ports (the names of
these ports are, of course, identical to the events in the master FSM). The DE module consists
of two concurrent FSMs to implement the rules of the game. These are interconnected using a
zero-delay(!) loop and thus form an instantaneous dialog between the two players.

The two slave FSMs, as shown in fig. 24.14 and fig. 24.15 are created in exactly the same way as
the MyReflex FSM explained above. They can be found at
$MLD/MLD Libraries/FSM/Demo/reflexGame2/rule1 FSM and
$MLD/MLD Libraries/FSM/Demo/reflexGame2/rule2 FSM

In several states, we need to count ticks from the clock (each clock is given as an event, in our
system simply called time, and has been given to every slave process). The counting is a simple
arithmetic computation that can be performed using the data flow graph shown in fig. 24.16.

This graph, realized in the SDF domain, simply counts ticks, compares the count against a constant
(this denotes the maximum time) and emits a timeout event when the threshold is exceeded.

24-33

24 FSM Domain

Figure 24.14: rule1 FSM for GameOn

Figure 24.15: rule2 FSM for GameOn

24-34 MLDesigner Version 2.8

24.13 Backward Compatibility

Add.input=2#1� Fork.output=2#1� 1

2

Test.condition=GE#1�

Const#1�

time timeout

When time elapsed is larger than 1000, it will
emit the error signal. (ie. error == 1)

Figure 24.16: The count module, in SDF domain

24.13 Backward Compatibility
The Create STD File property, in the model properties window, associated with MLDesigner FSM
models, allows you to revert FSM models to the old format. The main purpose for this property is
the further support of FSM code-generating tools which are based on the semantic of Ptolemy and
previous versions of MLDesigner.
If the value of this property is set to Yes, the STD file with the name of the source FSM model and
the extension .std is generated each time the associated FSM model is saved.

Only the top-level states of the FSM model and transitions, where the source state and the target
state is a top-level state, are considered. If the FSM model contains hierarchical states a warn-
ing message occurs while generating the STD file. History states are ignored by the STD file
generator. Not all the state and transition properties of the new MLDesigner FSM model can be
mapped into the STD representation. The State Entry Action, State Exit Action
and Transition Guard Condition property are not supported.

NOTE: The action property of a transition in the STD representation simply contains a list of �
names of output ports of the FSM model. The transition outputs an event on this ports if
the transition fires. The STD file generator parses the contents of the action property of
a MLDesigner FSM transition for the names of the FSM model output ports, to create
the action for the associated transition in the STD representation.

A generated STD file is shown in the MLDesigner model file view as a sub-model of the associated
FSM model but it is physically stored in the same directory. Changes made to STD files do not
influence the source MLDesigner FSM model and may be edited using the FSM STD editor.

24-35

24 FSM Domain

24.14 ANSI C Code Synthesis

24.14.1 Overview

The integrated ANSI C code generator enables generation of highly portable and run-time system
independent C code for FSM based MLDesigner models (section 24.14.2). Major application area
of this code generation option is to complete the model-based design flow for software control
units of embedded and real-time systems. In other words, ANSI C code synthesis of FSM models
offers the possibility to transform a designed and verified model into functional equivalent ANSI
C source code. With respect to some limitations (section 24.14.4), the code generator supports all
significant design elements of MLDesigner FSM models. The resulting source code can be cus-
tomized for specific run-time systems (section 24.14.8), provided that the underlying C compiler
is ANSI C conform.

NOTE: Most parts of this section are taken from [Rat03].�

24.14.2 Generator Input

MLDesigner provides automated ANSI C code generation for two generator input model types:
FSM modules and single FSM models.
Basically, an FSM module is a module of the discrete event (DE) domain. But the entire mod-
ule functionality is represented by interconnected FSM instances or lower level FSM modules
(fig. 24.17).

lower level
FSM

Module

Figure 24.17: FSM Module

Likewise any other MLDesigner module, an FSM module may possess input and output interface
ports and supports internal memories and parameter arguments.
In case automated code generation is used to produce ANSI C code for a single FSM model, the
code generator internally creates a corresponding FSM module. Such a special FSM module just
includes one instance of the selected FSM model and the same input/output interface. Accordingly,
each FSM instance port is connected to its associated module interface port.

24-36 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

24.14.3 Generator Output
The set of source files, produced by the code generator, is divided into three categories. First,
the generator output includes a separate C source file for the implementation of each FSM model,
which is instantiated in the generator input FSM module. The second category implements an as-
sociated DE run-time environment (section 24.14.6) to ensure an input model equivalent execution
behavior. Finally, a set of configuration files enables a run-time system specific code customization
(section 24.14.8).
The complete list of output source files and additional content details are given in section 24.14.7.

24.14.4 Limitations
Some design limitations and conditions are necessary to ensure widespread and efficient usage of
the ANSI C source code, produced by the code generator.

24.14.4.1 FSM Module Limitations

A valid FSM module must only contain single interface ports and must not include any lower level
FSM module instance with multi ports.
Module interface ports and instance ports of type anytype are considered as integer ports by the
code generator.
Neither internal nor external event elements are directly supported for FSM modules.
Lastly, an FSM module, directly used as generator input model, must not contain external memory
elements.

24.14.4.2 FSM Semantic Limitations

FSM state slave models and all related properties are not supported.
To avoid additional code overhead, the code generator does not implement the current state mem-
ory as well as the associated current state enumeration data structure of instantiated FSM models.
Only internal event elements are supported for FSM models, used to represent local and type-less
asynchronous timer events.
In case of a single FSM model is directly used as generator input model, it must not contain
external memory elements.
Finally, the set of supported action statements is restricted in terms of unsupported design elements
and data types.
Table 24.1 lists all significant features of the MLDesigner FSM semantic in conjunction with ANSI
C code synthesis.
FSM action built-in function limitations are listed in table 24.2 and table 24.3.

24.14.4.3 Data Type Limitations

ANSI C code synthesis of MLDesigner FSM models supports almost all data types, provided by
the system design tool. Some limitations have to be made in terms of memory consumption and
run-time efficiency.
Only well defined data types of a fixed memory size are allowed to avoid dynamic memory al-
location. In this context, a maximum length must be defined for string characters. Furthermore,

24-37

24 FSM Domain

Feature supported Comment

Input Ports yes

Output Ports yes

Internal Memories yes

External Memories limited not supported in case of single FSM
input models

Internal Special Events yes considered as local and type-less
asynchronous timer events

External Special Events no

Internal Events Property no related to state slave models

Parameters yes

Current State Memory no

Current State Data Structure no related to current state memory

State XOR-Decomposition yes

State Slave Model no

State Logical Name yes used for FSM debugging

State Entry Action limited depends on supported statements

State Exit Action limited depends on supported statements

Transition Event Expression yes

Transition Guard Condition limited depends on supported statements

Transition Action limited depends on supported statements

Transition Label no not required

Transition Preemptive Flag no related to state slave models

Transition Entry Type no related to state slave models

Static History States yes

Recursive History States yes

Default Entrance Action limited depends on supported statements

Additional Code Property no

Table 24.1: FSM Semantic Limitations

24-38 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

Built-In Function supported

DSToFloat yes

DSToInt yes

InsertFieldDS yes

SelectFieldDS yes

EnumIsEqual yes

EnumToInt yes

EnumToString yes

IntToEnum yes

StringToEnum yes

DecMemory yes

IncMemory yes

ReadFloatMemory yes

ReadIntMemory yes

ReadMemory yes

ReadStringMemory yes

ResetMemory no

WriteMemory yes

BinomialRangen yes

ExpRangen yes

GaussianRangen yes

PoissonRangen yes

TNow yes

UniformRangen yes

e yes

pi yes

DataNew yes

ReadBufferedInput yes

ReadNewInput yes

WriteOutput yes

Table 24.2: FSM Action Built-In Function Limitations (1)

24-39

24 FSM Domain

Built-In Function supported

ClearQueue no

Dequeue no

Enqueue no

InitQueue no

PeekQueue no

PokeQueue no

QueueCheck no

QueueLength no

RemoveElement no

ErrorNumber no

ErrorString yes

InfoNumber no

InfoString yes

WarningNumber no

WarningString yes

CancelEvent only with integer event ID

EventIsScheduled yes

EventResidualTime yes

ReadCurrentEvent no

ScheduleEvent only with 3 arguments and integer event ID

AccessElementFloatVector yes

SetElementFloatVector yes

AccessElementVector no

ChangeLengthVector no

LengthOfVector yes

SetElementVector no

AccessElementIntVector yes

SetElementIntVector yes

Table 24.3: FSM Action Built-In Function Limitations (2)

24-40 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

the set of vector data structures is limited to integer vector and float vector, both with a settable
maximum number of elements.
Lastly, connected ports and linked memory arguments must be of exact the same data type, because
the code generator does not support data type inheritance.
Table 24.4 presents all data types, supported for ANSI C code synthesis of MLDesigner FSM
models. Members of composite data structures can be of any of these types, for instance another
composite data structure.

Data Type Comment

Integer

Float

String fixed number of characters

Composite Data Structures

Enumerations

Integer Vector fixed number of elements

Float Vector fixed number of elements

Table 24.4: Data Type Limitations

24.14.5 Code Generation Process
ANSI C code synthesis for either an FSM module or single FSM model can be activated by the
Generate ANSI C Code icon available in the appropriate model toolbar or model context menu.
Directly after code generation has been activated, the given generator input model is first checked
for design errors and inconsistencies. Additionally, the input model is hierarchically parsed for
design elements, not supported by the code generator. Corresponding error and warning messages
are shown in the Log Window of the Console View. In this context, code generation aborts, if
error messages are present. Else, if just warning messages are present, the user is prompted by
an additional dialog box to choose to continue or to abort code synthesis. Otherwise, in case a
given input model satisfies all generator conditions and limitations, code generation automatically
continues and the configuration dialog box is shown (fig. 24.18).
This dialog box is mainly used to select a directory name and path for the output source files. In
case the selected directory already includes a set of generated source files, the configuration dialog
box provides an option to specify how existing configuration source files are handled by the code
generator.
Additionally, this dialog box provides general pre-customization options to:

• determine the size of numeric types
• determine the length of involved numeric vector types and strings
• determine either a random or fixed seed used by involved random number generator built-in

functions
• enable specific code debug sections

24-41

24 FSM Domain

Figure 24.18: Code Generator Configuration Dialog

24-42 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

After all settings are done, ANSI C code generation for the selected input model can be started by
the Generate button.
In case of code generation failed, for instance, the output source files could not be saved in terms
of not enough free disk space, a message box is prompted, showing internal generator problems.
Otherwise, the user is informed about successful code generation and the output source files are
available in the selected directory.

24.14.6 Run-Time Environment
To ensure an equivalent execution behavior between a generator input model and its corresponding
ANSI C code implementation, the generator output includes an additional run-time environment.
The principle task of this run-time environment is to control execution of interconnected FSM
instances. Since FSM modules are designed and simulated under a discrete event (DE) model
of computation, the run-time environment must ensure an equivalent run-time behavior for every
FSM instance. Based on the fact that generated output code is mainly used as software control
units in an embedded and real-time application field, additional real-time conditions have to be
considered in conjunction with event dispatching time and FSM instance execution duration. In
this context, the run-time environment can be considered as a real-time operating system (RTOS)
and every state machine instance represents a system task.

24.14.6.1 Scheduler

The underlying RTOS scheduler is basically an ANSI C reimplementation of the integrated MLDe-
signer DE priority-free scheduler.

Event Queue Central scheduler element is an event queue (EventQ), represented by a single
linked list of EventQ entries. An EventQ entry combines all information, required to perform a
specific task.

Task Interaction Connections between FSM instances are implemented via emitter and deliver
functions. The RTOS includes an emitter function for each individual instance output port and a
deliver function for each non-terminated instance input port, respectively.
During instance execution, an emitter function is called whenever the appropriate output port is
triggered to send new events. Internally, this function schedules a new EventQ entry for each
connected instance input port.
Whenever the scheduler processes an input EventQ entry, the deliver function of the appropriate
instance input port is called.

Interface Interaction Similar to interaction between FSM instances, the RTOS manages FSM
module interface ports on the basis of customizable generic get and send functions (24.14.8.3).
The get function of each individual interface input port returns a boolean value (either 1 for true
or 0 for false) to determine presence of a new event on this input port. Directly after a clock tick
has been occurred, the scheduler calls all present get functions to check the module interface for
new input events. In case a new event is present on an interface input port, an EventQ entry is
scheduled for each connected instance input port.

24-43

24 FSM Domain

If an instance output port is connected to an interface output port, the associated send function is
called inside the instance output emitter function to send new data to the module output interface.
In the special case that an interface input port is directly connected to an interface output port,
no EventQ entry is scheduled and the output send function us called directly after the scheduler
grabbed a new event by the input get function.

Timelines In reference to an underlying DE model of computation and additional real-time
conditions, the RTOS includes two separate timelines.
First, an external clock tick timeline of a configured clock tick interval (CTI) determines the global
system clock pulse. A corresponding clock tick counter (CTC) is incremented each time a clock
tick occurred.
Secondly, an internal system time counter (STC) is used as time base for EventQ entries. To
ensure a quasi-zero-delayed execution behavior of FSM instances, the STC is not updated until all
scheduled synchronous events for this time stamp are processed.
While the scheduler is able to perform all tasks, related to a specific system time stamp, within one
clock tick period, both timelines are running synchronously. Otherwise, in case processing of all
events, scheduled for the current internal system time, exceeds the CTI limit, a clock tick overrun
occurs and given real-time conditions might be violated. In a soft real-time system, a clock tick
overrun might be ignorable, but in case of hard real-time conditions, the application usually has
to be aborted and reconfigured with a longer clock tick interval. To define consequences of a
real-time violation, the generator output provides a configurable handler function, which is called
whenever the defined real-time level could not be met.
Figure 24.19 shows an example soft real-time scenario with the time response of both RTOS
timelines.
All RTOS timeline related configuration units are detailed described in section 24.14.8.2.

t STC t STC t STC t STC+1 t STC+1 t STC+2 t STC+2

CTC CTC+1 CTC+2 CTC+3

STC STC+1 STC+2 STC+3

clock tick timelineCTI clock tick overrun

tasks with time stamp system timeline

t STC+3 t STC+3

Figure 24.19: RTOS Timelines

24.14.6.2 Custom Memory Management

The RTOS includes a separate dynamic memory management, customized for a particular gener-
ator input model.
Within implementation of FSM modules, dynamic memory management is only essential in con-
junction with EventQ entries and associated input event data, since the number of scheduled events
is permanently changing. In this context, the RTOS memory handling is based on partitions of con-
tiguous memory areas. Thereby, a particular FSM module requires as many partitions as different
data types are used between input/output port connections. Additionally, one special partition is
necessary in conjunction with EventQ entries.

24-44 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

Each partition is subdivided into a configurable number of fixed-sized memory blocks (fig. 24.20).
In doing so, the block byte size is typically equivalent to the appropriate data type size. Within a
particular partition, all free blocks are handled by a single linked list. In other words, if a specific
data type representation requires n bytes, the related memory partition is subdivided into blocks
of size n.
But since all free blocks of a partition are connected on the basis of pointer links, at least as many
bytes are used for a block as are needed by the run-time system to implement a pointer. This means
that if, for instance, a data type requires two bytes, but a specific run-time system uses 4 bytes to
implement a pointer, the appropriate memory partition is subdivided into blocks of 4 bytes.

partition

block

partition start
address

block start
address

used block

Figure 24.20: Dynamic Memory Partition

The total number of reserved partition blocks is user configurable (24.14.8.1). But to ensure robust
output code, all partitions are initially divided into as many blocks as are determined on the basis
of a worst case execution scenario. This means that, for instance, the code generator counts the
number of input/output connections inside a given input FSM module and reserves that much
blocks for EventQ entries for the case that all input events are simultaneously scheduled. If this
case can be excluded, the total number of EventQ entry blocks can be reduced to save system
memory.

24.14.7 Output Source Files
The set of generator output files includes ANSI C declaration header (*.h) as well as definition
source (*.c) files, which are partially dependent on each other. With respect to older C compilers,
all source file names are limited to 8 characters.
Figure 24.21 demonstrates a complete project of code generator output files with appropriate de-
pendencies.

24.14.7.1 Configuration Files

Including different generic template functions and a set of boolean switches, the configuration
files (CFG Base.h, CFG OS.c, CFG IO.c) are used for code customization. Detailed described in
section 24.14.8, this customization set provides all setup options for an optimized and successful
execution on a specific run-time system.

24-45

24 FSM Domain

CFG_Base.h CFG_OS.c CFG_IO.c IO_Ports.h

Types.h Types.c

FSM_Base.h FSM_Base.c OS_Base.h OS_Base.c

FSM0.c FSMn.c OS_Main.c Main.c

Figure 24.21: Code Generator Output Files

In case the selected target code compiler supports strictly conform ANSI C code, only these files
are meant to be modified after code generation.

24.14.7.2 Data Type Files

All global data types and structures are separately implemented (Types.h, Types.c), because these
types are included in any other target code section. The data type implementation includes all C
structures and functions, in conjunction with input model composite data structures and enumera-
tions. Furthermore, multiple used internal RTOS types are defined within these files.

24.14.7.3 FSM Files

The complete state transition diagram representation of an instantiated FSM model and all associ-
ated instances are implemented by a separate FSM source file.
Additionally, this set of state machine related source files includes an FSM base implementation
(FSM Base.h, FSM Base.c) for commonly used code sections, like the ANSI C implementation
of action built-in functions.

24.14.7.4 RTOS Files

Almost the complete RTOS functionality, as task and interface interaction, timelines and DE
scheduler, is implemented by a single source file (OS Main.c). Only EventQ handling and custom
memory management are outsourced to an operating system base implementation (OS Base.h,
OS Base.c). These parts are to be shared with FSMs in case of timer events are present.

24.14.7.5 Application Main File

Many embedded and real-time systems require that the C application main function is imple-
mented at top of the appropriate source file, to setup the instruction pointer at the right position.
Thus, a generated source code project includes a separate source file (Main.c) for this function.
Likewise configuration files, this file is optionally backuped in terms of an additional main func-
tion customization, for instance, to handle application arguments.

24-46 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

24.14.7.6 Makefile

An additional makefile can be configured and used for comfortable compilation of the generated
source files.

24.14.8 Code Customization

An accurate and efficient execution of a generated FSM module application on a specific run-time
system is affected by several hardware/software architecture layers. Therefore, in reference to
three existing configuration files, the output code customization is divided into three functional
parts.
Figure 24.22 shows the different customization layers within a hardware/software architecture.

Hardware

Software

CPU Memory Timer Actuators Sensors

Porting Interface Configuration
Processor-Specific Code

Hardware-Independent Code

Application Settings

CFG_OS.c CFG_IO.c

CFG_Base.c

Figure 24.22: Hardware/Software Architecture - Customization Layers

24.14.8.1 General Settings

Global and universal valid settings are handled separately by the CFG Base.h configuration file.
First of all, this customization unit includes a section for data type related settings. Especially
important is the range and byte size definition of numeric integer and floating point data types.
These settings are highly run-time system dependent.
Additionally, if an input model uses numeric vectors or strings, an appropriate maximum number
of elements can be determined within this data type configuration section.
The real-time level of the application can be defined by the maximum number of allowed clock
ticks between the scheduled time stamp of an event and its real dispatching point in time. In case
of hard real-time conditions, the real-time level has to be set to 0.
For all existing custom memory partitions an optimized number of reserved partition blocks can
be set.
In conjunction with random number generator built-in functions, a constant global seed is defin-
able or a random seed can be enabled. Latter one is based on the run-time system clock.
Finally, a set of boolean switches is present to enable miscellaneous debug code sections.

24-47

24 FSM Domain

24.14.8.2 Porting

MLDesigner FSM code synthesis produces high portable and strictly ANSI C conform code with-
out any run-time system dependencies. In doing so, some processor specific code in C and/or as-
sembly language is necessary to adapt a particular RTOS to a micro-processor or micro-controller.
Clock tick handling is thereby the most critical configuration part for several reasons.

First, dependent on appropriate real-time conditions, an accurate clock tick interval has to be
determined. This usually requires a certain trade-off, because a short CTI provides in fact exact
timing, but on the other hand, the micro-processor must execute a clock tick handling routine
frequently. Therefore, a short clock tick can decrease system throughput quite considerably by
increasing the amount of micro-processor time spent in the clock tick handling routine.

Secondly, the setup has to ensure an independent and cyclical clock tick occurrence. In this con-
text, an interrupt service routine or a periodic timer signal approach has to be used to call a clock
tick handling routine.

In the third place, a code synthesis RTOS has to be configured in such a way that CPU is not
permanently blocked by the scheduler, while it is waiting for the next clock tick. Especially in case
of a generated application is used as a single task of a superordinate multitasking operating system,
it has frequently to give up CPU control, when no more FSM instances have to be performed
for current system time. Otherwise, the multitasking operating system is not able to perform
concurrent tasks.

Finally, the real-time violation handler has to be configured according to either soft or hard real-
time conditions.

Since the clock tick counter is represented by an unsigned integer variable of a finite range, a CTC
overflow occurs when the counter exceeds range limit and is instead set back to zero. In case of
such an integer range overflow is critical in a specific application area, the RTOS configuration file
CFG OS.c includes a CTC overflow handler function.

Table 24.5 lists all template functions of the CFG OS.c configuration file.

Template Function Description

ctSetup used for clock tick setup, e.g. to start a timer ISR

ctWrapup used for clock tick wrap-up, e.g. to stop a timer ISR

ctWaitNextTick called whenever scheduler waits for next clock tick, e.g. to
give up CPU control

ctCounterOverflowHandler CTC overflow handler

osRealTimeViolationHandler real-time violation handler

userSetup additional user setup, called before ctSetup

userWrapup additional user wrap-up, called after ctWrapup

Table 24.5: RTOS Porting Functions

24-48 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

24.14.8.3 Interface Configuration

The interface configuration file CFG IO.c is used to define a hardware/software interface for a
generated FSM module application within an embedded real-time system. In other words, to
connect original FSM module input/output interface ports with appropriate actuator and sensor
hardware components. Therefore, the customizable generic get and send functions, used by the
RTOS for interface interaction, are defined within this configuration unit.
Thereby, get input functions inform the scheduler about active sensor components and send output
functions are responsible to enable actuator components. Typically, such actuators and sensors
are handled on the basis of specific driver software modules, which are available to configure a
hardware/software interface.
Whenever a sensor is active, the associated boolean get input function has to be implemented in
such a way that possibly input data are set and that it returns true when it is called next time by the
RTOS scheduler, to specify presence of a new interface input event.
The send output function of a specific interface output port has to activate an associated actuator
component, possibly dependent on given output data.
Additionally, an interface configuration unit includes three general template functions, which are
described in table 24.6.

Template Function Description

ioSetup called before userSetup and used for general interface
setup, e.g. to initialize actuators and sensors

ioWrapup called after userWrapup and used for general interface
wrap-up, e.g. to reset actuators and sensors

ioUserGetInputs called before scheduler checks interface inputs, e.g. to up-
date sensor related variables

Table 24.6: General Interface Configuration Functions

An example interface configuration is shown in section 24.14.10.5.

24.14.9 Code Debugging
ANSI C code synthesis of MLDesigner FSM models supports monitoring of relevant information
within several areas of generated FSM module applications.
The debug code sections can be enabled and disabled via the boolean switches defined in the
CFG Base.h configuration file.
Debug information are streamed via the fprintf C function to the stderr output.

24.14.9.1 FSM Behavior

#define FSMn_DEBUG 1

The configuration unit for debug settings includes a boolean switch for each involved state ma-
chine model, to enable monitoring of appropriate instance behavior. In case that debugging for
a specific FSM model is enabled and an instance of this state machine is able to perform a state

24-49

24 FSM Domain

change, all related execution steps are displayed. These execution steps include the firing transi-
tion, performed actions and the new current state.

24.14.9.2 Task Execution

#define OS_DEBUG_TASK 1

To validate an accurate RTOS task execution order, especially in conjunction with given real-time
conditions, task debugging enables monitoring of the currently executing FSM instance.

24.14.9.3 Data Transfer

#define OS_DEBUG_DELIVER_DATA 1
#define OS_DEBUG_EMIT_DATA 1
#define IO_DEBUG_INPUT_DATA 1
#define IO_DEBUG_OUTPUT_DATA 1

Based on corresponding debug settings, the complete RTOS task interaction and interface data
transfer can be displayed. This means that, whenever an instance output port emits new data to be
scheduled for an appropriate instance input port, both procedures, data sending and delivery, can
be independently debugged. Respectively, interface debugging can be enabled to monitor received
input data and sent output data.

24.14.9.4 Dynamic Memory

#define MEM_DEBUG 1

Concerning to an optimized memory consumption, memory partitions can be debugged in such a
way that all associated partition information are displayed, whenever a memory block is allocated
or deallocated.
Additionally, in case the application has been aborted after a specific run-time period, final parti-
tion snapshots provide information about how many blocks have been maximum used within this
execution duration.

24.14.10 Example
The present section exemplifies, how ANSI C code synthesis for MLDesigner FSM models is used
to develop a controller application for a Hitachi H8 micro-controller. The task of this controller
application is to manage a LEGO Mindstorms block sorter robot (fig. 24.23). In this context,
the legOS custom firmware is used on the micro-controller to execute C written programs.

24.14.10.1 Block Sorter Function

The block sorter robot represents a machine to sort different colored blocks in reference to their
color lightness. Thereby, only two cases are considered: dark and bright colored blocks.
While the machine is running, blocks are moving one after another on a conveyor belt until a
sensor has been reached and activated by the first block. In reaction, the conveyor belt stops and

24-50 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

Figure 24.23: LEGO Mindstorms Block Sorter Robot

color lightness of this block is determined. The measured value is compared to a threshold and,
based on the result, a sorter unit unloads the block to either left or right side. Once the sorter unit is
ready again, the conveyor belt moves on. Additionally, in case of interferences, a start/stop button
is present to pause the procedure immediately and to continue it with a second press.
In reference to this block sorter functionality, the underlying LEGO robot includes two motor
bricks to run the conveyor belt and to move the sorter unit. Furthermore, one touch sensor is used
to activate the sorter unit at the end of the conveyor belt and a second one represents the start/stop
button. Block color lightness is measured by a light sensor brick.

24.14.10.2 Modeling

To use ANSI C code synthesis in conjunction with the controller application for the block sorter
robot, the complete control function has to be developed on the basis of MLDesigner FSM mod-
els. Since the robot mainly consists of a conveyor belt and a sorter unit, the control function is
decomposed into a conveyor belt controlling FSM (fig. 24.24) and an automaton, which handles
the sorter unit (fig. 24.25). To recompose the control function, a Conveyor Belt FSM instance and
a Sorter FSM instance are interconnected inside a higher level controller FSM module (fig. 24.26).
This FSM module also defines the input/output interface of the controller application.

24.14.10.3 Simulation

After the function of the controller application has been developed in MLDesigner, the resulting
controller FSM module can be validated on the basis of an appropriate system model, as shown in
fig. 24.27.
Inside this system, an additional mission level environment model is interconnected with a con-
troller FSM module instance. During simulation, this environment model is mainly used to pro-

24-51

24 FSM Domain

� ��� � ���	�

�����

��� � �

��� ���� �������������� ���� �����������

� ���	�� !�"�
� � � �"��$%� � �'&

��� ���� �����������

() �*�+�,�!� � � � � �

��� ���� �����������

 � � �"��$%� � �'&

� ���	�� !�"�
�

� � �-�	�.�

� � �/�0�1�2�

 � � �3�4 � � � �

Figure 24.24: Block Sorter Modeling: Conveyor Belt FSM

� ��� � ����� 	

��� 	

��� 	 ���� � ����	

� ��� 	 ����� � ����	

��������� �!	"� � ��� ��� 	 � ��# 	���#
 � 	"$

�%�!	 � �&� ���'	 � �&#()��#
 �)$

 	 �+*

,-�.	/	 � #.01#.02��� 3 �� 	�� 34	�� 	

5%� ���()36��#
.��

7)5!� �8�'	:9�#(���#
 � 	�$<;=5!� ���'	�>4� �
 � � � �!?

7�5!� �8�'	@9�#'	��8#
 �)$BA+CD5!� �8�')>E� �
 � � � �!?

>6� � � 7 3 �� 	F3�	F��	G�
%H � ���IC%CKJL?

>8� � �
7 3 �� 	�3�	"�!	M�
�H � ���NC�CPO!?

>8� � �
7 3 �� 	�3�	"�!	M�
�H � ���NC�CPO!?

,-�.	/	 � #.01#.02���

,-�.	/	 � #.01#.02���

Q >8� � � R S � M ��#(T36)�%	T�R 5%� ����	:9)#�)��#
 �)$

R 3 �� 	�36	��%	@�
�H � �%�

R 3 �� 	:UV� ��WX	Y� � #

R >�� � � >�� � �X3Z	[� �-*

,-�.	/	 � #.01#.02���

3 �� 	�� 34	�� 	

3 �8 	"�]\ �!����$

3 �6 	�� R � 	 ��

5%� ���()36��#
.��

5%� ���()36��#
.�� 0P#

5�� ����	T3E��#
X�� 0B���

Figure 24.25: Block Sorter Modeling: Sorter FSM

24-52 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

���������
	��������� ����������������! #"� #"%$&$

' ()
* +)
, +-
. /

01�2�23�425762 28��29 ��:; !<;"=
��:! #<!"%$�$

' ()
* +)
' * -)
*

�>���?�@���A���B�
���������! #"� #"%$&$

' ()
* +)
' * -)
*

' ()
* +)
, +-
. /

5%�#9 ��6#9DC>���E�#9F!G H!4��E5�6# !8I�!9

F!G H!4J�E5�6! !8I�!9K"�
F#G H#4J��5�6! #8I�#9K"%$&$

ML��E�N����OP��ORQNQ

S
T U�V �D������W����

X �YL!Z V ���=�!W1�Y�
\[��#]%O^�

_[A�`]aObQ@Q

�c���D�N�A�d�e�\�E�A�

S
T U�V �D������W����?Of�

SaT U�V �@�>�A�`W7���KOgQNQ

Figure 24.26: Block Sorter Modeling: Controller FSM Module

��� �����	����
����
���������
���������� �

��� �!�#"%$'&($'&�)*)
+%, -%. �0/�1'$%23"%4
56"7�78 .7/�17$72 "74

�:9;$%<;&=$
��9%$'<%&�)!)

/�"'4 �#1'4?>�" �0"'4

+%, -%.@�0/�1%$%23"%4�&($
+', -'.@�#/�1%$'23"'4�&�)*)

�A� �����B�A�(
C���(
��D�FE	G�� H��I� �(�KJA�6L��M
*�(��EN�(�6�

�:9;$%<;&=$
��9%$'<%&�)!)

/�"'4 �#1'4?>�" �0"'4

+%, -%.@�0/�1%$%23"%4�&($
+', -'.@�#/�1%$'23"'4�&�)*)

��� �!�#"%$'&($'&�)*)
+%, -%. �0/�1'$%23"%4
56"7�78 .7/�17$72 "74

Figure 24.27: Block Sorter Simulation: System Model

24-53

24 FSM Domain

duce significant signals for the controller FSM module and to evaluate and display corresponding
outputs. In other words, it simulates actuators and sensors of the real block sorter robot.
The main environment components are thereby an interactive control panel with two buttons
(fig. 24.28) and a 3D visualization of the robot (fig. 24.29).

Figure 24.28: Block Sorter Simulation: Control Panel

Figure 24.29: Block Sorter Simulation: 3D Visualization

One control panel button is used to put a new random colored block on the conveyor belt of
the 3D block sorter model and the second button represents the real start/stop button. Based on
control panel activities, the 3D block sorter model visualizes all controller FSM module outputs
and produces relevant sensor events, for instance, when a block reached the touch sensor or the
light sensor is active.
Such a qualified and realistic simulation model enables detailed testing of the controller FSM
module functions.

24.14.10.4 Code Synthesis

To produce functional equivalent C code, the controller FSM module is used as input model for the
ANSI C code generator. In this context, name and path of the target directory for the output source

24-54 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

files have to be determined by the configuration dialog. Furthermore, a minimum integer size
of 8 bit can be selected, because integer values within the controller application will not exceed
the corresponding range limit. After the configuration dialog has been accepted by the Generate
button, the code generator produces the ANSI C implementation of the controller FSM module
and creates all related source files inside the selected directory.

24.14.10.5 Code Customization

Before the generated code can be downloaded and executed on the micro-controller, it has to be
customized and compiled on a host computer, which provides the legOS API and C compiler.
In this context, the CFG Base.h configuration file can be left unmodified for several reasons.
First, no data type settings are necessary, because neither character strings nor numeric vector
data types are used in the controller application and integer size has already been defined by the
configuration dialog. Secondly, no random seed has to be configured in matters of involved random
number generator built-in functions. In the third place, memory optimization in connection with
the number of reserved partition blocks can be disregarded. Only an integer partition and the
EventQ entry partition are present, each with 6 predefined blocks. Finally, all debug options must
be left disabled in consideration of legOS is not strictly ANSI C conform and does not support
output streams.
The RTOS clock tick configuration within the CFG OS.c file can be limited to modifications of
the ctWaitNextTick function, since the Hitachi H8 micro-controller is not a real-time system. In
doing so, this method is implemented in such a way that after all tasks for the present system time
have been processed, the RTOS scheduler gives up control to legOS for 100ms. Afterwards, the
clock tick handler is called.
To setup the controller application input/output interface, all input get as well as output send
functions of the CFG IO.c file have to be configured using motor and sensor driver functions.
These functions are provided by the legOS API. Additionally, three local boolean variables are
used in connection with sensor activities and motor speeds are initialized by the ioSetup function.
As a result of legOS is not strictly ANSI C conform and does not support standard input/output
streams, the corresponding include statement has to be removed from the Types.h source file to
satisfy the legOS C Compiler. Except this minor modification, all other non-configuration files
can be left untouched.
Here are the customized configuration files of the block sorter controller application.

CFG Base.h (general settings):

#ifndef __CFG_Base_h
#define __CFG_Base_h

typedef char int8bit;
typedef unsigned char uint8bit;

typedef short int int16bit;
typedef unsigned short int uint16bit;

typedef long int int32bit;

24-55

24 FSM Domain

typedef unsigned long int uint32bit;

typedef unsigned char IntegerT;
typedef double FloatT;

/* maximum number of allowed clock ticks between
the scheduled time stamp of an event and its real
dispatching point in time */
#define REAL_TIME_LEVEL 0

/* number of blocks in the IntegerT memory partition */
#define MEM_NUM_IntegerT_BLOCKS 6

/* number of blocks in the event queue memory partition */
#define MEM_NUM_EVENT_QUEUE_ENTRIES 6

#define SEED 123456789
#define USE_RANDOM_SEED 0

/* debug FSM "ConveyorBelt" */
#define FSM0_DEBUG 0

/* debug FSM "Sorter" */
#define FSM1_DEBUG 0

/* debug runtime errors */
#define DEBUG_RUNTIME_ERRORS 0

/* debug task execution */
#define OS_DEBUG_TASK 0

/* debug task input data */
#define OS_DEBUG_DELIVER_DATA 0

/* debug task output data */
#define OS_DEBUG_EMIT_DATA 0

/* debug interface input data */
#define IO_DEBUG_INPUT_DATA 0

/* debug interface output data */
#define IO_DEBUG_OUTPUT_DATA 0

/* debug dynamic memory allocation and de-allocation */
#define MEM_DEBUG 0

24-56 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

#endif

CFG OS.c (RTOS configuration):

#include <unistd.h>

#include "Types.h"

/* external clock tick counter declaration */
extern uint32bit ct_Counter;

/* external os abort flag declaration */
extern BooleanT os_Abort;

/* external clock tick handler declaration */
void ctHandler(void);

/* external error function declaration */
void osErrorAbortRun(const StringT* pMessage);

void
ctSetup(void)
{
}

void
ctWrapup(void)
{
}

void
ctWaitNextTick(void)
{
msleep(100);
ctHandler();

}

void
ctOverrunHandler(void)
{
}

void
ctCounterOverflowHandler(void)
{
}

24-57

24 FSM Domain

void
tmrTimeStampOverflowHandler(void)
{
}

void
userSetup(void)
{
}

void userWrapup(void)
{
}

CFG IO.c (input/output interface configuration):

#include <dmotor.h>
#include <dsensor.h>
#include <rom/lcd.h>
#include <conio.h>

#include "IO_Ports.h"
#include "Types.h"

/* external error function declaration */
void osErrorAbortRun(const StringT* pMessage);

static BooleanT io_ButtonOnOff_Pressed = 0;
static BooleanT io_TouchSensor_Pressed = 0;
static BooleanT io_LightSensorActive = 0;
/* ==== USER I / O CONFIGURATION FUNCTIONS ==== */

void
ioSetup(void)
{
motor_a_speed(100);
motor_c_speed(100);

}

void
ioWrapup(void)
{
}

void

24-58 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

ioUserGetInputs(void)
{
}

/* ==== USER INPUT INTERFACE FUNCTIONS ======== */

static BooleanT
get_ButtonOnOff(IntegerT* pData)
{
if (TOUCH_1)
{
if (io_ButtonOnOff_Pressed == 0)
{
io_ButtonOnOff_Pressed = 1;
return 1;

}
}
else
io_ButtonOnOff_Pressed = 0;

return 0;
}

static BooleanT
get_LightSensor(IntegerT* pData)
{
int tLight;
if (io_LightSensorActive)
{
tLight = LIGHT_2;

*pData = tLight;
cls();
lcd_int(tLight);
return 1;

}

return 0;
}

static BooleanT
get_TouchSensor(IntegerT* pData)
{
if (TOUCH_3)
{
if (io_TouchSensor_Pressed == 0)
{

24-59

24 FSM Domain

io_TouchSensor_Pressed = 1;
return 1;

}
}
else
io_TouchSensor_Pressed = 0;

return 0;
}

/* ===== USER OUTPUT INTERFACE FUNCTIONS ====== */

static void
send_BandOn(IntegerT pData)
{
motor_a_dir(fwd);

}

static void
send_BandOff(IntegerT pData)
{
motor_a_dir(brake);

}

static void
send_SorterMotor(const EnumT* pData)
{
if (pData->mIndex == 0)
motor_c_dir(brake);

else if (pData->mIndex == 1)
motor_c_dir(fwd);

else
motor_c_dir(rev);

}

static void
send_LightSensorOn(IntegerT pData)
{
io_LightSensorActive = 1;
ds_active(&SENSOR_2);

}

static void
send_LightSensorOff(IntegerT pData)
{
io_LightSensorActive = 0;

24-60 MLDesigner Version 2.8

24.14 ANSI C Code Synthesis

ds_passive(&SENSOR_2);
}

24-61

Chapter 25

NS2 Domain

25.1 Introduction
Many modern systems depend on a network environment. The complexity of protocols used in
network environments leads to uncertainness in the design process. It is often difficult to size
network equipment properly. For example, how much bandwidth has a customer with his laptop
inside an airplane, if all the other 300 passengers want to use Internet as well? Or - what impact
has a certain error probability on the throughput of the Reno TCP implementation - what is the
impact if a New-reno, Vegas, Sack or Fack TCP implementation is used?
The system level design tool MLDesigner is a very good tool for building models of different
scenarios, including aspects of architecture, performance and functionality. MLDesigner currently
provides a limited set of specialized libraries for network protocols and network hardware. In
contrast, NS2 - a free network simulator - has a variety of models for network simulations, but
no graphical user interface and NS2 lacks the broad functionality MLDesigner provides within its
framework of different domains working together in complex simulations.
The solution for solving complex problems would be a mixture of MLDesigner’s multi purpose
and NS2’s network protocol and simulation engine. This mixture is implemented with the NS2
domain inside MLDesigner. The multi domain concept allows using different models of computa-
tion inside one simulation. The NS2 domain provides an interface to all NS2 features and models
within the GUI of MLDesigner.
The next section describes MLDesigner and NS2 more in detail and then introduces the NS2
domain of MLDesigner and shows how it can be used with the initial components defined for the
NS2 domain. It then shows how to create new MLDesigner NS2 primitives

25.2 MLDesigner and NS2
The following sections give a short overview on MLDesigner and NS2, listing the advantages and
disadvantages of both tools regarding network simulations in a design flow process.

25.2.1 Modeling Networks with MLDesigner
MLDesigner is a general-purpose modeling tool and has only a limited number of models for
network hardware and protocols. MLDesigner provides, as an add-on, a model library called

25 NS2 Domain

,,Network Building Set” [Zinb] that can be used as a framework to model network stacks including
network protocols and hardware. This library currently contains models for UDP, a simplified
version of TCP, a simple routing mechanism and some link layer models. Several wireless network
models are also available for MLDesigner, including a very detailed [Ste] model and several more
abstract [Zina] examples. The detailed 802.11 model is a direct translation of the formal 802.11
SDL description, with all known errors corrected. The abstract WLAN models use a simplified
FSM model.
Experienced modelers could use the models provided in the Network Building Set as the starting
point for developing additional network protocols. For those who want to use existing models,
another solution is needed. One attractive solution is to take advantage of the rich collection of
NS2 network protocol models.

25.2.2 About NS2
25.2.2.1 General Introduction

NS2 is Network Simulator version 2 [NS2a], a discrete event network simulator that provides a
rich collection of networking models. The simulator is written in C++ and it uses OTcl [OTc]
as command and configuration interface. Currently NS2 does not provide any kind of graphical
for setting up network topology, or configuring model elements. In addition, it does not have the
capabilities of MLDesigner (e.g., data structures, resources, etc) for modeling the hardware and
software operations that generate and process networked messages.

25.2.2.2 Existing Models inside NS2

NS2 provides models for:

• network nodes with multiple configuration possibilities.

• links for connecting the nodes together (e.g. simplex and duplex point-to-point links; links
for multi-access LANs, wireless networks and broadcast media). Bandwidth, delay, queue
type, error and loss models as well as dynamics, like “link goes down” and “link goes up”,
are configurable.

• different kinds of queues, such as Drop Tail Queuing, Fair Queuing, Stochastic Fair Queu-
ing, Deficit Round Robin Queuing, Random Early Detection Queuing, Class Based Queu-
ing, and more. Each queuing mechanism offers its own parameters for configuration.

• routing protocols that route the packets from source to destination;

• Agents (models that are related to nodes) that are responsible for sending and receiving data.
For example, NS2 provides agents for the following network protocols:

– Several TCP (Transmission Control Protocol) implementations like Reno, New-reno,
Vegas, Sack, Fack TCP, and more,

– UDP (User Datagram Protocol),

– SCTP (Stream Control Transmission Protocol) in several variations,

– SRM (Scalable Reliable Multicast), and

25-2 MLDesigner Version 2.8

25.2 MLDesigner and NS2

– some more

• timers inside the simulation;

• error models for packet losses at the link layer level;

• Local Area Networks, with channel properties like propagation delay, configurable Link
Layer and Medium Access Layer and LAN routers.

A full description of all modeling features inside NS2 is given in [NS2a].

25.2.2.3 OTcl as User Interface

Modeling in NS2 is done by writing scripts for the OTcl interpreter1. OTcl [OTc] is an object
oriented extention to Tcl. A good tutorial is available at ftp://ftp.tns.lcs.mit.edu/
pub/otcl/doc/tutorial.html. The NS documentation and some tutorials guide the user
how to write scripts for simulations.
Source code 25.1 shows a sample for a simulation with two nodes, two agents and a traffic source.
For more details about the NS2 scripting interface, there are several tutorials available in the
Internet [NS2b]. Furthermore [NS2a] is a good reference for all features and how they are used
inside Tcl scripts.

25.2.2.4 C++ as simulation backend

Behind the OTcl user interface, there is a large C++ library that includes implementations for
all the models that are inside NS2 and for the discrete event simulation engine itself. The usage
of C++ allows the NS2 framework to achieve its fast simulation speeds - in comparison to its
accuracy. The linkage between OTcl and C++ is done via the tclcl toolkit [tcl]. All important
classes in OTcl have implementations inside the C++ space. In the first chapters of [NS2a], it is
very well explained how OTcl and C++ work together forming the NS2 environment.

25.2.2.5 Summary of NS2

NS2 provides a huge amount of networking protocols. The use of OTcl as user interface provides
a maximum of flexibility for the user. Advanced users are able to use Tcl command structures, like
loops and iterations, to build complex scenarios. But, to use all the features, a lot of documentation
has to be read. At the end, after building up the simulation, the designer has only a script, which
makes difficult its presentation to customers or at conferences.
The following section shows the NS2 domain inside MLDesigner and how it is used from a mod-
eler’s point of view.

25.2.3 Linking MLDesigner and NS2
MLDesigner 2.5 introduces a new modeling domain (currently MLD Experimentals/NS2) that
can be used to create, launch, and control the execution of NS2 network traffic models from inside
MLDesigner. These NS2 models can be run stand-alone or they can be integrated into MLDesigner
models developed in other domains, such as Discrete Event.

1Of course, advanced users will code in C++, too

25-3

ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html

25 NS2 Domain

C r e a t e a s i m u l a t o r o b j e c t
s e t ns [new S i m u l a t o r]

#Open t h e nam t r a c e f i l e
s e t n f [open o u t . nam w]
$ns namtrace−a l l $nf

De f i ne a ’ f i n i s h ’ p r o c e d u r e
p roc f i n i s h {} {

g l o b a l ns n f
$ns f l u s h−t r a c e

Close t h e t r a c e f i l e
c l o s e $nf

Execu te nam on t h e t r a c e f i l e
exec nam o u t . nam &
e x i t 0

}

C r e a t e two nodes
s e t n0 [$ns node]
s e t n1 [$ns node]

C r e a t e a dup l e x l i n k between t h e nodes
$ns duplex−l i n k $n0 $n1 1Mb 10ms D r o p T a i l

C r e a t e a UDP a g e n t and a t t a c h i t t o node n0
s e t udp0 [new Agent /UDP]
$ns a t t a c h −a g e n t $n0 $udp0

C r e a t e a CBR t r a f f i c s o u r c e and a t t a c h i t t o udp0
s e t cb r0 [new A p p l i c a t i o n / T r a f f i c /CBR]
$cbr0 s e t p a c k e t S i z e 500
$cbr0 s e t i n t e r v a l 0 .005
$cbr0 a t t a c h −a g e n t $udp0

C r e a t e a Nu l l a g e n t (a t r a f f i c s i n k) and a t t a c h i t t o node n1
s e t n u l l 0 [new Agent / Nu l l]
$ns a t t a c h −a g e n t $n1 $ n u l l 0

Connect t h e t r a f f i c s o u r c e wi th t h e t r a f f i c s i n k
$ns c o n n e c t $udp0 $ n u l l 0

S c h e d u l e e v e n t s f o r t h e CBR a g e n t
$ns a t 0 . 5 ” $cbr0 s t a r t ”
$ns a t 4 . 5 ” $cbr0 s t o p ”
C a l l t h e f i n i s h p r o c e d u r e a f t e r 5 s e c o n d s o f s i m u l a t i o n t ime
$ns a t 5 . 0 ” f i n i s h ”

#Run t h e s i m u l a t i o n
$ns run

Source Code 25.1: NS2 script for a two node scenario

25-4 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

All NS2 features can be encapsulated in primitives or modules and used together with MLDe-
signer DE, FSMs, etc. This is done by using NS2 as a co-simulator. The encapsulated models will
communicate with the NS2 process that is started by the MLDesigner NS2 domain during simu-
lation startup. This is a very loose binding of MLDesigner and NS2. This allows much flexibility
on both sides. New versions, or versions of NS2 that have been enriched by custom features can
be used.

25.3 Working with the MLDesigner NS2 Domain
The rest of this chapter discusses how to link MLDesigner and NS2 so they work together. It
starts with configuring the two programs to work together. Next we describe the NS2 domain
from the modeler perspective. This is followed by a description of some example systems (see
MLD Experimentals/NS2/Demos). The chapter closes with an introduction to the primitive API
and how new features of NS2 can be used within MLDesigner.

25.3.1 Getting Started
As already mentioned in the introduction of this section, MLDesigner uses NS2 as a co-simulator,
that is MLDesigner starts, controls and stops the execution of NS2 models using a standalone NS2
process. Before that can be done, it is necessary to perform the following steps:

• Get and install an NS2 simulator

• Build the NS2 binary with -rdynamic (only on non Solaris systems)

• Set environment variable NS2 to the NS2 Source Directory

• Add the bin directory of the NS2 distribution to the PATH variable

In the following paragraphs details for each step are provided.

25.3.1.1 Get and Install NS2

The NS2 home page is http://www.isi.edu/nsnam/ns. Under http://www.isi.
edu/nsnam/ns/ns-build.html a detailed building instruction is provided. Like mentioned
on the site, the most comfortable way to get and install NS2 is to use the all-in-one packet. The
following instructions are based on an installation of the all-in-one packet. If NS2 was installed
from pieces, the instructions should be applied analogously. NS2 should be compiled successfully
before proceeding with the following steps.

25.3.1.2 Build the NS2 Binary with -rdynamic

To build up a communication between the NS2 process and MLDesigner, some additional imple-
mentations have to be included into the NS2 process. To be compatible with coming NS2 versions,
these implementations are not part of the built NS2 binary, but they are compiled and loaded into
the NS2 process in the setup phase of the MLDesigner simulation. To be able to load these com-
piled implementations into the NS2 process, the NS2 binary has to be linked with the -rdynamic

25-5

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns/ns-build.html
http://www.isi.edu/nsnam/ns/ns-build.html

25 NS2 Domain

linker option on several operating systems (excluding Solaris systems). If NS2 is compiled with
the standard makefiles, it is enough to remove the NS2 binary and recompile it with ’make
LDFLAGS=-rdynamic’. Assuming NS2 was compiled in $HOME/ns-allinone-2.27/
using the all-in-one packet, the following steps should be performed:

• change to the NS2 source directory (cd $HOME/ns-allinone-2.27/ns-2.27)

• remove ns binary (rm -f ./ns)

• rebuild the ns binary with -rdynamic (make LDFLAGS=-rdynamic)

25.3.1.3 Set NS2 Environment Variable

MLDesigner needs to know, where NS2 was compiled and where to find the NS2 executable.
This can be specified using the Target parameters NS2SourceDir and SimulatorCommand.
As default values NS2SourceDir is set to $NS2 and SimulatorCommand is set to
$NS2SourceDir/ns. The best way of telling MLDesigner where to find the NS2 program, is
to set the environment variable $NS2 to the directory where NS2 was installed to before starting
MLDesigner. If NS2 was installed to $HOME/ns-allinone-2.27 using the all-in-one packet,
$NS2 should be set to $HOME/ns-allinone-2.27/ns-2.27. On Linux distributions using
bash2 as shell this can be done with an export command:

export NS2=$HOME/ns-allinone-2.27/ns-2.27

For adding these environment variable permanently, the export command shown above should be
copied into your .bashrc file or equivalents3.

25.3.1.4 Add the bin directory of the NS2 distribution to the PATH variable

You can use NS2 postprocessing tools like nam and xgraph from within MLDesigner. To have
all these necessary tools together, it is recommended to use the all-in-one package of the NS2. Af-
ter installing this package, the created bin directory contains all executables and must be added
to the PATH environment variable in order to use them within the MLDesigner simulation envi-
ronment. If NS2 was compiled in $HOME/ns-allinone-2.27 using the all-in-one packet,
$PATH should be extended by $HOME/ns-allinone-2.27/bin. On Linux distributions
using bash4 as shell, this can be done via:

export PATH=$PATH:$HOME/ns-allinone-2.27/bin

Again, we recommend you to copy the export command to the .bashrc file or equivalents.

25.3.2 Assembling NS2 Models to Build Simulations
The next section provides an overview about modeling inside the NS2 domain5 in general, and
shows examples how the model primitives can be used to build sample scenarios.

2If tcsh is used, the appropriate command is: setenv NS2 $HOME/ns-allinone-2.27/ns-2.27
3The .bashrc file should be stored in your home directory
4If tcsh is used, the appropriate command is: setenv PATH $PATH:$HOME/ns-allinone-2.27/bin
5Again, the NS2 domain is located in the experimental domains of MLDesigner MLD Experimentals/NS2

25-6 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

25.3.2.1 General Modeling Guidelines

People who are already familiar with NS2 should have little trouble adapting to the NS2 domain.
People who are unfamiliar with NS2 can find many NS2 tutorials on the Internet; we recommend
they take advantage of them to learn NS2 basics.
The basic elements for modeling inside NS2 are nodes, links, agents and applications. Nodes
represent computers or other network equipment. They are connected together via Links. Agents
are connected to Nodes and they can send and receive data over them. In addition agents can
perform protocol actions on the data. For example transport protocols like UDP and TCP are
modeled as agents. The last basic components are applications. They are associated with agents
and control the amount of data that is sent by the sending agent. Applications are for example a
ftp process or a periodic sender.
Other blocks with different purposes exist, and they are described step by step in the modeling
example below.
In general, the NS2 domain uses its models to define a network topology. Each block in the
MLDesigner model is mapped to one block in the network topology inside the NS2 co-simulator.
These blocks are connected together via MLDesigner relations to define the connectivity between
these blocks. The relations in this case do not transport any data. Therefore, the ports of the
blocks are set to bi-directional ports. For that reason, usually InOut ports are used. An application
is connected via its Agent single InOut port to an agent’s Applications multi InOut port. A single
InOut port should be connected to one another single InOut port, whereas a multi InOut port can
be connected to more then one single InOut ports. Since Applications is a multi InOut port, agents
can be associated to several applications.
The next section is a small tutorial for the first steps within the NS2 domain. To introduce all
types of blocks including a full description of their parameters is not intended, rather some basic
guidelines for the first modeling steps are shown in the sample systems.

25.3.2.2 A Hello World Scenario

Hello World in terms of networking, can be defined as a traffic source connected to
a sink. Figure 25.1 shows such a simple NS2 system. This example is found at
MLD Experimentals/NS2/Demo/HelloWorld. The blocks and their main parameters are de-
scribed below.

Traffic Source - CBR is an application that generates traffic according to a deterministic rate.
The parameters used in this scenario are:

PacketSize specifies the size of the packets to send (set to 500)

Interval specifies the time in between two packets (set to 2.0)

StartTime specifies when the traffic source starts sending; if it is set to a negative value, the
application does not start automatically6 (set to 0)

StopTime specifies when the application stops sending; a negative value causes no stopping (set
to -1)

This source starts at time 0 and sends packets of 500 bytes every two seconds.
6Other ways to start applications are possible and are described later

25-7

25 NS2 Domain

Node#1 Node#2

UDP#1 MLDSimpleSink#1

CBR#1

Dump

Figure 25.1: Hello World Example

Agents - UDP and MLDSimpleSink The CBR application is connected to an UDP agent.
Parameter DestinationAgent should be set to the agent that is supposed to receive the data
of the UDP sending agent. The full-qualified instance name7 of the receiving agent can be put
here. Beside the full-qualified instance name, it’s also possible to put in an alias for the receiving
agent. Aliases are user-defined names that refer to model elements. They can be specified via the
NS2Name parameter.
MLDSimpleSink’s parameter NS2Name and DestinationAgent of UDP are set to mldsink
to “connect” the source agent with the sink agent.

Nodes and Links The agents are each connected to a Node. These two nodes are connected
via a DuplexLink model in between them. DuplexLink can be configured by:

Bandwidth that defines the bandwidth of the link. It is specified as a floating point value, option-
ally suffixed by a ‘k’ or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean mega-quantities.
A final optional suffix of ‘B’ indicates that the quantity expressed is in Bytes per second.
The default is bandwidth expressed in bits per second. For example all of the following
values are equivalent:

1.0m
1.0Mb
1000k
1.0e6
125kB

The bandwidth in the example is set to 1Mb - 1 Mega bit per second.

7That is the name of the system and the module hierarchy down to the receiving agent; in the example it is “Hel-
loWorld.MLDSink#1”

25-8 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Delay defines the propagation delay of the channel. It’s value is measured in seconds. For con-
venience, this floating point value can be suffixed by ‘m’, ‘n’ or ‘p’ to express time in
milli-seconds, nano-seconds or pico-seconds. It is safe to add a ‘s’ to reflect the time unit in
seconds. In the example, the value is set to 10 ms.

Accessing Simulation Results - Dump MLDSimpleSink modules pass an integer particle
through their Size Port whenever a packet is received by this sink agent. The value of this particle is
set to the size of the received packet. The port is connected to a Dump block, that simply dumps
its identification together with the current simulation time and the received particle to standard
output.

Simulation Results The simulation results are shown below; RunLength was set to 10. The
source is sending every 2 seconds. A packet sized 500 Bytes takes 0.004 seconds over a 1 Mb
medium. The channel propagation delay of 10ms is added to packet delivery time.
S i m u l a t i o n 448 I t e r a t i o n 1 s t a r t e d Thu Feb 19 1 2 : 3 1 : 1 0 2004 on h o s t ’ g r e e r ’
Hel loWor ld . Dump# 1 : a t : 0 . 0 1 4 : 500
Hel loWor ld . Dump# 1 : a t : 2 . 0 1 4 : 500
Hel loWor ld . Dump# 1 : a t : 4 . 0 1 4 : 500
Hel loWor ld . Dump# 1 : a t : 6 . 0 1 4 : 500
Hel loWor ld . Dump# 1 : a t : 8 . 0 1 4 : 500
S i m u l a t i o n 448 I t e r a t i o n 1 f i n i s h e d Thu Feb 19 1 2 : 3 1 : 1 0 2004 CPU t ime 0 .000000 s e c o n d s

Simulation results for the Hello Worl scenario

25.3.2.3 Eval, AtJob and Script

As mentioned in sec. 25.2.2, the NS2 simulator has an OTcl interface for simulation set up and
control. The NS2 domain of MLDesigner provides primitives that allow the access to this OTcl
interface. The Eval primitive allows the command given in parameter Command to be executed
inside the NS2 co-simulator. As an example, the command

puts "Agent/TCP baseclass is [Agent/TCP info superclass]"}

used in the Command parameter of an Eval primitive will print the string

Agent/TCP baseclass is Agent

to standard out.
To execute commands during simulation, the AtJob block can be used. The time when the com-
mand is executed can be defined as parameter as well as the command itself.
Script executes an OTcl script, specified in parameter Script inside the NS2 co-simulator. It is
possible to execute scripts originally written for the standalone NS2 simulator. To do this, some
modifications to the script have to be done:

• Because MLDesigner creates its own instance of an NS2 Simulator, this script (modified
for use in the NS2 domain) should be used. That means, inside the script there should no
command like set ns [new Simulator]. As simulators inside NS2 scripts are often called ns,
a good way to use MLDesigner’s Simulator instance is to set ns as alias to $NS2 simulator
instead of creating your own instance. The common simulator instance allows MLDesigner
modules to interact with the scene you have defined inside your script.

25-9

25 NS2 Domain

• Do not run the simulator manually. MLDesigner controls the execution of it’s slave NS2
process. The run method of the simulator is called by MLDesigner.

• Do not call exit inside the script. MLDesigner controls startup and exit of its slave NS2
process. MLDesigner kills the slave if the RunLength has been reached - you don’t need
to take care about it.

The MLDesigner NS2 domain can execute anything that NS2 can execute. Figure 25.2 shows a
system that only contains instances of the Eval (see above) and the Script primitive. The contents
of the script executed by the instance of the Script primitive is set as it is instance label. It is an
original script from an NS2 tutorial. The necessary changes for MLDesigner are marked by red
comments. Note, that even the call for nam (the network animator [nam]) is possible. Figure 25.3
shows a screen shot of the nam executed inside the script.

Eval: puts "Agent/TCP baseclass is [Agent/TCP info superclass]"Script#1

#Create a simulator object
#set ns [new Simulator]
set ns $NS2_simulator

#Open the nam trace file
set nf [open "/tmp/out.nam" w]
$ns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {

global ns nf
$ns flush-trace
#Close the trace file
close $nf
#Execute nam on the trace file
exec nam "/tmp/out.nam" &

exit 0
}

#Create two nodes
set n0 [$ns node]
set n1 [$ns node]

#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to node n1
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0

#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
#$ns run # simulation run is done by MLDesigner

set ns as alias for MLDesigner's
Simulator instance

Do not hard exit ns2

Figure 25.2: MLDesigner executing an NS2 Script

25.3.2.4 Using the Network Animator (NAM)

The network animator [nam] can display network topologies and simulation results that are
recorded by NS2. The flow of the packets exchanged during simulation can be monitored, fur-

25-10 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Figure 25.3: Nam analyzing the Script-System

thermore packet losses can be animated using nam. To start nam at simulation end for analyzing
simulation results, an instance of the Nam Tracer primitive should be placed into the scenario.
The Nam Tracer writes trace information into the via parameter NamTraceFilename specified
file. If the parameter is empty, a temporary file is used. The nam program using this file is started
after simulation if parameter NamStartOnWrapup is set to TRUE.
Figure 25.4 shows a small scenario with 9 nodes, a deterministic data source sending over UDP
and a ftp application sending over a TCP connection. The links are modeled as duplex links8.
After simulation is finished, nam is started and packet flows can be analyzed. Figure 25.5 shows a
screen shot of the nam instance started. It shows the 9 nodes, as well as their connecting links and
some packets flowing over the links.

25.3.2.5 Embedding an NS2 Network into a DE System

A big advantage of MLDesigner is its ability to combine different models of computations inside
one simulation. An NS2 model can be embedded into a discrete event system model. In future
releases, it will be possible to include DE Models into NS2 models too and to mix them with
models of other domains, like SDF.
For example the system DE Wormhole (fig. 25.6) shows an NS2 model that is embedded inside
a DE system. A clock triggers every 100 ms the CBR application inside the NS2 module to start
sending packets. After a delay of 50 ms the CBR model is stopped. Inside NS2Module, the
topology is a very simple one, two nodes connected by a duplex link. Figure 25.8 shows three
sending periods out of the Xgraph plot9.

8The NamTracer scenario is part of the Tutorials that can be found in the Demo library of the NS2 domain
9The DEWormhole scenario is part of the Tutorials that can be found in the Demo library of the NS2 domain

25-11

25 NS2 Domain

NamTracer#1 Tahoe#2

BaseSink#2

Node

Node

Node Node Node Node

NodeNode Node

UDP#1

Null#1

CBR#1 FTP

Figure 25.4: The “Using Nam” system

Figure 25.5: Nam output for the demo system

25-12 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Clock: Every 0.1s

Delay: 0.05s

DEWormholeNS2Module#1
On

Off

R
ec

ei
ve

dB
yt

es

XGraphDomain: DE

Figure 25.6: DE Wormhole System

Node Node

UDP Source MLD Simple Sink

CBR TriggerOnOff

On

Off

ReceivedBytes

PacketSize: 500
Interval: 5ms

Bandwidth: 1M bps
Delay: 10ms

Domain: NS2

Figure 25.7: NS2 Module inside the DE Wormhole system

Set 0

4.9998

5.0000

5.0002

x10
2

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38

Packets Arrival Times

time

s
i
z
e

Figure 25.8: XGraph results for the DE Wormhole system

25-13

25 NS2 Domain

25.3.3 Writing New NS2 Primitives
The previous section provided an overview of existing NS2 domain primitives. This section de-
scribes basic concepts for writing new primitives. First, an introduction is given before the API is
described in general, followed by example code pieces. Knowledge about the NS2 OTcl command
interface is usually needed for design and implementation of NS2 primitives.

25.3.3.1 General Introduction

The NS2 domain’s primitives are written in the Ptolemy Language (ptlang). The common inter-
face for creating, modifying and compiling primitives inside the NS2 domain is similar to other
MLDesigner domains. For details about how to write primitives in MLDesigner please consult
ch. 13.
This section is not an introduction or full reference on how primitives are written in MLDesigner,
but, rather, a discussion of how to create NS2-specific primitives.
On the other hand, this document is not a replacement of the NS2 documentation. Because writing
primitives for the NS2 domain is often something like writing OTcl scripts for the NS2 simulator,
it is necessary to know the basic concepts behind the NS2 OTcl API. The NS2 documentation
[NS2a] is a very good reference guide of NS2. Furthermore there are a lots of tutorials for NS2
available in Internet.
This section describes what is necessary to know for writing NS2 primitives, assuming that basic
concepts of writing primitives using NS2 are known.

25.3.3.2 Communication Architecture: MLDesigner and NS2

Figure 25.9 shows the communication architecture of the MLDesigner NS2 domain and how it is
embedded into MLDesigner’s domain framework.

NS2 SimulatorMLDesigner

NS2Domain
Otcl

Interface

C++ Core

other
MLD

Domains
Primitive

 C
Primitive

 D

Primitive
 B

1

2

3

4

5

6

Primitive
 A

Figure 25.9: Architecture of MLDesigner and NS2

The arrows in the diagram represent the possible ways of communication:

Arrow 1 A primitive inside the NS2 domain controls the NS2 simulator via the simulator’s OTcl
interface. Everything that can be done inside OTcl NS2 scripts, can be done by primitive
code. This provides an easy way for accessing all features that NS2 provides. Sec. 25.3.3.4
shows how this interface is used.

25-14 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Arrow 2 Simulations inside the NS2 slave are performed as C++ code. This allows very high
simulation speeds. Simulation results, or events in the NS2 slave process (for example
the arrival of a network package) can be forwarded from the NS2 core to MLDesigner’s
primitives. A common interface is provided and its usage is shown in examples.

Arrow 3 Like primitives in other domains, NS2 primitives can have input ports. NS2 primitives
are able to receive particles from other MLDesigner domains, e.g. the Discrete Event do-
main. The wormhole example in the modeling guide shows how NS2 primitives can react
on inputs from outside.

Arrow 4 and 5 Simulation results (usually produced by the NS2 simulator) can be passed to other
domains or other primitives inside the NS2 domain. This is done over ports.

It is possible to use all ways of communication together inside one primitive. The arrows in the
figure are only some examples and do not show all possible communication.

25.3.3.3 NS2 Simulation

For writing new primitives, it is necessary to have a closer look at the simulation phases. After
pressing the Go button, simulations are divided into two major phases: simulation setup and
simulation run. In the setup phase, the topology is defined10 and general simulation parameters
are set. Defining the topology includes creating nodes, links, agents, applications, etc. During
a simulation run, packets are forwarded between nodes, agents perform their protocol logic and
data is produced, sent, received and processed. During setup phase, NS2 primitives can advise the
NS2 simulator to create the topology by using the OTcl interface. In this phase no particles flow
through any port of any NS2 primitives.

25.3.3.4 Setup Phase of Simulation

In NS2 scripts, this phase includes all commands given before the NS2 simulator is started (via
$ns run). At this stage the setup() and begin() are called.

Evaluating NS2 commands Inside the begin method, primitives can execute commands
in the NS2 simulator’s OTcl environment. This can be done very easily using the EVAL(...)
macro. Every construct that can be streamed into a string stream can be used as parameter. Ex-
amples for correct EVAL statements are shown in source code 25.2. If the OTcl interpreter of NS2
throws an error, the error message is shown in the MLDesigner graphical user interface and the
simulation is aborted.
In source code 25.3 the AtJob’s begin method is shown. The primitive has two parameters:
Time (float) and Command (string). The example shows how the parameters are used in the
primitive’s code. As explained in sec. 25.3.2.3, the Simulator instance inside the NS2 context
is called $NS2 simulator.

10While it is possible to define everything, including topology, during simulation run, but usually it is defined in
advance.

25-15

25 NS2 Domain

EVAL(” p u t s {H e l l o World}”) ;
/ / e x e c u t e s p u t s {H e l l o World}

EVAL(” p u t s ” << ’{ ’ << ” H e l l o World}”) ;
/ / e x e c u t e s p u t s {H e l l o World}

i n t i = 4 2 ; double d = 2 3 . 0 ; s t r i n g s = ” H e l l o World ” ;
EVAL(” p u t s { i = ” << i << ” ; d = ” << d << ” ; s = >” << s << ”<}”) ;

/ / e x e c u t e s p u t s { i = 42; d = 2 3 . 0 0 0 ; s = >H e l l o World<}

Source Code 25.2: Using the EVAL Macro

b e g i n
{

EVAL(” $ N S 2 s i m u l a t o r a t ” << (double) Time << ” {” << (c o n s t char ∗)Command << ”}”) ;
}

Source Code 25.3: Begin section in AtJob

The Begin Schedule In MLDesigner domains, the begin method of primitives is normally
called exactly once in a non-predictable order. Inside the NS2 domain, pre-defined begin phases
are passed through in ascending order. Each primitive is responsible to add itself to the phase or
phases in which its begin method should be called. This is done using the method addToBegin-
Phase(int phase) inside the primitive’s constructor11. This method can be called with one of the
following predefined identifiers as argument:

NS2Star : : SIMULATOR
NS2Star : : SIMULATORCONFIG
NS2Star : : NODE
NS2Star : : AGENT
NS2Star : : AGENTCONNECT
NS2Star : : APPLICATION
NS2Star : : NODELINK
NS2Star : : USER

For illustration, source code 25.4 shows the hand-written ptlang source code of Eval12. In the
constructor, addToBeginPhase(NS2Star::USER) is called to schedule this primitive for the USER
phase. Therefore, the command given by parameter is evaluated after all nodes, agents, applica-
tions and links are already initialized.
In source code 25.5, constructor and begin of the UDP agent are shown13. Data sending agents
like UDP have to be connected to a destination agent using the connect command. But both
source and destination agent must be created before they can be connected to each other. If begin
is called in AGENT phase, it’s possible that the destination agent has not yet been set up (because
it is scheduled in AGENT phase, too). The solution is to schedule the UDP agent primitive twice,
once in AGENT phase to set up the agent, and again in AGENTCONNECT phase to connect it to
its destination. This is done in the 3rd and 4th lines. In the begin method, getBeginPhase() is used

11it is even possible to re-schedule a primitive for a later phase during execution of begin
12Actually, this is a simplyfied version of Eval, that executes its command during USER begin phase. The built-in

Eval supports parameters for specifying in which begin phase the command should be executed.
13This is a simplified version, too. The built in version uses methods of base classes and does a better error handling

if the destination agent is not known inside the OTcl interface.

25-16 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

c o n s t r u c t o r
{

addToBeginPhase (NS2Star : : USER) ;
}
b e g i n
{

EVAL((c o n s t char ∗)Command) ;
}

Source Code 25.4: Hand-written Ptlang Code of “Eval”

c o n s t r u c t o r
2 {

addToBeginPhase (NS2Star : : AGENT) ;
4 addToBeginPhase (NS2Star : : AGENTCONNECT) ;

}
6 b e g i n

{
8 sw i t ch (g e t B e g i n P h a s e ()) {

case NS2Star : : AGENT :
10 / / Cr ea t e Agent

EVAL(” s e t ” << fu l lName () << ” [new Agent /UDP] ”) ;
12

a t t achToNode () ;
14 s e t A l i a s () ;

break ;
16 case NS2Star : : AGENTCONNECT :

i f (((c o n s t char ∗) D e s t i n a t i o n A g e n t) [0])
18 EVAL(” $ N S 2 s i m u l a t o r c o n n e c t ${” << fu l lName () << ”} ${”

<< (c o n s t char ∗) D e s t i n a t i o n A g e n t << ”}”) ;
20 break ;

} / / o f s w i t c h
22 }

Source Code 25.5: Hand-written Ptlang Code of “UDP Agent”

25-17

25 NS2 Domain

c l a s s NS2Star : p u b l i c S t a r
{

/ / . . .
p u b l i c :

s t a t i c c o n s t i n t RESOLUTION = 1000 ;
s t a t i c c o n s t i n t SIMULATOR = 1 ∗ RESOLUTION ;
s t a t i c c o n s t i n t SIMULATORCONFIG = 2 ∗ RESOLUTION ;
s t a t i c c o n s t i n t NODE = 3 ∗ RESOLUTION ;
s t a t i c c o n s t i n t AGENT = 4 ∗ RESOLUTION ;
s t a t i c c o n s t i n t AGENTCONNECT = 5 ∗ RESOLUTION ;
s t a t i c c o n s t i n t APPLICATION = 6 ∗ RESOLUTION ;
s t a t i c c o n s t i n t NODELINK = 7 ∗ RESOLUTION ;
s t a t i c c o n s t i n t USER = 100 ∗ RESOLUTION ;
/ / . . .

}

Source Code 25.6: Declaration of pre-defined begin phases

to determine the actual begin phase (refer to line 8). Statements in lines 10-15 are called the first
time begin is executed to create the agent (line 11), lines 17-19 is executed after all other agents
have been created.

Naming Conventions Many primitives in NS2 are place holders for instances inside the NS2
simulator (e.g., agents, nodes, applications etc.). This implies that during begin phase the corre-
sponding instance in the NS2 simulator has to be created. As instance name, the full name of the
primitive is used. Agent A#1 in system S is stored in the S.A#1 variable. You can access NS2
objects by using the fully qualified name of their corresponding MLDesigner primitives. Because
the full name contains ’#’, the variable name has to be embedded in curly braces if it is used in
OTcl commands. Lines 18 and 19 of source code 25.5 show how this is done.

Future and Custom Begin Phases More begin phases will be added in future MLDesigner
versions. Of course, it is possible to schedule primitives between phases and set the order of
execution relative to one-another because the phase is an integer value that is not limited to the
pre-defined phases. Any other positive integer value will work as well. The primitives are ex-
ecuted in ascending order depending on their scheduled phases. The pre-defined phases are set
to constant values with difference of 1000 in between. It is possible to schedule own primi-
tives to be executed between AGENTCONNECT and APPLICATION by calling addToBegin-
Phase(NS2Star::AGENTCONNECT + 500) in their constructors. The mapping of well-known
phase names to integers may change in future releases, so it is a good idea to use the pre-
defined values as often as possible - for example use NS2::AGENTCONNECT + 500 instead
of 5500. Source code 25.6 shows the declarations for the well-known phases as it can be found in
$MLD/MLD Experimentals/NS2/kernel/NS2Star.h.

Using an Own Simulator Instance The NS2 domain creates an instance of the NS2
Simulator class called $NS2 simulator. Many primitives use this Simulator instance and they
bank on that naming convention. To give modelers the possibility to create the Simulator
instance themselves rather than use the standard creation routine, a primitive can be sched-
uled at NS2Star::SIMULATOR phase. This primitive has to create a Simulator instance called
$NS2 simulator. One of these primitives can be placed into an NS2 scenario. If there is no such

25-18 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

1 c o n s t r u c t o r
{

3 addToBeginPhase (NS2Star : : APPLICATION) ;
}

5 b e g i n
{

7 / / Cr ea t e CBR
EVAL(” s e t ” << fu l lName () << ” [new A p p l i c a t i o n / T r a f f i c /CBR] ”) ;

9

/ / S e t p a r a m e t e r s
11 EVAL(” ${” << fu l lName () << ”} s e t p a c k e t S i z e ” << (i n t) P a c k e t S i z e) ;

EVAL(” ${” << fu l lName () << ”} s e t i n t e r v a l ” << (double) I n t e r v a l) ;
13

/ / S c h e d u l e e v e n t s f o r s t a r t i n g and s t o p p i n g
15 i f (double (S t a r t T i m e) >= 0)

EVAL(” $ N S 2 s i m u l a t o r a t ” << double (S t a r t T i m e) << ” \”${”
17 << fu l lName () << ”} s t a r t \” ”) ;

i f (double (StopTime) >= 0)
19 EVAL(” $ N S 2 s i m u l a t o r a t ” << double (StopTime) << ” \”${”

<< fu l lName () << ”} s t o p \” ”) ;
21

/ / Connect t o Agent
23 EVAL(” ${” << fu l lName () << ”} a t t a c h −a g e n t ${” <<

Agent . f a r ()−> p a r e n t ()−> fu l lName () << ”}”) ;
25

s e t A l i a s () ;
27 }

Source Code 25.7: Ptlang code for CBR

primitive, the standard command ”set NS2 simulator [new Simulator]” is executed before any
begin method is called. If there is exactly one primitive scheduled for the SIMULATOR phase,
this is executed in SIMULATOR phase. More then one primitive in SIMULATOR phase aborts
simulation.

Using Ports for Defining Relationship Connections between ports can be used to define re-
lationships between primitives. An application has to be connected to its sending agent. This
relationship between application and agent primitive is modeled via a connection from the appli-
cation’s Agent port to the agent’s TrafficSources port. Because applications are scheduled after
agents, it is safe to connect applications to their agents immediately after creating them. To follow
the connection to the agent, the port’s method far()→parent()→fullName() should be used to get
the full qualified name of the connected agent. This name corresponds to the agent’s name in NS2
namespace.
Source code 25.7 shows a possible14 source code for the CBR application. It is scheduled for
APPLICATION phase (line 3). During begin, first the application itself is created (line 8), some
parameters are set (lines 11 and 12), its default start and stop time is set (lines 14-20) and the
application is attached to the agent connected at the Agent port in lines 23 and 24. setAlias()
is an inherited method of NamedObject - this is described in the next section together with the
primitive’s class hierarchy.

14The current code is different, because CBR inherits from Application. The shown code is meant as an example

25-19

25 NS2 Domain

NamedObject

+ NS2Name : String

+ NS2ParameterSettings : StringList

+ NS2FunctionCalls : String

+ NS2ConstructorArgs : StringList

+ setAlias() : void

+ setParmeters() : void

+ callFunctions() : void

BaseAgent

+ Applications : MultiPort

+ Nodes : Port

+ attachToNode() : void

BaseApplication

+ Agent : Port

+ StartTime : Float

+ StopTime : Float

+ scheduleStartAndStopTime() : void

+ connectToAgent () : void

CBR

CBR TriggerOnOff

ftp

ftp TriggerOnOff

MLD Sink

NullUDP

MLD TCP Sink

TCP Source

This diagram

does not show

all NS2

Primitives.

Rather it should

give an idea

about the base

class hierarchy.

Script Eval

DuplexLink

ImplementedObject

+ NS2Implementation : FileNameList

+ NS2ObjectFiles : FileNameList

+ NS2CompileOptions : String

+ NS2LinkOptions : String

+ NS2UseEmptyInitFunction : Bool

+ compileAndLoadToNS() : void

Node

+ Links : MultiPort

+ Agents : MultiPort

Diagram: Primitive Hierachy Page 1

Figure 25.10: The Primitive Class Hierarchy

25-20 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Primitive Class Hierarchy Figure 25.10 shows an extract out of the class hierarchy of NS2
primitives. This hierarchy has been established to avoid code duplication and to put often used pa-
rameters, ports or methods at one distinct location. Following are descriptions about the individual
classes:

NamedObject The abstract15 primitive NamedObject provides a Parameter called NS2Name to-
gether with a method called setAlias(). If NS2Name is specified, setAlias() sets this name
as alias for the NS2 object that was created as fullName() of the primitive. After this, the
alias name can be used to refer to the NS2 object - aliases are often used for defining the
DestinationAgent parameter in agent primitives. Refer to the Hello World Exam-
ple in sec. 25.3.2.2. Another parameter supplied by the NamedObject primitive is called
NS2ParameterSettings. This parameter can be used to set a number of parameters of
the NS2 object after it has been created. Therefore, the parameter names and their values
have to be specified in a list separated by whitespaces. If a value contains whitespaces, it
must be double-quoted. The setting of the parameters is done via the method setParame-
ters(). As a third parameter, the NamedObject primitive contains NS2FunctionCalls
This parameter specifies additional functions that should be called on the NS2 object after
it has been generated. Therefore, the parameter should contain a list of function calls. If
they contain whitespaces (this is the case as soon as the function has an argument), each
function call must be double-quoted. The execution of the function calls is done via the
method callFunction(). As the last parameter, NS2ConstructorArgs contains a list of
arguments that are passed to the function creating the NS2 object. This is used to specify
additional parameters such as specification of the address of a node.

ImplementedObject The abstract primitive ImplementedObject provides all necessary function-
ality to compile and load additional code into the NS2 process. It has a parameter called
NS2Implementation that contains a list of source files that should be compiled and
loaded into the NS2 process. If the implementation is already precompiled, it is possible to
specify a list of object files in the parameter NS2ObjectFiles. It is possible to use only
one or both parameters to specify the implementation. For compilation and linking of the
implementation files, the compile and link options of the NS2 installation are used. To spec-
ify additional options, the parameters NS2CompileOptions and NS2LinkOptions
can be used. To be able to load the created shared object into the NS2 process, it must con-
tain an init function that is called by the NS2 after the library was loaded. If this init function
is not contained in the implementation, the parameter NS2UseEmptyInitFunction
must be set to TRUE. If this function is contained inside the implementation, it must be
defined as follows:

extern "C" int Library Init(Tcl Interp *interp)

All these actions described within the description of the ImplementedObject primitive are
done by the function compileAndLoadToNS().

BaseAgent This abstract primitive provides the basic interface of an Agent: TrafficSources port
and Node port. In addition, the method attachToNode() is defined. It connects the agent to
its related node. Source code 25.8 shows the source code for that method.

15There is no explicit code to make these primitives abstract. Here, abstract should illustrate that the primitive should
not be instantiated.

25-21

25 NS2 Domain

i n l i n e method
{

name { a t t achToNode }
a c c e s s { p r o t e c t e d }
t y p e { void }
code
{

NS2Node∗ node = ! Node . f a r () ? 0 :
dynamic cast<NS2Node∗>(Node . f a r ()−> p a r e n t ()) ;

i f (node)
EVAL(” $ N S 2 s i m u l a t o r a t t a c h −a g e n t ${” << Node . f a r ()−> p a r e n t ()−> fu l lName ()

<< ”} ${” << fu l lName () << ”}”) ;
}

}

Source Code 25.8: NS2BaseAgent::attachToNode()

go
{

s t d : : c o u t << (Labe l . n u l l () ? (c o n s t char ∗) (fu l lName ())
: (c o n s t char ∗) Labe l)

<< ” : a t ” << TNow () << ” : ” << I n p u t . g e t () . p r i n t () << s t d : : e n d l ;
}

Source Code 25.9: go method of Dump primitive

BaseApplication This is an abstract primitive, too. It defines an Agent port and the StartTime
and StopTime parameters. The methods scheduleStartAndStopTime() and connectToA-
gent() are defined to perform the corresponding actions.

Node The node primitive defines ports for links and agents to be connected to the node.

Script, Eval, . . . Beside the primitives derived from NamedObject, there are many primitives
that don’t have any primitive parent - Script and Eval are examples of such primitives.

CBR, UDP, . . . Primitives without any further members or methods listed in fig. 25.10 are given
examplary for implemented primitives inside the NS2 domain. Providing a detailed descrip-
tion of all of them is not the intention of this document.

25.3.3.5 Simulation Run

After all requested begin methods have been called, the simulation starts. Particles and events
inside the NS2 simulator are processed. Hence the NS2 domain is a specific discrete event domain,
there is a continuous time. Events occur at a concrete time. The following section gives an
overview about time, event and data handling inside the NS2 domain during the simulation phase.

Accessing Current Simulation Time Current time can be accessed via the primitive member
function TNow(). This function is used for example in Dump to print the time when the input
integer arrives. Source code 25.9 shows its go method, a description how ports are handeled
follows in the next paragraphs.

25-22 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

go
{

i f (On . dataNew ())
{

EVAL(” ${” << fu l lName () << ”} s t a r t ”) ;
On . c lea rDataNew () ;

}
i f (Off . dataNew ())
{

EVAL(” ${” << fu l lName () << ”} s t o p ”) ;
Off . c lea rDataNew () ;

}
}

Source Code 25.10: go method of CBRTriggerOnOff primitive

Receiving Data through Ports As in the DE domain, a primitive’s go method is called
whenever a particle is received at one of its input ports. Additionally the dataNew flag of the
receiving port is set to true. This flag can be accessed read-only via port’s dataNew() member
function. The flag is reset to false after port’s get() method or clearDataNew() is called. Source
code 25.10 shows the flag handling in CBRTriggerOnOff. Via get() the data that has arrived at
the port can be accessed read-only. Return type of get() is a particle reference that can be handeled
like inside other MLDesigner domains. Source code 25.9 shows how the data of Input is accessed
in Dump.

Sending Data through Ports Data can be sent through OutPorts using the stream operator:
outport <<10 sends the integer value 10 through the port. An arbitrary amount of particles can be
sent through output ports at simulation run phase. All particles are buffered and will arrive one
after another at the receiving port. The time when particles are received corresponds to the sending
time of them.
The put method can be used to add a delay for particle sending: outport.put(TNow() + 1.0, 10)
sends an integer particle 10 that will arrive 1.0 time unit later at the receiving port.
Note, that in contrast to the DE domain, each particle causes a call of go. That implies that
particles arriving at the same point in simulated time on different ports of a primitive will trigger
the go method once for each arriving particle.
Sending and Receiving data by MLDesigner NS2 primitives is symbolized by arrow 5, 3 and 4 in
fig. 25.9 at page 25-14.

Controlling the NS2 Simulator Whenever go is called, it is possible to send commands to
the NS2 simulator via the EVAL macro (refer to source code 25.10). So, it’s even possible to send
data to the simulator. This is symbolized by arrow 1 in fig. 25.9 at page 25-14.

Receiving Data from NS2 Simulator The last important step for using the NS2 simulator in
self-built NS2 primitives is to receive data from the NS2 simulator (arrow 2 in fig. 25.9 on page 25-
14). Two different procedures are provided by the MLDesigner - NS2 framework: One procedure
for pre-defined primitive data types like integer, double or strings and the other for user-defined
complex data structures.

25-23

25 NS2 Domain

The basic architecture for sending small data from the NS2 simulator to MLDesigner is shown in
fig. 25.11. It is possible to send integers, doubles and strings; in future releases, more primitive
data types might be supported. There are two principle ways to send data to MLDesigner: using
the TCL interface or using C++ code. The following paragraphs discribe in detail how this is done.

MLDesigner

NS2 Primitive

other Primitive

ns2 simulator

 p.send(10);

 MLDPort<int> p;
(1)

initialize

(2)
send particle

Figure 25.11: Architecture: sending primitive data to MLDesigner

Simple Data Transfer using TCL Inside the Tcl namespace of NS2 there are three new classes
avaiable: MLDIntPort, MLDFloatPort and MLDStringPort. After correct instantiation the corre-
sponding port inside MLDesigner emits an Integer/Float or String whenever a data structure is
sent through these Tcl classes. During instantiation, the constructor of MLDXXXPort expects the
address of an MLDesigner port as second parameter. source code 25.11 shows how an MLDInt-
Port is instantiated and stored under the name $fullname(). The port is linked to the primitive’s
integer output port “Out”.

b e g i n
{

EVAL(” s e t ” << fu l lName () << ” [new MLDIntPort ” << (void ∗)&Out << ”] ”) ;
s e t A l i a s () ;

/ / . . .

}

Source Code 25.11: instanciation of MLDIntPort (is linked to ’Out’)

Once this is done, the MLDIntPort can be accessed inside the whole Tcl namespace of NS2.
So the port can be used in receiving routines of Agents to transfer simple data to MLDesigner.
As an example how to use the MLDIntPort instance, an Eval primitive executes the command
$NS2 simulator at 5.0 ”$IntPort send 42”. As result, 42 is emitted through the output port of the
MLDesigner primitive and dumped to the console via the Dump primitive.
In the example scenario Port data transfer using Tcl shown in fig. 25.12, all three types (MLD-
IntPort, MLDFloatPort and MLDStringPort) are used to illustrate how this mechanism works.
A simualtion run generates the output shown below.

S i m u l a t i o n 924 I t e r a t i o n 1 s t a r t e d Thu J u l 15 1 3 : 3 0 : 0 7 2004 on h o s t ’ e v e r e t t ’
I n t e g e r Rece ived : a t 5 : 42
S t r i n g Rece ived : a t 6 : H e l l o World
F l o a t Rece ived : a t 7 : 23 .23

25-24 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Eval:
$NS2_simulator at 6.0 "$StringPort send {Hello World}"

Dump
Int port accessable in NS2
NS2Alias: StringPort

Eval:
$NS2_simulator at 7.0 "$FloatPort send 23.23"

Dump
Int port accessable in NS2

NS2Alias: FloatPort

Int port accessable in NS2
NS2Alias: IntPort

Eval:
$NS2_simulator at 5.0 "$IntPort send 42"

Dump

This system shows how
simple data can be

transfered from the NS2
process to MLDesigner.

Figure 25.12: System: Port data transfer using Tcl

S i m u l a t i o n 924 I t e r a t i o n 1 f i n i s h e d Thu J u l 15 1 3 : 3 0 : 0 7 2004 CPU Time 0 s e c o n d s

Simulation results for PortData communication

Simple Data Transfer using C++ The OTcl classes MLDIntPort, MLDFloatPort and MLD-
StringPort are shadow classes for the template C++ class MLDPort (declaration is shown in source
code 25.12). Like the corresponding Tcl classes, MLDPort must be constructed with a string pa-
rameter that represents the address of the MLDesigner port. Then the method send can be used to
send data.
System Port data transfer using C++ that uses the primitive IntEmitter, shows how the mech-
anism can be used in C++. IntEmitter is an ImplementedObject. It defines the new OTcl class
IntEmitter inside NS2Implementation. Source code 25.13 shows the implementation. In
lines 3-20 the IntEmitter class is defined: line 19 declares port as MLDPort<int>, in line 7 the
constructor of port is provided with the string parameter for binding to MLDesigner and in line 13
the data is sent to MLDesigner. Lines 23-25 defines the TclClass for binding IntEmitter into the
OTcl namespace.

Building a new Agent Class The next paragraph describes how to create a new Tcp Sink
Agent primitive. This primitive should emit the size of the received data to MLDesigner whenever
a packet arrives. To do this the following steps were done:

Creating a new NS2 Sink Agent Because standard NS2 classes do not know anything about
MLDesigner, an NS2 class that should be able to communicate with MLDesigner has to
be enriched by specific functionality. As the new TcpSink should be able to send its re-
ceived data through MLDesigner’s NS2 primitive’s ports, a new class MLDTcpSink derived
from TcpSink has been created to implement the desired behavior.

25-25

25 NS2 Domain

1 t empla te <typename Type>
c l a s s MLDPort : p u b l i c T c l O b j e c t

3 {
p u b l i c :

5 MLDPort (c o n s t s t d : : s t r i n g &s t r) ;
MLDPort (c o n s t char ∗ c o n s t &s t r) ;

7

void send (c o n s t Type &i) c o n s t ;
9

i n l i n e c o n s t vo id ∗ c o n s t getMLD Emmit terPor t () c o n s t { re turn MLD EmmitterPort ; }
11 p r o t e c t e d :

MLDPort<Type> &operator =(c o n s t s t d : : s t r i n g &p o r t a d d r) ;
13 void ∗MLD EmmitterPort ;

15 / / ! T c l command Linkage
i n t command (i n t argc , c o n s t char∗ c o n s t ∗ a rgv) ;

17 } ;

Source Code 25.12: Class declaration for MLDPort

1 # i n c l u d e ” MLDesigner . h ”
i n c l u d e ”MLDPort . h ”

3 # i n c l u d e ” c o n f i g . h ”

5 c l a s s I n t E m i t t e r : p u b l i c T c l O b j e c t {
p u b l i c :

7 I n t E m i t t e r (c o n s t char ∗ c o n s t p o r t) : p o r t (p o r t) {}
i n t command (i n t argc , c o n s t char∗ c o n s t ∗ a rgv)

9 {
i f (a r g c == 2) {

11 i f (s t r c mp (a rgv [1] , ” send ”) == 0)
{

13 p o r t . send (4 2) ;
}

15 }
re turn TCL OK ;

17 }
p r o t e c t e d :

19 MLDPort<i n t> p o r t ;
} ;

21

23 s t a t i c c l a s s I n t E m i t e r C l a s s : p u b l i c T c l C l a s s {
p u b l i c :

25 I n t E m i t e r C l a s s () : T c l C l a s s (” I n t E m i t t e r ”) {}
T c l O b j e c t ∗ c r e a t e (i n t a r g c , c o n s t char∗ c o n s t ∗ a rgv) {

27 i f (a r g c != 5)
{

29 MLDesigner : : e r r o r (”You s h o u l d s p e c i f y t h e Address o f t h e MLD P o r t a s P a r a m e t e r ”) ;
re turn NULL;

31 }
e l s e

33 re turn new I n t E m i t t e r (a rgv [4]) ;
}

35 } c l a s s i n t e m i t t e r ;

Source Code 25.13: Source Code for the new OTcl class IntEmitter

25-26 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

1 c l a s s MLDTcpSink : p u b l i c TcpSink {
p u b l i c :

3 MLDTcpSink (Acker∗ a , c o n s t char ∗ c o n s t p o r t) : TcpSink (a) , p o r t (p o r t) {}
void r e c v (P a c k e t ∗ pkt , Hand le r∗ h)

5 {
p o r t . send (hdr cmn : : a c c e s s (p k t)−> s i z e ()) ;

7 TcpSink : : r e c v (pkt , h) ;
}

9

p r o t e c t e d :
11 MLDPort<i n t> p o r t ;

} ;

Source Code 25.14: Class declaration for MLDTcpSink ($NS2Addon/MLDSink.h)

Source code 25.14 shows the declaration of this new class inside NS2 (the code is located
in $MLD/MLD Experimentals/NS2/kernel/NS2Addons/MLDTcpSink.h16).

The MLDTcpSink class contains a MLDPort<int> member variable called port (line 11).
As we want to send integers, the int specialization of the MLDPort template is used. Via this
variable the communication to MLDesigner ports is done. For its initialization a string17 is
necessary. For that reason, the constructor of MLDTcpSink needs an additional const char
* const parameter that is passed to the port’s constructor (in line 3).

The recv(. . .) method of TcpSink is overwritten to perform the actual sending to MLDe-
signer whenever a packet arrives (line 4-8 in source code 25.14). First, the size of the
received packet is sent to MLDesigner. Then, recv(. . .) of the base class is called. The
types for the arbritary packet headers are declared in $NS2/common/packet.h. A more de-
tailed description about NS2 packet headers and the access mechanisms for those headers
can be found in [NS2a].

Next step at NS2 side is to declare the created MLDTcpSink class in NS2’s OTcl names-
pace. Source code 25.15 shows, how this is done. A new class called MLDTcpSinkClass
has been derived from TclClass. The name in OTcl is set to “Agent/TCPSink/MLD” follow-
ing OTcl’s naming convention for class derivation (line 3). In lines 4 - 12, the creation of
a new MLDTcpSink instance is specified. The OTcl syntax for creating a new instance ’a’
is “set a [new Agent/TCPSink/MLD 0x12345678]”. 0x12345678 stands examplary for any
address specified in that way. Line 4 in the source code tests if the Tcl creation command
was invoked with this address parameter. If so, the new MLDTcpSink instance is created
with this parameter passed to the constructor of MLDTcpSink (line 11), otherwise the FAIL
macro throws an exception in the MLDesigner primitive that has called the malformed com-
mand (line 7).

A more detailed description on how to create new agents is given in [NS2a].

Writing the MLDesigner Primitive The easier part of the data communication is to write the
MLDesigner primitive. Because there is some new code that has to be added to the NS2
process, the new MLDTCPSink primitive should be derived from ImplementedObject.
The NS2Implementation parameter should be set to the source code file(s) containing
our NS2 code.

16In the following paper, $NS2Addons refers to $MLD/MLD Experimentals/NS2/kernel/NS2Addons
17The string contains the address of the MLDesigner’s port. Details are following

25-27

25 NS2 Domain

s t a t i c c l a s s MLDTcpSinkClass : p u b l i c T c l C l a s s {
2 p u b l i c :

MLDTcpSinkClass () : T c l C l a s s (” Agent / TCPSink /MLD”) {}
4 T c l O b j e c t ∗ c r e a t e (i n t a r g c , c o n s t char∗ c o n s t ∗ a rgv) {

i f (a r g c != 5)
6 {

FAIL (”You s h o u l d s p e c i f y t h e Address o f t h e MLD P o r t a s P a r a m e t e r ”) ;
8 re turn NULL;

}
10 e l s e

re turn new MLDTcpSink (new Acker , a rgv [4]) ;
12 }

} c l a s s m l d t c p s i n k ;

Source Code 25.15: OTcl linkage for MLDTcpSink ($NS2Addons/MLDSink.cc)

1 b e g i n
{

3 sw i t ch (g e t B e g i n P h a s e ())
{

5 case NS2Star : : SIMULATORCONFIG :
i f (compileAndLoadToNS ())

7 EVAL(” Agent / TCPSink /MLD i n s t p r o c i n i t a r g s { e v a l $ s e l f n e x t $ a r g s }”) ;
break ;

9 case NS2Star : : AGENT :
EVAL(” s e t ” << fu l lName () << ” [new Agent / TCPSink /MLD ”

11 << (void ∗)& S i z e << ” ” << NS2Cons t ruc to rArgs << ”] ”) ;
s e t A l i a s () ;

13 s e t P a r a m e t e r s () ;
c a l l F u n c t i o n s () ;

15 a t t achToNode () ;
break ;

17 }
}

Source Code 25.16: begin of MLDTcpSink

Furthermore, it is necessary to advise the primitive to compile and load the additional
sources to the NS2 process during begin phase. This is done via compileAndLoadToNS().
If this function returns false, all sources have already been loaded by other instances of this
primitive. If the function returns true some initialization can be done.

Here, the code “Agent/TCPSink/MLD instproc init args { eval $self next $args }” is ex-
ecuted to set up the OTcl constructor for “Agent/TCPSink/MLD” after compileAndLoad-
ToNS() returns true (refer to source code 25.16 lines 6 and 7).

The created MLDTcpSink can now be used like any other Agent in NS2. The only difference
is, that it needs the address of the port where it should send its integer particles through as
parameter during construction. Source code 25.16 shows the begin code of the MLD TCP
Sink primitive. In line 10 and 11, the MLDTcpSink instance is created with the address of
the Size port as the argument.

Now MLDTCPSink’s Size port will emit an integer each time the MLDTcpSink receives a
network packet. Since the size of the packet is sent automatically through the linked port,
MLDTCPSink’s go method is not called when the data is put through the port - of course go
of the particle receiving primitive is called as usual.

25-28 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

Complex Data Transfer (MLDDataTransfer) In the previous section it was shown how
simple pre-defined data can be transfered from NS2 to MLDesigner. The next paragraphs show
how user-defined data structures can be transfered from NS2 to MLDesigner. To understand the
procedure, it is necessary to know all concepts described in the last section.
Figure 25.13 shows the basic architecture for transfering user data to MLDesigner.

MLDesigner
NS2 Primitive

protected {
TransferData data;
}

go {}

begin {}
ns2 simulator

other Primitive

struct TransferData
{ // ...
};

 MLDDataTransfer trans;
 TransferData data;

 trans.send();

(1)
initialize

(2)
link

(3)
update data

(4)
call go()

Figure 25.13: Architecture: sending user-defined data to MLDesigner

The procedure is introduced using MLDSink as an example. This primitive emits several data
particles whenever a packet arrives.

Defining Transfer Data Structure First the data structure that should be transfered has to be
defined. It is possible to transfer any data structure that can be copied by a flat copy. Valid
structures are structs that contain only primitive data types, structs or unions of primitive
types or structs or unions of other valid structs. Valid structures must not have any virtual
methods, virtual base classes or base classes containing virtual methods18. The definition
of this structure has to be included into the MLDesigner’s primitive and into the NS2 class
header or cc file. Source code 25.17 shows how the data structure, that is transfered to MLD
Sink is defined.

NS2 Simulator Site Like for the simple data transfer, a new NS2 class must be defined to talk to
MLDesigner. Here, we derive MLDSinkAgent directly from Agent. Like in the simple data
transfer introduced above, constructor and recv() method are overwritten (lines 3 and 4 in
source code 25.18). Instead of an instance of MLDPort<T>, a member typed MLDData-
Transfer is needed (line 6). Further, a member containing the data structure that is supposed
to be sent is necessary (line 7).

18All structures that can safely be copied via memcopy(Struct *, sizeof(Struct)) can be used.

25-29

25 NS2 Domain

s t r u c t CmnPacke tHeaderPar t
{

i n t s i z e ; / / s i m u l a t e d p a c k e t s i z e
i n t u i d ; / / un iq ue i d
i n t e r r o r ; / / e r r o r f l a g
i n t e r r b i t c n t ; / / # o f c o r r u p t e d b i t s j ahn
i n t f e c s i z e ;
double t s ; / / t i m e s t a m p : f o r q−d e l a y measurement

} ;

Source Code 25.17: Transfer struct ($NS2Addon/MLDSinkAgent-TransferStruct.h)

1 c l a s s MLDSinkAgent : p u b l i c Agent {
p u b l i c :

3 MLDSinkAgent (c o n s t char ∗ s t r) ;
void r e c v (P a c k e t ∗ , Hand le r ∗) ;

5 p r o t e c t e d :
MLDDataTransfer dataToMLD ;

7 CmnPacke tHeaderPar t h e a d e r P a r t ;
} ;

Source Code 25.18: Declaration of MLDSinkAgent ($NS2Addon/MLDSinkAgent.h)

During initialization of the MLDSinkAgent, the MLDDataTransfer instance has to be ini-
tialized by a string parameter that is provided by the MLDesigner primitive. This is done
analogous to the procedure described above: MLDSinkAgent’s constructor passes the string
to MLDDataTransfer’s constructor. The create() method in the OTcl class uses argv[4] as
parameter to construct a new MLDSinkAgent instance. In addition to a simple data trans-
fer, a MLDDataTransfer instance should be “linked” to the member variable that should be
transfered. This is done using the linkToData(const DataRef &) member function of MLD-
DataTransfer. The DataRef parameter should be created temporary out of the address and
size of the data that should be transfered. Source code 25.19 shows how all this is done
inside MLDSinkAgent’s constructor. Source code 25.15 shows how the Tcl linkage should
be done.

The recv(. . .) function fills the headerPart data structure with data out of the received
packet’s header and calls the send() method of the MLDDataTransfer class. Then, the
packet structure is released because a receiving NS2 Agent has to do this. Source code 25.20
shows the implementation of MLDSinkAgent::recv(. . .).

MLDesigner’s MLDSink primitive Inside the MLDesigner primitive, a member variable as in-
stance of the transfer structure is needed (ph). This instance will be updated automatically
by the NS2 MLDDataTransfer class whenever a send() was called. In contrast to the sim-
ple data transport through ports, the primitive’s go method is called after data has been

MLDSinkAgent : : MLDSinkAgent (c o n s t char ∗param) : Agent (PT UDP) , dataToMLD (param)
{

dataToMLD . l i n k T o D a t a (DataRef (& h e a d e r P a r t , s i z e o f (h e a d e r P a r t))) ;
}

Source Code 25.19: MLDSinkAgent’s constructor ($NS2Addon/MLDSinkAgent.cc)

25-30 MLDesigner Version 2.8

25.3 Working with the MLDesigner NS2 Domain

void MLDSinkAgent : : r e c v (P a c k e t ∗ pkt , Hand le r ∗)
{

h e a d e r P a r t . s i z e = hdr cmn : : a c c e s s (p k t)−> s i z e () ;
h e a d e r P a r t . u i d = hdr cmn : : a c c e s s (p k t)−>u i d () ;
h e a d e r P a r t . e r r o r = hdr cmn : : a c c e s s (p k t)−> e r r o r () ;
h e a d e r P a r t . e r r b i t c n t = hdr cmn : : a c c e s s (p k t)−> e r r b i t c n t () ;
h e a d e r P a r t . f e c s i z e = hdr cmn : : a c c e s s (p k t)−> f e c s i z e () ;
h e a d e r P a r t . t s = hdr cmn : : a c c e s s (p k t)−> t imes t amp () ;

dataToMLD . send () ;
P a c k e t : : f r e e (p k t) ;

}

Source Code 25.20: MLDSinkAgent::recv(. . .) ($NS2Addon/MLDSinkAgent.cc)

go
{ / / i s c a l l e d a f t e r packetCmnHeader has been upda ted

S i z e << ph . s i z e ;
Uid << ph . u i d ;
E r r o r << ph . e r r o r ;
E r r o r B i t C o u n t << ph . e r r b i t c n t ;
F e c S i z e << ph . f e c s i z e ;
TimeStamp << ph . t s ;

}

Source Code 25.21: MLD Sink’s go method

received. Inside go the received data can be proccessed or passed through output ports.
Source code 25.21 shows the go method of MLD Sink.

For initializing the MLDSinkAgent a string must be sent to the NS2 process that is cre-
ated using a temporary instance of NS2::DataSink. For constructing such a temporary
NS2::DataSink instance variable, a reference of the current primitive (this), the address of
the receiving structure (&ph) and the size of this structure (sizeof(ph)) have to be provided
as parameters. Source code 25.22 shows the begin method of MLDSink. The parameter
for constructing the Sink is colored red.

Error handling inside the NS2 process You can send information, warnings or critical
errors to MLDesigner using TCL or C++ commands19. In Tcl, the MLDesigner implements the
methods message, warn and error. Because $mldesigner is the singleton instance of this class,
messages can be sent via $mldesigner message ”Hello World”. GUI warnings, messages and
errors shown in fig. 25.14 generates the messages inside the Log window of MLDesigner shown
in fig. 25.15.
These display features can be used in the C++ context in NS2, too. Here it is necessary to include
<MLDesigner.h>. The C++ class MLDesigner implements message, warn and error as static
member functions. So, everywhere inside C++ code,
MLDesigner::error(”Abort due to a critical error”);
can be called to sent an error to MLDesigner and abort simulation.

19Sent errors abort the current simulation

25-31

25 NS2 Domain

b e g i n
{

sw i t ch (g e t B e g i n P h a s e ())
{

case NS2Star : : SIMULATORCONFIG :
i f (compileAndLoadToNS ())

EVAL(” Agent / MLDSink i n s t p r o c i n i t a r g s { e v a l $ s e l f n e x t $ a r g s }”) ;
break ;

case NS2Star : : AGENT :
EVAL(” s e t ” << fu l lName ()

<< ” [new Agent / MLDSink \” ”
<< NS2::DataSink(this, &ph, sizeof(ph))
<< ”\” ”
<< NS2Cons t ruc to rArgs << ”] ”) ;

s e t A l i a s () ;
s e t P a r a m e t e r s () ;
c a l l F u n c t i o n s () ;
a t t achToNode () ;
break ;

}
}

Source Code 25.22: MLD Sink’s begin method

Eval:
$mldesigner message {This is a message sent inside the ns2 process}

Eval:
$mldesigner warn {This is a warning sent inside the ns2 process}

Eval:
$mldesigner error {This is an error sent inside the ns2 process, an error aborts simulation}

This system demonstrates how messages, warnings and
errors inside the ns2 simulator process can be sent to
MLDesigner. If the system is executed using the
MLDesigner GUI these messages, warnings and errors are
displayed inside the command window in the 'Log' tab.

Figure 25.14: System: GUI warnings, messages and errors

Figure 25.15: The commands window ’Log’ tab window after ”GUI warnings, ...” was run

25-32 MLDesigner Version 2.8

Chapter 26

Unsupported Domains

MLDesigner supports a number of domains. Some of them are well developed, while others are
still experimental. The supported domains are documented in ch. 23. This chapter discusses only
the experimental (unsupported) domains. The documentation and MLDesigner libraries are di-
rectly taken from Ptolemy and have not been tested.

For details about the CTDE domain which is experimental but supported see ch. 23

26.1 SR Domain

26.1.1 Introduction
The Synchronous Reactive domain is a statically-scheduled simulation domain in MLDesigner de-
signed for concurrent, control-dominated systems. To allow precise control over timing, it adopts
the synchronous model of time, which is logically equivalent to assuming that computation is
instantaneous.

26.1.2 SR concepts
Time in the SR domain is a sequence of instants. In each instant, the system observes its inputs
and computes its reaction to them. Each instant is assumed to take no time at all. All computation
is treated as being instantaneous.

Communication in the SR domain takes place through unbuffered single driver, multiple receiver
channels. In each instant, each channel may have a single event with a value, have no event, or be
undefined, corresponding to the case where the system could not decide whether the channel had
an event or not. Communication is instantaneous, meaning that if an event is emitted on a channel
in a certain instant, every primitive connected to the channel will see the event in the same instant.

26.1.3 SR compared to other domains
SR is similar to existing MLDesigner domains, but differs from them in important ways. Like
Synchronous Data Flow (SDF), it is statically scheduled and deterministic, but it does not have

26 Unsupported Domains

buffered communication or multi-rate behavior. SR is better for control-dominated systems that
need control over when things happen relative to each other; SDF is better for data-dominated
systems, especially those with multi-rate behavior.

SR also resembles the Discrete Event (DE) domain. Like DE, its communication channels transmit
events, but unlike DE, it is deterministic, statically scheduled, and allows zero-delay feedback
loops. DE is better for modeling the behavior of systems (i.e., to better understand their behavior),
whereas SR is better for specifying a system’s behavior (i.e., as a way to actually build it).

26.1.4 The semantics of SR
An SR primitive must be well-behaved in the following mathematical sense to make SR systems
deterministic. It must compute a monotonic function of its inputs, meaning that when it is pre-
sented with more-defined inputs, it must produce more-defined outputs. In particular, an output
may only switch from undefined to either present or absent when one or more inputs do, but it
may not change its value or become undefined.

The semantics of SR are defined as the least fixed point of the system, meaning the least-defined
set of values on the communication channels that is consistent with all the primitives’ functions.
That is, if any primitive were evaluated, it will not want to change its output — the value is al-
ready correct. The monotonicity constraint on the primitives ensures that there is always exactly
one least-defined set, and this is what the SR schedulers calculate.

There are two schedulers for the SR domain, default-SR and dynamic-SR. The dynamic
scheduler is the easiest to understand. In each instant, it first initializes all the communication
channels to ”undefined” and then executes all the primitives in the system until none of them try to
change their outputs. The default scheduler is more shrewd. It uses the communication structure
of the system to determine an execution order for the primitives that will make them converge.
This is based on a topological sort of the primitives, but is made more complicated when there are
feedback loops.

26.1.5 Overview of SR primitives
26.1.5.1 General primitives

Const Output a constantly-present integer output given by the level param-
eter.

Pre Emit the value of the integer input from the most recent instant in
which it was present.

And Emits the logical AND of the two integer inputs, or absent if both
inputs are absent.

Add Emit the sum of the two integer inputs, or the value of the present input
if the other is absent.

Printer Print the value of each input to the file specified by the fileName pa-
rameter. All inputs are printed on a single line with the prefix in the

26-2 MLDesigner Version 2.8

26.1 SR Domain

prefix parameter.

IntToString Convert the integer input to a string.

StringToInt Convert the string input to an integer.

Sub Emits the different of the two integer inputs, or absent if both inputs
are absent.

When When the clock is true, emit the input on the output, otherwise, leave
the clock absent.

Mux Depending on the value of the select input, copy either the true input
or the false input to the output.

10.5.2 Itcl primitives
By default, all of these primitives have no behavior. They provide an interface for user-written Itcl
scripts that specify their behavior. Each has the following states: itclClassName, the class
name of the itcl object associated with the primitive, itclSourceFile, the path name of the
itcl script containing the definition of this class, and itclObjectName, the name of the itcl
object to create. If this field is left blank, the object is given the name of the primitive instance.

ItclOut Single output Itcl primitive.

ItclIn Single input Itcl primitive.

ItclInOut One input, one output Itcl primitive.

ItclCounter Itcl incrementer/decrementer.

ItclModeSelect Itcl primitive used in the Rolodex demo.

ItclDatabase Simple sorted database.

ItclDisplay Display for the rolodex.

ItclEditor Editor for the rolodex

10.5.3 MIDI primitives
The MIDI primitives below are used in the MIDISynthesizer demo described later in this chap-
ter. We include these primitives only as an example of what can be done with the Synchronous
Reactive domain.

SerialIn Emit the character waiting on the serial port, or leave the output absent
if there isn’t one. The deviceName parameter specifies the port, and
baudRate specifies the speed.

MIDIin An interpreter for the MIDI protocol. It takes an incoming MIDI
stream and fans it out to Note On and Note Off commands.

SynthControl A polyphonic synthesizer control.

EnvelopeGen An envelope generator for FM sound synthesis.

10.6 An overview of SR demos There are currently three SR demos.

NOTE: Since the SR domain is not supported, the demos mentioned here are not directly ac- �

26-3

26 Unsupported Domains

cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the file view tree and look in
$MLD/MLD Experimentals/SR/demo.
Please remember that the demos are not tested and may be unable to run properly!

ramp Prints a sequence of increasing integers. Essentially a ”hello world”
for the SR domain, this demonstrates how Pre can interact with an
adder.

rolodex A digital address book implemented in SR. This demonstrates how itcl
primitives can be used to prototype user-interface-dominated systems
at a high level. The system is divided into keyboard, database, editor,
and display blocks.

MIDIsynthesizer A music synthesizer written in SR. This is a polyphonic sound syn-
thesizer written using custom SR primitives for the control portion.
Waveform synthesis is done using an FM algorithm implemented in
CGC. This requires a MIDI keyboard to be attached to /dev/ttya,
and functioning CGC audio drivers for your platform.

26-4 MLDesigner Version 2.8

Chapter 27

Code Generation Domains - unsupported

27.1 VHDL Domain

27.1.1 Introduction
The VHDL domain generates code in the VHDL (VHSIC Hardware Description Language) pro-
gramming language. This domain supports the synchronous data flow model of computation. This
is in contrast to the VHDLB domain, which supports the general discrete event model of compu-
tation of the full VHDL language.

Since the VHDL domain is based on the SDF model, it is independent of any notion of time. The
VHDL domain is intended for modeling systems at the functional block level, as in DSP functions
for filtering and transforms, or in digital logic functions, independent of implementation issues.

The VHDL domain replaces the VHDLF domain. It is not, however, meant to be used in the same
way as the VHDLF domain: the VHDL domain is for generating code from functional block dia-
grams with SDF semantics, while the VHDLF domain was intended to contrast with the VHDLB
domain. It supported structural code generation using VHDL blocks with no execution delay or
timing behavior, just functionality. The semantics for the VHDLF domain were not strictly de-
fined, and quite a lot depended on how the underlying VHDL code blocks associated with each
VHDLF primitive were written.

Within the VHDL domain, there are a number of different Targets to choose from. The default
target, default-VHDL, generates sequential VHDL code in a single process within a single
entity, following the execution order from the SDF scheduler. This code is suitable for efficient
simulation, since it does not generate events on signals. The SimVSS-VHDL target is derived from
default-VHDL, and provides facilities for simulation using the Synopsys VSS VHDL simula-
tor. Communication actors and facilities in the SimVSS-VHDL target support code synthesis and
co-simulation of heterogeneous CG systems under the CompileCGSubsystems target devel-
oped by Jose Pino. There is also a SimMT-VHDL target for use with the Model Technology VHDL
simulator. The struct-VHDL target generates VHDL code in which individual actor firings are
encapsulated in separate entities connected by VHDL signals. This target generates code which
is intended for circuit synthesis. The SynthVHDL target, derived from struct-VHDL, provides
facilities for synthesizing circuit representations from the structural code using the Synopsys De-

27 Code Generation Domains - unsupported

sign Analyzer tool set. Each of these targets is discussed in more detail in the next section.

Because the VHDL domain uses SDF semantics, it supports retargeting from other domains with
SDF semantics (SDF, CGC, etc.) provided that the primitives in the original graph are available
in the VHDL domain. As this experimental domain evolves, more options for VHDL code gener-
ation from data flow graphs will be provided. These options will include varying degrees of user
control and automation depending on the target and the optimization goals of the code generation,
particularly in VHDL circuit synthesis.

27.1.1.1 Setting Environment Variables

In order to have the Synopsys simulation target work correctly, you should make sure that the fol-
lowing environment variables and paths are set correctly. The SYNOPSYS and SIM ARCH shell
environment variables are settable within the Synopsys simulation target, SimVSS-VHDL.

Also, you may need to permanently add the following lines to your .cshrc file and uncomment
the ones you wish to take effect:

For VHDL Synopsys demos, uncomment the following:
setenv SYNOPSYS /usr/tools/synopsys
setenv SIM_ARCH sparcOS5
You need the last one of these (.../sge/bin) to run vhdldbx
since vhdldbx looks for "msgsvr":
set path = ($path $SYNOPSYS/$SIM_ARCH/syn/bin
$SYNOPSYS/$SIM_ARCH/

sim/bin $SYNOPSYS/$SIM_ARCH/sge/bin)
You need this to run vhdlsim, and since vhdldbx calls
vhdlsim, you need this to run vhdldbx also:
setenv MLD_LIBRARY_PATH ${MLD_LIBRARY_PATH}

:${SYNOPSYS}/${SIM_ARCH}/sim/lib
For Motorola S56x card demos on the Sparc, you will
need something like:
setenv S56DSP /users/ptdesign/vendors/s56dsp
setenv QCKMON qckMon5
setenv MLD_LIBRARY_PATH ${MLD_LIBRARY_PATH}:${S56DSP}/lib

You will need to have a .synopsys vss.setup file with the right library directive in it in
order to use the communication vhdl modules needed for the CompileCGSubsystems target.
This file in the root MLDesigner directory has the correct directive defining the location of the
PTVHDLSIM library. Synopsys simulation only sees the file if it is in one of three places: the
current directory in which simulation is invoked, the configuration directory within the Synopsys
installation tree, or the user’s home directory. Since working directories are frequently created and
destroyed, and since the Synopsys installation will vary from site to site, the user’s home directory
is the best place to put this file, but each user must do this if the root of their personal MLDesigner
tree is anything other than their home directory.

Here is the text in $MLD/.synopsys vss.setup:

27-2 MLDesigner Version 2.8

27.1 VHDL Domain

-- This is so communication code can be
-- compiled into the PTVHDLSIM library:
PTVHDLSIM: $MLD/obj.$PTARCH/utils/ptvhdlsim

NOTE: If you build your own tree and it includes your own $MLD/src/utils/ptvhdlsim �
directory, then you will need to modify your .synopsys vss.setup file to point to
this directory prior to building the new tree. During the build process, this file is needed
so that the ptvhdlsim executable can be correctly linked. If it is pointing to some other
directory, then you may experience problems linking ptvhdlsim.

27.1.2 VHDL Targets
The targets of the VHDL domain generate VHDL code from SDF graphs. The targets differ from
one another in the styles of VHDL code which they produce, or in the facilities they provide for
passing the generated code to VHDL simulation or circuit synthesis tools. The graphs of VHDL
actors in MLDesigner are meant to be retargetable in that one graph can be used with multiple
VHDL targets, depending on the circumstances. The available targets in the VHDL domain are:
default-VHDL, struct-VHDL, SimVSS-VHDL, SimMT-VHDL, and Synth-VHDL. There
is also support for using SimVSS-VHDL as a child target of CompileCGSubsystems for hetero-
geneous code generation and co-simulation.

All of the VHDL targets share the following parameters, which are inherited from the base class
HLLTarget:

directory (STRING) Default = $HOME/MLD SYSTEMS
The name of the directory into which generated code files and sup-
porting files are written. In derived targets, this is also the directory in
which compilation for simulation and synthesis are performed.

Looping Level (INT) Default = 0
The control for selecting the looping complexity of the SDF scheduler
which is used. Note that looping of code is not supported in the cur-
rent implementation, except at the main iteration loop on the outside.
Therefore a looping level of zero should be used with all loop sched-
ulers or incorrect code may result. In future releases, higher looping
levels will be supported.

display? (INT) Default = TRUE
Option to display generated code files to the screen.

write schedule? (INT) Default = FALSE
Option to write the schedule to a file. The name of the file will be
¡module name¿.sched.

27.1.2.1 The default-VHDL Target

The default-VHDL target generates VHDL code in a simple and straightforward style which
is designed to preserve the SDF scheduling order while incurring minimum VHDL simulation
overhead. The code is generated as a single VHDL entity containing a single process of sequential

27-3

27 Code Generation Domains - unsupported

statements. The sequential process reflects the order of execution determined by the SDF sched-
uler. All data values are stored and communicated through internal variables so that the simulation
overhead of VHDL signals and the VHDL discrete-event scheduler can be avoided. No actual
simulation is performed by the default-VHDL target. It is left to derived targets to support
VHDL simulation.

To generate the code, the default-VHDL target first invokes the SDF scheduler, and then goes
through the resulting schedule in order, firing each VHDL primitive in sequence. As each VHDL
primitive is fired, a block of VHDL sequential statements is generated. Porthole and State
references and values are resolved and any necessary VHDL variables are created and placed in
the list of declared variables. One VHDL primitive may be fired multiple times and each firing will
cause a new codeblock with new variables to be generated. The target manages the communication
of data from one VHDL primitive to the next through VHDL variables. The target also manages
state propagation from one firing to the next of the same VHDL primitive through VHDL variables.
State values and tokens remaining on arcs at the end of the schedule iteration are also fed back
through the correct variables so that the process can be looped repeatedly and function identically
to the original SDF graph.

27.1.2.2 The struct-VHDL Target

The struct-VHDL target generates VHDL code in a structural style, in which firings of VHDL
primitives are individually encapsulated in VHDL entities. The entities are connected to one an-
other through VHDL signals, and the flow of data and state from one firing entity to the next
enforces the precedence relationships inherent in the data flow graph and the resulting schedule.
The overall structure of the completed code description parallels the precedence directed acyclic
graph (DAG).

The procedure used by the struct-VHDL target to generate the code begins similarly to that of
the default-VHDL target. First, the SDF scheduler is invoked and a valid schedule is computed.
Then the schedule is run, and as each VHDL primitive is fired, the target generates an individual
VHDL entity for each firing while keeping track of input and output references to portholes and
states. The target manages the references so that it can correctly instantiate each VHDL entity
and create VHDL signals to map to the VHDL ports for carrying data and state from one firing
to the next. Only firings which have actual dependencies will be connected in the VHDL code
representation. In this way, the code generated represents the maximum parallelism in the graph
computation outside the granularity level of an individual firing.

The current version of the struct-VHDL target also generates registers for latching the values of
states and remaining tokens at the end of an iteration. It feeds back the outputs of these registers to
the correct inputs at the beginning of the graph so that the structure can be ”clocked” by an input
clock signal common to all such registers. This clock, on a positive transition, represents the tick
of one completed iteration of the data flow graph. This clock becomes an input to the entire top-
level VHDL entity, and will presumably be supplied by an outside source or signal driver during
simulation. Similarly, there is an input created for a control signal which selects between the initial
values of states or initial tokens and the succeeding values which are passed from one iteration to
the next.

27-4 MLDesigner Version 2.8

27.1 VHDL Domain

27.1.2.3 The SimVSS-VHDL Target

The SimVSS-VHDL target is derived from the default-VHDL target. It generates code in the
same single-entity, single-process, sequential style as the default-VHDL target, but it also pro-
vides facilities for simulation using the Synopsys VSS VHDL simulator. Depending on the target
parameters set when running this target, following the code generation phase this target can com-
pile, elaborate, and execute interactively or non-interactively the design specified by the generated
VHDL code.

Communication actors and facilities in the SimVSS-VHDL target support code synthesis and co-
simulation of heterogeneous CG systems under the CompileCGSubsystems target developed
by Jose Pino. This allows a user to manually partition a graph using hierarchy so that multiple
code files of different code generation domains can be generated. They are then executable if run
on host machines which provide all the needed simulators and supporting hardware resources that
the individual child targets require. The communication between the different code generation
subsystems is automatically generated and correct synchronization and deadlock avoidance are
guaranteed. This capability is demonstrated with VHDL in a number of demos included through
the main VHDL demo palette.

The additional parameters of the SimVSS-VHDL target are as follows:

$SYNOPSYS (STRING) Default = /usr/tools/synopsys
Value of the SYNOPSYS environment variable. It points to the root of
the Synopsys tools installation on the host machine.

$ARCH (STRING) Default = sparcOS5
Value of the ARCH environment variable. It indicates which architec-
ture/operating system the Synopsys tools will be run on.

$SIM ARCH (STRING) Default = sparcOS5
Value of the SIM ARCH environment variable. It indicates which ar-
chitecture/operating system the Synopsys VSS simulator will be run
on.

analyze (INT) Default = TRUE
If TRUE then attempt to analyze the VHDL code using the gvan tool,
checking for syntax errors.

startup (INT) Default = TRUE
If TRUE then attempt to startup the VHDL simulator (vhdldbx if in-
teractive = TRUE, else ptvhdlsim).

simulate (INT) Default = TRUE
Currently unused. If interactive = FALSE, simulation under ptvhdlsim
will begin automatically following startup.

report (INT) Default = TRUE
Currently unused.

interactive (INT) Default = FALSE
If TRUE then when simulating, run vhdldbx. Otherwise, run ptvhdl-

27-5

27 Code Generation Domains - unsupported

sim.

27.1.2.4 The SimMT-VHDL Target

The SimMT-VHDL target is derived from the default-VHDL target. It generates code in the
same single-entity, single-process, sequential style as the default-VHDL target, and also pro-
vides facilities for simulation using the Model Technology VHDL simulator. Depending on the
target parameters set when running this target, following the code generation phase this target
can compile, elaborate, and execute interactively or non-interactively the design specified by the
generated VHDL code.
The additional parameters of the SimMT-VHDL target are as follows:

analyze (INT) Default = TRUE
If TRUE then attempt to analyze the VHDL code using the vcom tool,
checking for syntax errors.

startup (INT) Default = TRUE
If TRUE then attempt to startup the vsim VHDL simulator

simulate (INT) Default = TRUE
Currently unused. If startup = TRUE and interactive = FALSE, simula-
tion under vsim will begin automatically following startup. If startup
= TRUE and interactive = TRUE, vsim will startup but wait for user
input.

report (INT) Default = TRUE
Currently unused.

interactive (INT) Default = FALSE
If TRUE, then when simulating, start up vsim and wait for user input.
If FALSE, then when simulating, run vsim in the background.

27.1.2.5 The Synth-VHDL Target

The Synth-VHDL target is derived from the struct-VHDL target. It generates code in the
same structural style as the struct-VHDL target, but it also provides facilities for synthesis and
optimization using the Synopsys Design Analyzer tool set.

Not every design which can be specified as an SDF graph using the VHDL primitives available
in the main primitive palettes will be synthesizable. Some primitives generate code which is not
synthesizable under the rules required by the Synopsys Design Analyzer.

There is conceptually more than one way to generate synthesizable VHDL for a given data flow
graph. Just as the sequential VHDL of the default-VHDL target differs from the structural
VHDL of the struct-VHDL target, so there are also multiple ways in which the structural
VHDL could be generated. The struct-VHDL target as is only generates one particular style.
A programmer with some experience could modify this target or create a new or derived target to
generate the code in a different structural style to suit different needs.

27-6 MLDesigner Version 2.8

27.1 VHDL Domain

The additional parameters of the Synth-VHDL target are as follows:

analyze (INT) Default = TRUE
If TRUE then attempt to analyze the VHDL code using the design analyzer
tool, checking for syntax errors.

elaborate (INT) Default = TRUE
If TRUE then attempt to elaborate the analyzed design into a netlist
form.

compile (INT) Default = TRUE
If TRUE then attempt to compile the elaborated design into an opti-
mized netlist.

report (INT) Default = TRUE
If TRUE then generate reports on the compile-optimized designs for
area and timing.

27.1.3 An Overview of VHDL Primitives

This library is divided into the following categories:

• Arithmetic
• Control
• DSP - signal processing.
• Demo
• Nonlinear
• Sinks
• Sources

Most of the primitives in the VHDL domain have equivalent counterparts in the SDF domain.

27.1.3.1 Source Primitives

Source primitives have no inputs and produce data on their outputs. All of these primitives are
equivalent to the SDF primitives of the same name.

27.1.3.2 Sink Primitives

Sink primitives have no outputs and consume data on their inputs. All of these primitives are
equivalent to the SDF primitives of the same name.

27.1.3.3 Arithmetic Primitives

Arithmetic primitives perform simple functions such as addition and multiplication. All of the
primitives are equivalent to the SDF primitives of the same name.

27-7

27 Code Generation Domains - unsupported

27.1.3.4 Nonlinear Primitives

Nonlinear primitives perform simple functions. All of these are equivalent to the SDF primitives
of the same name.

27.1.3.5 Control Primitives

Control primitives are used for routing data and other control functions. All of these are equivalent
to the SDF primitives of the same name.

27.1.3.6 DSP (Digital Signal Processing)

All of the primitives are equivalent to the SDF primitives of the same name.

27.1.4 An Overview of VHDL Demos
NOTE: Since the VHDL domain is not supported, the demos mentioned here are not directly ac-�

cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the Library view and look in
$MLD/MLD Experimentals/VHDL Domain/Demo.
Please remember that the demos are not tested and may not run properly!

The demos are divided into categories: code generation, simulation, synthesis, and co-simulation.
Some of the demos in the VHDL domain have equivalent counterparts in the SDF or CGC do-
mains. In this chapter, only brief descriptions are given to explain the using of the VHDL domain.

27.1.4.1 Code Generation Demos

These demos do nothing but to generate code.

The sequential demos use the default-VHDL target. The structural demos use the struct-VHDL
target. They are essentially the same systems being run, but with two different targets producing
two different styles of VHDL code. These demos provide a direct comparison of these two basic
styles of VHDL code generation.

27.1.4.2 Simulation Demos

These demos use the SimVSS-VHDL target. Each one generates VHDL code which is function-
ally equivalent to the SDF graph specification, and then the code is executed on the Synopsys VSS
Simulator. Graphical monitoring blocks provide output analysis of the results of running these
systems.

27.1.4.3 Synthesis Demos

These demos use the Synth-VHDL target. Each one generates structural VHDL code which is
equivalent to the SDF specification. One difference is that the data types are converted to simple 4-
bit integers to speed up the synthesis process. Once the code is generated, the netlist is synthesized

27-8 MLDesigner Version 2.8

27.2 CG Domain

through the Synopsys Design Analyzer. Following that, the netlist is optimized and then control
of the Design Analyzer is returned to the user for further explora- tion and inspection.

27.1.4.4 Co-simulation Demos

These demos use the CompileCGSubsystems target which uses the SimVSS-VHDL target
as a child target for the VHDL portions of the systems. The first three demos generate stand-
alone heterogeneous programs which run in C, Motorola DSP56000 assembly, and VHDL. They
produce analysis and synthesis filterbanks for perfect reconstruction using progressively more
complex structures. The fourth demo also generates a Tcl/Tk user interface for selecting one of
three waveform inputs to the system. The fifth and final demo generates the filterbank system, but
instead of doing it as a standalone program, it incorporates the system into a wormhole inside a
top-level SDF system. This way the subsystem can be executed in code which is potentially faster
than SDF simulation, and it can be reused without having to recompile the subsystem each time
the top-level system is executed.

27.2 CG Domain

27.2.1 Introduction
The Code Generation (CG) domain and its derivative domains, such as the CG56 domain (Mo-
torola DSP56000) and the C language (CGC) domain, are used to generate code rather than to run
simulations. Only the derivative domains are of practical use for generating code. The primitives
in the CG domain itself can be thought of as ”comment generators”; they are useful for testing and
debugging schedulers and for little else. The CG domain is intended as a model and a collection
of base classes for derivative domains. This section documents the common features and general
structure of all code generation domains.

All the code generation domains that are derived from the CG domain in this release obey SDF
semantics and can thus be scheduled at compile time. Internally, however, the CG only assumes
that primitives obey data flow semantics. Currently, we have implemented two approaches for
data-dependent execution, CGDDF, which recognizes and implements certain commonly used
programming constructs, and BDF (”Boolean data flow” or the token- flow model) [Buc93]. Even
when these are implemented, the vast majority of primitives in any given application should obey
the SDF rules to permit efficient multiprocessor code generation.

A key feature of code generation domains is the notion of a target architecture. Every applica-
tion must have a user-specified target architecture, selected from a set of targets sup- ported by
the user-selected domain. Every target architecture is derived from the base class Target, and
controls such operations as scheduling, compiling, assembling, and downloading code. Since the
target controls scheduling, multiprocessor architectures can be supported with automated task par-
titioning and synchronization.

Another feature of the code generation domains is the ability to use different schedulers. A key
idea in MLDesigner is that there is no single scheduler that is expected to handle all situations.

27-9

27 Code Generation Domains - unsupported

We have designed a suite of specialized schedulers that can be mixed and matched for specific
applications. Some targets in the CG domain, in addition to serving as base classes for derived
domains, allow the user to experiment with these various schedulers.

27.2.2 Targets
A code generation Domain is specific to the language generated, such as C (CGC) and DSP56000
assembly code (CG56). Each code generation domain has a default target which defines routines
generic to the target language. These targets are derived from targets defined in the CG domain.

A Target object has methods for generating a schedule, compiling the code, and running the
code (which may involve downloading code to the target hardware and beginning its execution).
There also may be child targets (for representing multiprocessor targets) together with methods for
scheduling the communication between them. Targets also have parameters that are user specified.
There are four targets in the CG domain; these are described below.

27.2.2.1 default-CG

This target is the default target for the CG domain. It allows the user to experiment with the
various uniprocessor schedulers. Currently, there is a suite of schedulers that generate schedules
of various forms of optimality. For instance, the default SDF scheduler generates schedules that
try to minimize the amount of buffering required on arcs, while the loop schedulers try to minimize
the amount of code that is generated. Refer to the schedulers section in this chapter for a discussion
on these schedulers. There are only two parameters for this target:

directory (STRING) Default = $HOME/MLD SYSTEMS
This is the directory to which all generated files will be written to.

looping Level (STRING) Default = ACYLOOP
The choices are DEF, CLUST, SJS, or ACYLOOP. Case does not mat-
ter; ACYLOOP is the same as AcyLoOP. If the value is DEF, no at-
tempt will be made to construct a looped schedule. This can result in
very large programs for multirate systems, since inline code generation
is used, where a codeblock is inserted for each appearance of an actor
in the schedule. Setting the level to CLUST invokes a quick and simple
loop scheduler that may not always give single appearance schedules.
Setting it to SJS invokes the more sophisticated SJS loop scheduler,
which can take more time to execute, but is guaranteed to find single
appearance schedules whenever they exist. Setting it to ACYLOOP
invokes a scheduler that generates single appearance schedules opti-
mized for buffer memory usage, as long as the graph is acyclic. If the
graph is not acyclic, and ACYLOOP has been chosen, then the target
automatically reverts to the SJS scheduler. For backward compatibil-
ity, ”0” or ”NO”, ”1”, and ”2” or ”YES” are also recognized, with ”0”
or ”NO” being DEF, ”1” being CLUST, and ”2” or ”YES” being SJS.
NOTE: Loop scheduling only applies to uniprocessor targets; hence,
this parameter does not appear in the FullyConnected target.

27-10 MLDesigner Version 2.8

27.2 CG Domain

In addition to these parameters, there are a number of parameters that are in this target that are
not visible to the user. These parameters may be made visible to the user by derived targets. The
complete list of these parameters follows:

host (STRING) Default =
The default is the empty string. This is the host machine to compile or
assemble code on. All code is written to and compiled and run on the
computer specified by this parameter. If a remote computer is specified
here then rsh commands are used to place files on that computer and
to invoke the compiler. You should verify that your .rhosts file is
properly configured so that rsh will work.

file (STRING) Default =
The default is the empty string. This represents the prefix for filenames
for all generated files.

display? (INT) Default = YES
If this flag is set to YES, then the generated code will be displayed on
the screen.

compile? (INT) Default = YES If this flag is set to YES, then the generated code
will be compiled (or assembled).

load? (INT) Default = YES If this flag is set to YES, then the compiled code
will be loaded onto a chip.

run? (INT) Default = YES If this flag is set to YES, then the generated code
is run.

27.2.2.2 bdf-CG

This target demonstrates the use of BDF semantics in code generation. It uses the BDF scheduler
to generate code. See the BDF domain documentation for more information on BDF scheduling.
There is only one target parameter available to the user; the directory parameter above. This
parameter has the same functionality as above.

27.2.2.3 FullyConnected

This target models a fully connected multiprocessor architecture. It forms the base class for all
multiprocessor targets with the fully connected topology. Its parameters are mostly to do with
multiprocessor scheduling.
The parameters for FullyConnected are:

nprocs (INT) Default = 2
Number of processors in the target architecture.

sendTime (INT) Default = 1
This is the time required, in processor cycles, to send or receive one
datum in the multiprocessor architecture. Sending and receiving are
assumed to take the same amount of time.

27-11

27 Code Generation Domains - unsupported

onePrimitiveOneProc (INT) Default = NO
If this is YES, then all invocations of a primitive are scheduled onto
the same processor.

manualAssignment (INT) Default = NO
If this is YES, then the processor assignment is done manually by the
user by setting the procId parameter in each primitive.

adjustSchedule (INT) Default = NO
If this is YES, then the automatically generated schedule is overridden
by manual assignment. This feature requires improvements in the user
interface before it can be implemented; hence, the default is NO.

childType (STRINGARRAY) Default = default-CG
This parameter specifies the names of the child targets, separated by
spaces. If the number of strings is fewer than the number of processors
specified by the nprocs parameter, the remaining processors are of type
given by the last string. For example, if there are four processors, and
childType is set to default-CG56[2] default-CGC, then
the first two child targets will be of type default-CG56, and the
next two of type default-CGC.

resources (STRINGARRAY) Default =
The default is the empty string. This parameter defines the specific
resources that child targets have, separated by ”;”. For example, if the
first processor has I/O capabilities, this would be specified as STDIO.
Then, primitives that request STDIO would be scheduled onto the first
processor.

relTimeScales (INTARRAY) Default = 1
This defines the relative time scales of the processors corresponding to
child targets. This information is needed by the scheduler in order to
compute scheduling costs. The number of entries here should be the
same as the number of processors; if not, then the last entry is used
for the remaining processors. The entries reflect the relative comput-
ing speeds of different processors, and are expressed as relative cycle
times. For example, if there is a DSP96000 (32Mhz) and a DSP56000
(20Mhz), the relative cycle times are 1 and 1.6. The default is 1 (mean-
ing that all processors have the same computing speed).

ganttChart (INT) Default = YES
If this is YES, then the Gantt chart containing the generated schedule
is displayed.

logFile (STRING) Default =
This is the name of the file to which a log will be written of the schedul-
ing process. This is useful for debugging schedulers. If no filename is
specified, no log is generated.

amortizedComm (INT) Default = NO
If this is YES, the scheduler will try to reduce the communication over-

27-12 MLDesigner Version 2.8

27.2 CG Domain

head by sending multiple samples per send. This has not really been
implemented yet.

schedName(DL,HU,DC,HIER,CGDDF) (STRING) Default = DL
Using the schedName parameter, a user can select which parallel
scheduling algorithm to use. There are three basic SDF parallel schedul-
ing algorithms. The first two can be used for heterogeneous proces-
sors, while the last can only be used for homogeneous processors.

HU selects a scheduling algorithm based on the classical work by T. C.
Hu [Hu61]. This scheduler ignores the interprocessor communication
cost (IPC) during scheduling and thus may result in unrealistic sched-
ules. The next two scheduling algorithms take into IPC.

DL selects Gil Sih’s dynamic level scheduler [SL93a] (default).

DC selects Gil Sih’s declustering algorithm [SL93b]. This scheduler
only supports homogeneous multiprocessor targets. It is more expen-
sive than the DL and HU schedulers, so should be used only if the DL
and HU schedulers produce poor schedules.

HIER selects a preliminary version of Jose Luis Pino’s hierarchical
scheduler [PBL95]. With this scheduler, the user can specify a top-
level parallel scheduler from the three listed above and also spec-
ify uniprocessor schedulers for individual galaxies. The default top-
level scheduler is DL; to specify another use the following syntax:
HIER(HU) or HIER(DC). To specify a uniprocessor scheduler for a
module, add a new module string parameter named Scheduler and
set it to either Cluster (looping level 1), Loop (looping level 2) or
SDFScheduler (looping level 0).

CGDDF1 selects Soonhoi Ha’s dynamic construct scheduler [Ha92].
A dynamic construct, clustered as a primitive instance, can be assigned
to multiple processors. In the future, we may want to schedule a
primitive exploiting data-parallelism. A primitive instance that can
be assigned to multiple processors is called a ”macro” actor. MACRO
scheduler is expected to allow the macro actors. For now, however,
MACRO scheduler is not implemented.

27.2.2.4 SharedBus

This third target, also a multiprocessor target, models a shared-bus architecture. In this case, the
scheduler computes the cost of the schedule by imposing the constraint that more than one send
or receive cannot occur at the same time (since the communication bus is shared).

27-13

27 Code Generation Domains - unsupported

27.2.3 Schedulers
Given a System of functional blocks to be scheduled and a Target describing the topology and
characteristics of the single- or multiple-processor system for which code is to be generated, it is
the responsibility of the Scheduler object to perform some or all of the following functions:

• Determine which processor a given invocation of a given Block is executed on (for multi-
processor systems).

• Determine the order in which actors are to be executed on a processor.
• Arrange the execution of actors into standard control structures, like nested loops.

If the program graph follows SDF semantics, all of the above steps are done statically (i.e. at
compile time). A data flow graph with dynamic constructs uses the minimal runtime decision
making to determine the execution order of actors.

27.2.3.1 Single-Processor Schedulers

For targets consisting of a single processor, we provide three different scheduling techniques. The
user can select the most appropriate scheduler for a given application by setting the loopingLevel
target parameter.

In the first approach (loopingLevel = DEF), which is the default SDF scheduler, we concep-
tually construct the acyclic precedence graph (APG) corresponding to the system, and generate
a schedule that is consistent with that precedence graph. Note that the precedence graph is not
physically constructed. There are many possible schedules for all but the most trivial graphs; the
schedule chosen takes resource costs, such as the necessity of flushing registers and the amount
of buffering required, into account. The target then generates code by executing the actors in the
sequence defined by this schedule. This is a quick and efficient approach when the SDF graph
does not have large sample-rate changes. If there are large sample rate changes, the size of the
generated code can be huge because the codeblock for an actor might occur many times (if the
number of repetitions for the actor is greater than one); in this case, it is better to use some form
of loop scheduling.

The second approach we call Joe’s scheduling. In this approach (loopingLevel = CLUST),
actors that have the same sample rate are merged (wherever this will not cause deadlock) and
loops are introduced to match the sample rates. The result is a hierarchical clustering; within each
cluster, the techniques described above can be used to generate a schedule. The code then contains
nested loop constructs together with sequences of code from the actors.

Since the second approach is a heuristic solution, there are cases where some looping possibili-
ties go undetected. By setting the loopingLevel to SJS, we can choose the third approach,
called SJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first names. After performing
Joe’s scheduling at the front end, it attacks the remaining graph with an algorithm that is guaran-
teed to find the maximum amount of looping available in the graph. That is, it generates a single
appearance schedule whenever one exists.

A fourth approach, obtained by setting loopingLevel to ACYLOOP, we choose a scheduler

27-14 MLDesigner Version 2.8

27.2 CG Domain

that generates single appearance schedules optimized for buffer memory usage. This scheduler
was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96, BML96]. This scheduler
only tackles acyclic SDF graphs, and if it finds that the system is not acyclic, it automatically resets
the loopingLevel target parameter to SJS. Basically, for a given SDF graph, there could be
many different single appearance schedules. These are all optimally compact in terms of schedule
length (or program memory in inline code generation). However, they will, in general, require
differing amounts of buffering memory; the difference in the buffer memory requirement of an
arbitrary single appearance schedule versus a single appearance schedule optimized for buffer
memory usage can be dramatic. In code generation, it is essential that the memory consumption
be minimal, especially when generating code for embedded DSP processors since these chips have
very limited amounts of on-chip memory. Note that acyclic SDF graphs always have single ap-
pearance schedules; hence, this scheduler will always give single appearance schedules. If the
file target parameter is set, then a summary of internal scheduling steps will be written to that
file. Essentially, two different heuristics are used by the ACYLOOP scheduler, called APGAN
and RPMC, and the better one of the two is selected. The generated file will contain the schedule
generated by each algorithm, the resulting buffer memory requirement, and a lower bound on the
buffer memory requirement (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approaches are taken, the code size is drastically reduced when
there are large sample rate changes in the application. On the other hand, we sacrifice some
efficient buffer management schemes. For example, suppose that primitive A produces 5 samples
to primitive B which consumes 1 sample at a time. If we take the first approach, we schedule this
graph as ABBBBB and assign a buffer of size 5 between primitive A and B. Since each invocation
of primitive B knows the exact location in the allocated buffer from which to read its sample,
each B invocation can read the sample directly from the buffer. If we choose the second or third
approach, the scheduling result will be A5(B). Since the body of primitive B is included inside
a loop of factor 5, we have to use indirect addressing for primitive B to read a sample from the
buffer. Therefore, we need an additional buffer pointer for primitive B (memory overhead), and
one more level of memory access (run-time overhead) for indirect addressing.

27.2.3.2 Multiple-Processor Schedulers

The first step in multiprocessor scheduling, or parallel scheduling, is to translate a given SDF
graph to an acyclic precedence expanded graph (APEG). The APEG describes the dependency
between invocations of blocks in the SDF graph during execution of one iteration. Refer to the
SDF domain documentation for the meaning of one iteration. Hence, a block in a multirate SDF
graph may correspond to several APEG nodes. Parallel schedulers schedule the APEG nodes
onto processors. Unfortunately, the APEG may have a substantially greater (at times exponential)
number of nodes compared to the original SDF graph. For this a hierarchi- cal scheduler is being
developed that only partially expands the APEG [PL95].

We have implemented three basic scheduling techniques that map SDF graphs onto multiple-
processors with various interconnection topologies: Hu’s level-based list scheduling, Sih’s dy-
namic level scheduling [SL93a], and Sih’s declustering scheduling [SL93b]. The target architec-
ture is described by its Target object. The Target class provides the scheduler with the neces-
sary information on the number of processors, interprocessor communication etc., to enable both

27-15

27 Code Generation Domains - unsupported

scheduling and code synthesis.

The hierarchical scheduler can use any one of the three basic parallel schedulers as the top-level
scheduler. The current implementation supports user-specified clustering at module boundaries.
These galaxies are assumed to compose into valid SDF primitives in which the SDF parameters
are derived from the internal schedule of the module. During APEG expansion, these composi-
tions are opaque; thus, the entire module is treated as a single SDF primitive. Using hierarchical
scheduling techniques, we have realized multiple orders of magnitude speedup in scheduling time
and multiple orders of magnitude reduction of memory usage. See [PBL95] for more details.

The previous scheduling algorithms could schedule SDF graphs, the CGDDF scheduler can also
handle graphs with dynamic constructs. See ch. 27.2.5 for more details.

Whichever scheduler is used, we schedule communication nodes in the generated code. For exam-
ple, if we use Hu’s level-based list scheduler, we ignore communication overhead when assigning
primitives to processors. Hence, the generated code is likely to contain more communication code
than with the other schedulers that do not ignore the IPC overhead.
There are other target parameters that direct the scheduling procedure. If the parameter
manualAssignment is set to YES, then the default parallel scheduler does not perform prim-
itive assignment. Instead, it checks the processor assignment of all primitives (set using the
procId parameter of CG and derived primitives). By default, the procId parameter is set to -1,
which is an illegal assignment since the child target is numbered from 0. If there is any primitive,
except the Fork primitive, that has an illegal procId parameter, an error is generated saying that
manual scheduling has failed. Otherwise, we invoke a list scheduler that determines the order of
execution of blocks on each processor based on the manual assignment. We do not support the
case where a block might require more than one processor. The manualAssignment target
parameter automatically sets the onePrimitiveOneProc parameter to YES; this is discussed
next.

If there are sample rate changes, a primitive in the program graph may be invoked multiple times
in each iteration. These invocations may be assigned to multiple processors by default. We can
prevent this by setting the onePrimitiveOneProc parameter to YES. Then, all invocations of a
primitive are assigned to the same processor, regardless of whether they are parallelizable or not.
The advantage of doing this is the simplicity in code generation since we do not need to splice
in Spread/Collect primitives, which will be discussed later. Also, it provides us another possi-
ble scheduling option, adjustSchedule; this is described below. The main disadvantage of setting
onePrimitiveOneProc to YES is the performance loss of not exploiting parallelism. It is most
severe if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algorithm is not rec-
ommended with this option.
In this paragraph, we describe a future scheduling option that this release does not support yet.
Once automatic scheduling (with onePrimitiveOneProc option set) is performed, the pro-
cessor assignment of each primitive is determined. After examining the assignment, the user may
want to override the scheduling decision manually. It can be done by setting the adjustSchedule
parameter. If that parameter is set, after the automatic scheduling is performed, the procId pa-
rameter of each primitive is automatically updated with the assigned processor. The program-
mer can override the scheduling decision by changing the value of the procId parameter. The

27-16 MLDesigner Version 2.8

27.2 CG Domain

adjustSchedule parameter cannot be YES before any scheduling decision has been made
previously. Again, this option is not supported in this release.

Regardless of which scheduling options are chosen, the final stage of the scheduling is to decide
the execution order of primitives including send/receive primitives. This is done by a simple list
scheduling algorithm in each child target. The final scheduling results are displayed on a Gantt
chart.

The Gantt Chart Display

Demos that use targets derived from CGMultiTarget can produce an interactive Gantt chart
display for viewing the parallel schedule.

The Gantt chart display involves a single window for displaying the Gantt chart, which provides
scroll bars and zoom buttons for controlling how much of the Gantt chart is shown in the display
canvas.

The display canvas represents each primitive schedule as a box drawn through the time interval
over which it is scheduled. If the name of a primitive can fit in its box, it is printed inside. A
vertical bar inside the canvas identifies primitives which cannot be labeled. The names of the
primitives which this bar passes through are printed alongside their respective processor numbers.
The bar can be moved horizontally by pressing the left mouse button while on the primitive to
be identified. The primitives which the bar passes through are identified by having their icons
highlighted in the vem window.

Here is a summary of commands that can be used while the Gantt chart display is active:

To change the area of the Gantt chart inside the display canvas: Use the scroll bars to move
along the Gantt chart in the direction desired. Click on the zoom buttons to in-
crease or decrease the size of the Gantt chart.

To move the vertical bar to the mouse inside the display window: Depress and drag the left mouse
button inside the display window. The left and right cursor keys move the bar by
one time interval; shift-left and shift-right move the bar by ten time intervals.

To exit the Gantt chart display program: Type control-D inside the display window or click on
the dismiss button.

A number of limitations exists in the Gantt chart display widget. There are a fixed (hard-coded)
number of colors available for coloring processors and highlighting icons. The print function
does not work because the font chosen by the font manager is not guaranteed to be Postscript
convertible.

27.2.4 Interfacing Issues
A framework for interfacing code generation targets with other targets (simulation or code gener-
ation) has been developed. The concepts behind this new infrastructure are detailed in [PPL96].
Currently, only a few of our code generation targets support this new infrastructure including:

27-17

27 Code Generation Domains - unsupported

CGCTarget (CGC Domain), S56XTarget (CG56 Domain), SimVSPrimitiveget (VHDL Domain).

The code generation targets that support this infrastructure can be mixed arbitrarily in an appli-
cation specification, and can also be embedded within simulation wormholes (i.e. a CG domain
module embedded within a simulation-SDF module).

This infrastructure requires that each target provide CGC communication primitives that can be
targeted to the MLDesigner host workstation. The current implementation does not support spe-
cialized communication links between two individual code generation targets, but rather builds the
customized links from the communication primitives written in C.

27.2.4.1 Interface Synthesis between Code Generation Targets

To interface multiple code generation targets, you must set the target parameter for the top-level
module to CompileCGSubsystems. The target parameters for CompileCGSubsystems
are identical to those of the FullyConnected target. You must declare each individual target
in the childType CompileCGSubsystems target parameter list. The first of these child targets
must be a CGC target whose code will be run on the MLDesigner host workstation. The processor
mapping of each primitive is user-specified by setting either the procId primitive parameter or
setting the domain for the current module. The interconnect between the primitives to be mapped
onto different targets can be totally arbitrary.

27.2.4.2 Interface Synthesis between Code Generation and Simulation Domains

The interfacing of code generation targets with simulation targets is more restricted than interfac-
ing only code generation targets. Unlike the previous case, where the primitive interconnect could
be arbitrary, we require that the simulation targets be used at a higher level in the user-specification
than all of the code generation targets. This restriction enables us to create simulation SDF prim-
itive wrappers for each of the code generation subsystems. This generated primitive can then be
added to the user primitive palette by creating an icon for it.

The top-level module for each code generation subsystem should have its target set to either
CompileCGSubsystems or CreateSDFPrimitive. The CompileCGSubsystems tar-
get should be used if more than one code generation target is used. The childType target param-
eter should list the child targets to use. The first child target listed must be the CreateSDFPrimitive
target. The CreateSDFPrimitive is actually a CGC target that generates ptlang code for all
of the communication between the various targets and MLDesigner.

If only CGC primitives are being used in a code generated subsystem, we have no need for the
multiprocessor target CompileCGSubsystems, but rather can use the uniprocessor CGC target
CreateSDFPrimitive.

27.2.5 Dynamic constructs in CG domain
All multiprocessor code generation domains included in previous releases assumed that the data
flow graph is synchronous (or SDF)-that is, the number of tokens consumed and produced by

27-18 MLDesigner Version 2.8

27.2 CG Domain

each primitive does not vary at run time. We also assumed that the relative execution times of
blocks was specified, and did not allow blocks with dynamic behavior, such as the case construct,
data-dependent iteration, and recursion. In simulation, however, data-dependent behavior was
supported by the DDF (Dynamic Data Flow) domain. The current release allows data-dependent
constructs in the code generation domains by a clustering technique and a scheduler called the
CGDDF scheduler.

27.2.5.1 Dynamic constructs as a cluster

Dynamic construct are specified using predefined graph topologies. For example, an if-then-else
construct is represented as a module that consists of two DDF primitives, Case and End-Case,
and two SDF modules to represent the bodies of the TRUE or FALSE branches. The dynamic
constructs supported by the CGDDF scheduler are case, for, do-while, and recursion.
The case construct is a generalization of the more familiar if-then-else construct. The topology
of the module is matched against a set of pre-determined topologies representing these dynamic
constructs.

A module is a hierarchical block for structural representation of the program graph. When an
APEG is generated from an SDF graph for parallel scheduling, galaxies are flat- tened. To handle
a dynamic construct as a unit of parallel scheduling, we make a cluster, called a module cluster, for
each dynamic construct. The programmer should indicate the systems to be clustered by creating
a module parameter asFunc and setting its value to YES. For example, the systems associated
with the TRUE and the FALSE branch of a case construct will have the asFunc parameter as well
as the module of the construct itself.

27.2.5.2 Quasi-static scheduling of dynamic constructs

We treat each dynamic construct as a special SDF primitive and use a static scheduling algorithm.
This SDF primitive is special in the sense that it may need to be mapped onto more than one
processor, and the execution time on the assigned processor may vary at runtime (we assume it is
fixed when we compute the schedule). The scheduling results decide the assignment to and order-
ing of blocks on the processors. At run time, we will not achieve the performance expected from
the compile time schedule, because the dynamic constructs behave differently to the compile-time
assumptions. The goal of the CGDDF scheduler is to minimize the expected makespan of the
program graph at run time.

The type of the dynamic construct and the scheduling information related to the dynamic con-
structs are defined as module parameters. We assume that the run-time behavior of each dynamic
construct is known or can be approximated with a certain probability distribution. For example,
the number of iterations of a for or do-while construct is such a variable; similarly, the depth of
recursion is a variable of the recursion construct. The parameters to be defined are as follows:

constructType (STRING) Default =
There is no default, the initial value is the value of the module param-
eter.
Type of the dynamic construct. Must be one of case, for, doWhile,
or recur (case insensitive!).

27-19

27 Code Generation Domains - unsupported

paramType (STRING) Default = geometric
Type of the distribution. Currently, we support geometric distribution,
uniform distribution, and a general distribution specified by a ta-
ble.

paramGeo (FLOAT) Default = 0.5
Geometric constant of a geometric distribution. Its value is effec-
tive only if the geometric distribution is selected by paramType.
If constructType is case, this parameter indicates the probabil-
ity of branch 1 (the TRUE branch) being taken. If there are more than
two branches, use paramFile to specify the probabilities of taking each
branch.

paramMin (INT) default = 1
Minimum value of the uniform distribution, effective only when the
uniform distribution is chosen.

paramMax (INT) default = 10
Maximum value of the uniform distribution, effective only when the
uniform distribution is chosen.

paramFile (STRING) default = defParams The name of a file that contains the
information on the general distribution. If the construct is a case con-
struct, each line contains the probability of taking a branch (numbered
from 0). Otherwise, each line contains the integer index value and the
probability for that index. The indices should be in increasing order.

Based on the specified run-time behavior distribution, we determine the compile-time profile of
each dynamic construct. The profile consists of the number of processors assigned to the construct
and the (assumed) execution times of the construct on the assigned processors. Suppose we have
a for construct. If the loop body is scheduled on one processor, it takes 6 time units. With two
processors, the loop body takes 3 and 4 time units respectively. Moreover, each iteration cycle
can be paralleled if skewed by 1 time unit. Suppose there are four processors: then, we have to
determine how many processors to assign to the construct and how many times the loop body will
be scheduled at compile time. Should we assign two processors to the loop body and parallelize
two iteration cycles, thus taking all 4 processors? Or should we assign one processor to the loop
body and parallelize three iteration cycles, thus taking 3 processors as a whole? The CGDDF
scheduler uses a systematic approach based on the distribution to answer these tricky scheduling
problems [Ha92]. We can manually determine the number of assigned processors by defining a
fixedNum module parameter. Note that we still have to decide how to schedule the dynamic
construct with the given number of processors. The Gantt chart display will show the profile of
the dynamic construct.

27.2.5.3 DDF-type Primitives for dynamic constructs

A code generation domain should have DDF primitives to support dynamic constructs with the
CGDDF scheduler. For example, the Case and EndCase primitives are used in the case, do-
while, and recursion constructs, which differ from each other in the connection topology of these
DDF primitives and SDF modules. Therefore, if the user wants to use one of the above three

27-20 MLDesigner Version 2.8

27.2 CG Domain

dynamic constructs, there is no need to write a new DDF primitive. Like a DDF primitive, the
Case primitive has dynamic output portholes as shown in the CGCCase.pl file. For example:

outmulti
{

name { output }
type { =input }
num { 0 }

}

The for construct consists of an UpSample type primitive and a DownSample type primitive,
where UpSample and DownSample are not the primitive names but the types of the primitives: if a
primitive produces more than it consumes, it is called an UpSample primitive. In the preprocessor
file, we define a method readTypeName, as shown below.

method
{

name { readTypeName }
access { public }
type { "const char *" }
code { return "UpSample"; }

}

Examples of UpSample type primitives are Repeater and DownCounter. These primitives
have a data input and a control input. The number of output data tokens is the value of the integer
control input, and is thus data-dependent. Conversely, we can design a DownSample primitive
that has the following method:

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "DownSample"; }

}

Examples of DownSample type primitives are LastOfN, and SumOfN. These primitives have a
data input and a control input. The number of input tokens consumed per invocation is determined
by the value of the control input.

As explained above, all customized DDF-type primitives for dynamic constructs will be either an
UpSample type or a DownSample type. We do not expect that a casual user will need to write
new DDF primitives if we provide some representative UpSample and DownSample primitives in
the corresponding code generation domains. Currently, we have DDF primitives in the CGC code
generation domain only.

27.2.6 Primitives
As mentioned earlier, primitives in the CG domain are used only to test and debug schedulers.
The primitives in the palette generate only comments, and allow the user to model primitive pa-
rameters that are relevant to schedulers such as the number of samples produced and consumed on

27-21

27 Code Generation Domains - unsupported

each firing, and the execution time of the primitive. By default, any primitive that is derived from
CGPrimitive (the base class for all code generation primitives), including all the primitives in
the CG domain, have the parameter procId. This parameter is used during manual partitioning
to specify the processor that the primitive should be scheduled on. The default value of the param-
eter is −1 which specifies to the scheduler that automatic partitioning should be used. Processors
are numbered 0, 1, 2, · · · ; hence, if the parameter is set to 1, then the primitive will be scheduled
on the second processor in the architecture. Note that the target parameter manualAssignment
should be YES for this to work; if manualAssignment is NO, then the value of procID will
be ignored (due to a bug in the current implementation). If the user wants to specify a processor
assignment for only a subset of the primitives in the system, and do automatic assignment for the
remaining primitives, then this is currently not possible. It can be done in a roundabout manner
using the resources parameter. This is done by defining a resources parameter in the prim-
itive. The value of this parameter is a number that specifies the processor on which this primitive
should go on. The target parameter resources is left empty. Then, the scheduler will inter-
pret the value of the resources parameter as the processor on which the primitive should be
scheduled; primitives that do not specify any resources are mapped automatically by the scheduler.

The resources parameter just described is used mainly for specifying any special resources that
the primitive might require in the system. For example, an A/D converter primitive might require
an input port, and this port is accessible by only a subset of all the processors in the system; in
this case, we would like the A/D primitive to be scheduled on a processor that has access to the
input port. In order to specify this, the resources parameter in the primitive is defined and set
to a string containing the name of the resource (e.g., input port). Use commas to delimit mul-
tiple resources (e.g., input port,output port). The target parameter resources is specified
using the same resource names (e.g., input port). The scheduler will then schedule primitives
that request certain resources on processors that have them. By default, primitives do not have the
resources parameter.

The following gives an overview of CG domain primitives.

MultiIn Takes multiple inputs and produces one output.

MultiInOut Takes multiple inputs and produces multiple outputs.

MultiOut Takes one input and produces multiple outputs.

RateChange Consumes consume samples and produces produce samples.

Sink Swallows an input sample.

Source Generic code generator source primitive; produces a sample.

Switch This primitive requires an BDF scheduler. It switches input events to
one of two outputs, depending on the value of the control input.

Through Passes data through. The run time can be set to reflect computa- tion
time.

TestMultirate (five icons) The TestMultirate primitives parallel those in the
SDF domain. These primitives are useful for testing schedulers. The
number of tokens produced and consumed can be specified for each

27-22 MLDesigner Version 2.8

27.2 CG Domain

primitive, in addition to its execution time.

27.2.7 Demos
There are four demos in the CG domain.

NOTE: Since the CG domain is not supported, the demos mentioned here are not directly ac- �
cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the file view tree and look in
$MLD/MLD Experimentals/CG/demo.
Please remember that the demos are not tested and may be unable to run properly!

pipeline This demo demonstrates a technique for generation of pipelined sched-
ules with MLDesigner ’s parallel schedulers, even though MLDesigner
’s parallel schedulers attempt to minimize makespan (the time to
compute one iteration of the schedule) rather than maximize the through-
put (the time for each iteration in the execution of a very large number
of iterations). To retime a graph, we simply add delays on all feedfor-
ward arcs (arcs that are not part of feedback loops). We must not add
delays in feedback loops as that will change the semantics. The effect
of the added delays is to cause the generation of a pipelined schedule.
The delays marked as ”(conditional)” in the demo are parameterized
delays; the delay value is zero if the system parameter retime is set
to NO, and is 100 if the system parameter is set to YES. The delay in
the feedback loop is always one.
Schedules are generated in either case for a three-processor system
with no communication costs. If this were a real-life example, the pro-
grammer would next attempt to reduce the ”100” values to the min-
imum values that enable the retimed schedule to run; there are other
constraints that apply as well when there are parallel paths, so that
corresponding tokens arrive at the same primitive. If the system will
function correctly with zero values for initial values at points where
the retiming delays are added, the generated schedule can be used di-
rectly. Otherwise, a preamble, or partial schedule, can be prepended to
provide initial values.

schedTest This is a simple multiprocessor code generation demo. By changing
the parameters in the RateChange primitive, you can make the demo
more interesting by observing how the scheduler manages to paral-
lelize multiple invocations of a primitive.

Sih-4-1 This demo allows the properties of the parallel scheduler to be investi-
gated, by providing a system in which the run times of primitives, the
number of processors, and the communication cost between processors
can be varied. The problem, as presented by the default parameters, is
to schedule a collection of data flow actors on three processors with
a shared bus connecting them. Executing the demo causes a Gantt
chart display to appear, showing the partitioning of the actors onto the

27-23

27 Code Generation Domains - unsupported

three processors. Clicking the left mouse button at various points in
the schedule causes the associated primitives to be highlighted in the
system palette.
After exiting from the Gantt chart display, code is written to a sepa-
rate file for each processor (here the ”code” is simply a sequence of
comments written by the dummy CG primitives). It is interesting to
explore the effects of varying the communication costs, the number of
processors, and the communication topology. To do so, execute the
edit-target command. A display of possible targets comes up.
Of the available options, only SharedBus and FullyConnected
will use the parallel scheduler, so select one of them and click on Ok.
Next, a display of target parameters will appear. The interesting ones
to vary are nprocs, the number of processors, and sendTime, the
communication cost. Try using two or four processors, for example.
Sometimes you will find that the scheduler will not use all the proces-
sors. For example, if you make the communication cost very large,
everything will be placed on one processor. If the communication cost
is 1 (the default), and four processors are provided, only three will be
used.

useless This is a simple demo of the dummy primitives provided in the CG
domain. Each primitive, when executed, adds code to the target. On
completion of execution for two iterations, the accumulated code is
displayed in a pop-up window, showing the sequence of code produced
by the three primitives.

27.3 CGC Domain

27.3.1 Introduction
The CGC domain generates code for the C programming language. This domain supports both
synchronous data flow (SDF, see ”SDF Domain” on 18-1) and Boolean-controlled data flow (BDF,
see ”BDF Domain” on 20-1) models of computation. The model associated with a particular
program graph is determined by which target is selected. The bdf-CGC target supports the BDF
model, while all other targets in the CGC domain support only the SDF model. Code can be
generated for both single-processor and multi-processor computers. The targets that support single
processors include default-CGC, Makefile C, TclTk Target, and bdf-CGC. The multi-
processor targets are unixMulti C and NOWam.

27.3.2 CGC Targets
The targets of the CGC domain generate C code from data flow program graphs. Code gener-
ation is controlled by the host, directory, and file parameters as described in ”Targets”
in ch. 27.2. The command used to compile the code is determined by the compileCommand,
compileOptions, and linkOptions parameters. Compilation and execution are controlled
by the display?, compile?, and run? parameters. The other parameters common to all

27-24 MLDesigner Version 2.8

27.3 CGC Domain

CGC targets are listed below. Not all of these parameters are made available to the user by every
target, and some targets define additional parameters.

staticBuffering (INT) Default = TRUE
If TRUE, then attempt to use static, compile-time addressing of data
buffers between primitives. Otherwise, generate code for dynamic,
run-time addressing.

funcName (STRING) Default = main
The name of the main function. The default value of main is suit-
able for generating stand-alone programs. Choose another name if
you wish to use the generated code as a procedure that is called from
your own main program.

compileCommand (STRING) Default = cc
Command name of the compiler.

compileOption (STRING) Default =
Options passed to the compiler. The default is the empty string.

linkOptions (STRING) Default = -lm
Options passed to the linker.

resources (STRING) Default = STDIO
List of abstract resources that the host computer has.

27.3.2.1 Single-Processor Targets

The default-CGC target generates C code for a single processor from a SDF program graph. The
parameters available to the user are shown below.

compile? file Looping Level
compileCommand funcName resources
compileOptions host run?
directory linkOptions staticBuffering
display?

The Makefile C target compiles CGC binaries with makefiles so that compile time architecture
and site dependencies can be handled. The Makefile C target generates a small makefile that
is rcp’d over to the remote machine. The generated makefile is named after the system. If the
system is called bigBang, then the makefile will be called bigBang.mk. We name the generated
makefiles so that more than one makefile can exist in the users’ directory.

The generated makefile uses $MLD/lib/cgc/makefile C.mk as a starting point, and then
appends lines to it. The generated makefile includes $MLD/mk/config-$PTARCH.mk, which
determines architecture and site dependencies, such as which compiler to use, or where the X11
include files are. The user may modify makefile C.mk and add site-dependent rules and vari-
ables there. If the user wants to have site dependent include files on the remote machines, then
they could add include $(ROOT)/mk/mysite.mk to makefile C.mk, and that file would be

27-25

27 Code Generation Domains - unsupported

included on the remote machines at compile time.

On the remote machine, the Makefile C target assumes:

• $MLD and $PTARCH are set on the remote machine when rshing.
• $MLD/mk/config-$PTARCH.mk and any makefile files included by that file are present.
• A make binary is present. The Makefile C target does not assume GNU make, so the

default makefile C.mk does not include mk/common.mk. The reason not to assume
GNU make is that we are not sure what the user’s path is like when they log in. The user
can require that GNU make be used by setting the skeletonMakefile target parameter
to the name of a makefile that requires GNU make.

If the remote machine does not fulfill these constraints, then the user should use the Default C
target.

skeletonMakefile (STRING) Default=
The default value of this target parameter is the empty string, which
means that we use
$MLD/lib/cgc/makefile C.mk
as the skeleton makefile. If this parameter is not empty then the value
of the parameter refers to the skeleton makefile to be copied into the
generated makefile.

appendToMakefile (INT) Default = 1
This target parameter controls whether we append rules to the gen-
erated makefile or just copy it over to the remote machine. In the
default situation, appendToMakefile is true and we append our rules
after copying
$MLD/lib/cgc/makefile C.mk

The parent target of the Makefile C target is default-CGC. If the parent target parameter compileOptions
is set, then we process any environment variables in that string, and then add it to the end of the
generated makefile as part of OTHERCFLAGS=. In a similar fashion, the parent target parameter
linkOptions ends up as part of the right-hand side of LOADLIBES=.
The TclTk Target target, which is derived from the Makefile C target, must be used when
Tcl/Tk primitives are present in the program graph. The initial default of one parameter differs
from that of the parent target.

skeletonMakefile (STRING) Default=$MLD/lib/cgc/TclTk Target.mk
The TclTk Target overrides this parent target parameter and sets it to
the name of a skeleton makefile to be copied into the generated make-
file.

The bdf-CGC target supports the BDF model of computation. It must be used when BDF primi-
tives are present in the program graph. It can also be used with program graphs that contain only
SDF primitives. The bdf-CGC target has the same parameters as the default-CGC target with
the exception that the Looping Level parameter is absent. This is because a loop-generating
algorithm is always used for scheduling.

27-26 MLDesigner Version 2.8

27.3 CGC Domain

27.3.2.2 Multi-Processor Targets

Currently, the CGC domain supports two multi-processor targets: unixMulti C and NOWam.
The unixMulti C target generates code for multiple networked workstations using a shared bus
configuration for scheduling purposes. Inter-processor communication is implemented by splicing
send/receive primitives into the program graph. These communication primitives use the TCP/IP
protocol. In addition to the target parameters mentioned above, the unixMulti C target has
extended parameters:

adjustSchedule ignoreIPC overlapComm
amortizedComm inheritProcessors portNumber
childType logFile relTimeScales
compile? machineNames resources
directory manualAssignment run?
display? nameSuffix sendTime
file nprocs userCluster
ganttChart onePrimitiveOneProc tabular

portNumber (INT) Default = 7654
The starting TCP/IP port number used by send/receive primitives. The
port number is incremented for each send/receive pair. It is the respon-
sibility of the user to ensure that the port number does not conflict with
any that may already be in use.

machineNames (STRING) Default = herschel
The host names of the workstations which form the multi-processor.
The names should be separated by a comma (‘,’).

nameSuffix (STRING) Default =
The default is the empty string. The domain suffix for the worksta-
tions named in machineNames. If left blank, which is the default,
then the workstations are assumed to be part of the local domain. Oth-
erwise, specify the proper domain name, including a leading period.
This string is appended to the names in machineNames to form the
fully qualified host names.

The NOWam target uses Networks Of Workstations (NOW) active messages to communicate be-
tween machines. The NOW project is an effort to use many commodity workstations to create a
building-wide supercomputer. For more information about the NOW project, see http://now.cs.berkeley.edu.
The NOWam target has the following target parameters:

machineName (STRING) Default = lucky, babbage
The host names of the workstations which form the multi-processor.
The names should be separated by a comma (‘,’). The NOWam tar-
get will not work on the local machines, the machines named by this
parameter must be remote machines. Note that the default of this pa-
rameter differs from the default in the UnixMulti C target.

nameSuffix (STRING) Default =

27-27

27 Code Generation Domains - unsupported

The default is the empty string. See the description of nameSuffix
above.

27.3.3 An Overview of CGC Primitives

The primitives are divided into the categories sources, sinks, arithmetic functions, nonlinear func-
tions, control, Sun UltraSparc VIS-conversion, signal processing, boolean-controlled data flow,
Tcl/Tk and higher-order function (HOF) primitives. Icons for delay, bus, and BlackHole appear in
most palettes for easy access. Many of the primitives in the CGC domain have equivalent counter-
parts in the SDF domain. Brief descriptions of the primitives unique to the CGC domain are given
in the following sections.

27.3.3.1 Source Primitives

Source primitives have no inputs and produce data on their outputs. The following primitives are
equivalent to the SDF primitives of the same name: Const, IIDUniform, Ramp, Rect,
singen, WaveForm, TclScript, TkSlider, RampFix, RectFix, RampInt,
expgen. Primitives that are unique to the CGC domain are described briefly below.

StereoIn Reads Compact Disc format audio data from a file given by fileName.
The file can be the audio port /dev/audio, if supported by the work-
station. The data read is linear 16 bit encoded and stereo (2 channel)
format.

TkStereoIn Just like StereoIn, except that a Tk slider is put in the master control
panel to control the volume.

MonoIn Reads mono (1 channel) data with either linear16 or ulaw8 en-
coding from a file given by fileName. The file can be the audio port
/dev/audio , if supported by the workstation.

TkMonoIn Just like MonoIn, except that a Tk slider is put in the master control
panel to control the volume.

SGImonoIn (SGI only) Average the stereo audio output of an SGIAudioIn prim-
itive into one mono output.

SGIAudioIn (SGI only) Get samples from the audio input port.

dtmfKeyPad Generate a Dual-Tone Modulated Frequency (DTMF) signal.

TkCheckButton A simple Tk on/off input source.

TkEntry Output a constant signal with value determined by a Tk entry box (de-
fault 0.0).

TkImpulse Output a specified value when a button is pushed. Optionally synchro-
nize by halting until the button is pushed.

TkRadioButton Graphical one-of-many input source.

27-28 MLDesigner Version 2.8

27.3 CGC Domain

27.3.3.2 Sink Primitives

Sink primitives have no outputs and consume data on their inputs. The following primitives
are equivalent to the SDF primitives of the same name: XMgraph, XYgraph, Xscope,
TkBarGraph, TkPlot, TKXYPlot, TclScript, Printer. Primitives that are unique
to the CGC domain are described briefly below.

StereoOut Writes Compact Disc audio format to a file given by fileName. The file
can be the audio port /dev/audio, if supported by the workstation.
The data written is linear 16 bit encoded and stereo (2 channel) format.

TkStereoOut Just like StereoOut except that Tk sliders are put in the master con-
trol panel to control the volume and balance.

TkMonoOut Just like MonoOut except that Tk sliders are put in the master control
panel to control the volume.

MonoOut Writes mono (1 channel) data with either linear16 or ulaw8 en-
coding to a file given by fileName. The file can be the audio port
/dev/audio, if supported by the workstation. If the aheadlimit
parameter is non-negative, then it specifies the maximum number of
samples that the program is allowed to compute ahead of real time.

SGIAudioOut (SGI Only) Put samples into an audio output port.

SGIMonoOut (SGI Only) A module that takes a mono output and drives the stereo
SGIAudioOut primitive below.

27.3.3.3 Arithmetic Primitives

Arithmetic primitives perform simple functions such as addition and multiplication. All these
primitives are equivalent to the SDF primitives of the same name: Add, Gain, Integrator,
Mpy, Sub.

27.3.3.4 Nonlinear Primitives

Nonlinear primitives perform simple functions. The following primitives are equivalent to the SDF
primitives of the same name: Abs, cexp, conj, Cos, Dirichlet, Exp, expjx,
Floor, Limit, Log, MaxMin, Modulo, ModuloInt, OrderTwoInt, Reciprocal,
Sgn, Sin, Sinc, Sqrt, powerEst, Quant, Table, TclScript. Primitives that
are unique to the CGC domain are described briefly below.

Expr General expression evaluation. This primitive evaluates the expression
given by the expr parameter and writes the result on the output. The
default expression, which is $ref(in#1), simply copies the first in-
put to the output.

fm Modulate a signal by frequency.

Thresh Compares input values to threshold. The output is 0, if input¡=threshold,
otherwise it is 1.

xor Exclusive-OR two signals.

27-29

27 Code Generation Domains - unsupported

27.3.3.5 Control Primitives

Control primitives are used for routing data and other control functions. The following primitives
are equivalent to the SDF primitives of the same name: Fork, Chop, ChopVarOffset,
Commutator, DeMux, Distributor, DownSample, Mux, Repeat, UpSample.
Primitives that are unique to the CGC domain are described briefly below.

Collect Takes multiple inputs and produces one output. This primitive does not
generate code. In multiprocessor code generation, it is automatically
attached to a porthole if it has multiple sources. Its role is just opposite
to that of the Spread primitive.

Copy ‘Copy’ primitives are added if an input/output PortHole is a host/em-
bedded PortHole and the buffer size is greater than the number of Par-
ticles transferred.

Delay Delay an input by delay samples.

Sleep Suspend execution for an interval (in milliseconds). The input is passed
to the output when the process resumes.

Spread Takes one input and produces multiple outputs. This primitive does not
generate any code. In multiprocessor code generation, this primitive is
automatically attached to a porthole whose outputs are passed to more
than one destination (one ordinary block and one Send primitive, more
than one Send primitive, and so on.)

27.3.3.6 Logic primitives

27.3.3.7 Conversion Primitives

Conversion primitives are used to convert between complex and real numbers. All of the prim-
itives are equivalent to the SDF primitives of the same name: CxToRect, PolarToRect,
RectToCx, RectToPolar.

27.3.3.8 Signal Processing Primitives

The following primitives are equivalent to the SDF primitives of the same name: DB, FIR,
FIRFix, FFTCx, GAL, GGAL, Goertzel, LMS, LMSOscDet, LMSTkPlot. Prim-
itives that are unique to the CGC domain are described briefly below.

GoertzelPower Second-order recursive computation of the power of the kth coefficient
of an N-point DFT using Goertzel’s algorithm. This form is used in
touch tone decoding.

ParametricEq A two-pole, two-zero parametric digital IIR filter (a biquad).

rms Calculate the Root Mean Squared of a signal.

27-30 MLDesigner Version 2.8

27.3 CGC Domain

27.3.3.9 BDF Primitives

BDF primitives are used for conditionally routing data. These primitives require the use of the
bdf-CGC target. Unlike their simulation counterparts, these primitives can only transfer single
tokens in one firing.

Select This primitive requires a BDF scheduler. If the value on the control
line is nonzero, trueInput is copied to the output; otherwise, falseInput
is.

Switch This primitive requires a BDF scheduler. Switches input events to one
of two outputs, depending on the value of the control input. If control
is true, the value is written to trueOutput; otherwise it is written to
falseOutput.

27.3.3.10 Tcl/Tk Primitives

Tcl/Tk primitives require the use of the TclTk Target target. They can be used to provide an
interactive user interface with Tk widgets. A palette of Tcl/Tk primitives are available in the CGC
domain. Most of these primitives are described in sources, sinks and nonlinear palettes.

TkParametricEq Just like ParametricEq primitive, except that a Tk slider is put in
the master control panel to control the gain, bandwidth, and center and
cut-off frequencies.

27.3.4 An Overview of CGC Demos

The demos are divided into categories: basic, multirate, signal processing, multi-processor, sound,
Tcl/Tk, BDF, HOF and SDF-CGC wormhole demos. Many of the demos in the CGC domain have
equivalent counterparts in the SDF or BDF domains. Brief descriptions of the demos unique to
the CGC domain are given in the sections that follow.

NOTE: Since the CGC domain is not supported, the demos mentioned here are not directly ac- �
cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the file view tree and look in
$MLD/MLD Experimentals/CGC/demo.
Please remember that the demos are not tested and may be unable to run properly!

27.3.4.1 Basic Demos

The following demos are equivalent to the SDF demos of the same name: butterfly, chaos,
integrator, quantize. The other demos in this palette are described briefly below.

chaoticBits Chaotic Markov map with quantizer to generate random bit sequence.

nonlinear This simple system plots four nonlinear functions over the range 1.0
to 1.99. The four functions are exponential, natural logarithm, square
root, and reciprocal.

27-31

27 Code Generation Domains - unsupported

commandline This demo is a slight modification of the nonlinear demo. It uses the
pragma mechanism to indicate the parameters that are to be made set-
table from the command-line.

pseudoRandom Generate pseudo-random sequences.

27.3.4.2 Multirate Demos

The following demos are equivalent to the SDF demos of the same name: interp, filterBank.
The other demos in this palette are described briefly below.

upsample This simple up-sample demo tests static buffering. Each invocation
of the XMgraph primitive reads its input from a fixed buffer location
since the buffer between the UpSample primitive and the XMgraph
primitive is static.

loop This demo demonstrates the code size reduction achieved with a loop-
generating scheduling algorithm.

27.3.4.3 Signal Processing Demos

The following demos are equivalent to the SDF demos of the same name: adaptFilter, dft.
The animatedLMS demo is described in ”Tcl/Tk Demos”.

DTMFCodec Generate and decode touch tones.

iirDemo Two equivalent implementations of IIR filtering. One of the imple-
mentations uses the IIR primitive.

27.3.4.4 Multi-Processor Demos

MLDesigner contains two multi-processor targets, unixMulti C and NOWam. The demos in
each target sub-palette are the same. These demos would actually run faster on a single processor,
but they do serve as a ‘proof of concept’.

adaptFilter multi This is a multi-processor version of the adaptFilter demo. The
graph is manually partitioned onto two networked workstations.

spread This system demonstrates the Spread and Collect primitives. It
shows how multiple invocations of a primitive can be scheduled onto
more than one processor.

27.3.4.5 Sound-Making Demos

Your workstation must be equipped with an audio device that can accept 16-bit linear or µ -law
encoded PCM data, for these demos to work.

alive (SGI Only) Processes audio in real time, with an effect similar to the
effects Peter Frampton used in the late 70’s rock album ‘Frampton
Comes Alive’.

27-32 MLDesigner Version 2.8

27.3 CGC Domain

dtmf This demo generates the same dual-tone multi-frequency tones you
hear when you dial your telephone. The interface resembles the key-
pad of a telephone.

fm This demo uses frequency modulation (FM) to synthesize a tone on
the workstation speaker. You can adjust the modulation index, pitch,
and volume in real time.

fmSpectral FM synthesis with a spectral display.

impulse This demo generates tones on the workstation speaker with decaying
amplitude envelopes using frequency modulation synthesis. You can
make tones by pushing a button. You can adjust the pitch, modulation
index, and volume in real time.

sound Generate a sound to play over the workstation speaker (or headphones).

soundHOF Produce a sound made by adding a fundamental and its harmonics in
amounts controlled by sliders.

synth This demo generates sinusoidal tones. You can control the pitch with
a piano-like interface.

tremolo This demo produces a tremolo (amplitude modulation) effect on the
workstation speaker. You can adjust the pitch, modulation frequency,
and volume in real time.

27.3.4.6 Tcl/Tk Demos

These demos show off the capabilities of the Tcl/Tk primitives, which must be used with the
TclTk Target target. Graphical user interface widgets are used to control input parameters and
to produce animation. Many of these demos also produce sound on the workstation speaker with
the TkMonoOut primitive. The following audio demos are documented in the previous section:
dtmf, fm, audioio,impulse, synth, tremolo.

animatedLMS This demo is a simplified version of the SDF demo of the same name.

ball This demo exhibits sinusoidal motion with a ball moving back and
forth.

ballAsync This demo is the same as the ball demo except that animation is up-
dated asynchronously.

noisySines Generate a number of sinusoids with controllable additive noise.

scriptTest This demo shows the use of several kinds of Tk widgets for user input.
Push buttons generate tones or noise, and sliders adjust the frequency
and volume in real time.

univers This demo shows the movements of the Sun, Venus, Earth, and Mars
in a Ptolemaic (Earth-centered) system.

xyplot Demonstrate the TkXYPlot primitive.

27-33

27 Code Generation Domains - unsupported

27.3.4.7 BDF Demos

Some demonstrations of how to use BDF primitives in the CGC domain. The timing demo is
equivalent to the BDF simulation demo of the same name. The demos bdf-if and bdf-doWhile
are equivalent to the BDF simulation demos named ifThenElse and loop.

27.3.4.8 SDF-CGC Wormhole demos

Some systems that demonstrate the use of the CreateSDFPrimitive CGC target, which al-
lows cgc primitives that are reloaded back into MLDesigner for use inside the SDF domain. The
SDF-CGC Wormhole demos are found under the ”Mixed Domain Demos” palette.

CDtoDAT Convert two sine waves sampled at CD sample rate to DAT sample
rate. The outer module is in the SDF domain, while the cd2dat mod-
ule is in the CGC domain. cd2dat uses the CreateSDFPrimitive
target.

wormTest A simple test of the CreateSDFPrimitive target.

fixCGC Another simple test of the CreateSDFPrimitive target.

27.3.4.9 Tycho Demos

These demos demonstrate the use of the TychoTarget to create customized Control Panels. Graph-
ical user interface widgets are used to control input and output parameters and to produce anima-
tion. The demos make use of the TkStereoIn and TkStereoOut to record and play sound on
the workstation speaker.

audioio This is a simple real time audio demonstration which illustrates MLDe-
signer’s ability to support CD quality audio.

graphicEq This demo consists of 10 band-pass filters with center frequencies
spaced out by octaves. Using the customized control panel, you can
adjust the gain of each band-pass filter, the record and play volumes
and balance in real time.

parametricEq In this demo, there is a single band of parametric equalization, with
control over the band frequency, band width, and band gain. The fre-
quency range is settable; in the future, it will also be possible to select
low-pass, band-pass, or high-pass filtering as well.

tonecontrol The demo consists of one of each of the high, band and low-pass filters.
There is a single control panel, with control over the band gain for each
filter.

27-34 MLDesigner Version 2.8

27.4 CG56 Domain

27.4 CG56 Domain

27.4.1 Introduction

The CG56 domain generates assembly code for the Motorola 56000 series of digital signal pro-
cessors. The graphs that we can describe in this domain follow the synchronous data flow (SDF)
model of computation. SDF allows us to schedule the Blocks and allocate all the resources at
compile time.

The Motorola 56000 series are fixed-point digital signal processors. The 56000 and 56001 pro-
cessors have 24-bit data and instructions, and operate at a maximum clock rate of 40 MIPS. The
56100 processor has 16-bit data and instructions, operates at a maximum rate of 30 MIPS, and has
analog/digital and digital/analog converters integrated on the chip. The 56301 has 24-bit data and
instructions, operates at a maximum rate of 80 MIPS, and has several built-in input/output inter-
faces. Although the processors have pipelines of different lengths, the assembly code is backward
compatible. The CG56 domain generates assembly code for the 56000 processor and has been
tested on the Motorola simulator and on a 56001 board.

Since the 56000 processors are fixed point, the floating point data type has no meaning in the CG56
domain. Fixed-point values can take on the range [-1,1). The most positive value is 1 − 2−23 for
the 56000 and 56300, and 1− 2−15 for the 56100. The domain defines a new constant ONE set to
this maximum positive value. In this chapter, whenever data types are not mentioned, fixed-point
is meant. The complex data type means a pair of fixed-point numbers. The complex data type
is only partially supported in that it is not supported for primitives that have anytype inputs or
outputs, except for fork primitives. Integers are the same length as the fixed-point representation.
Matrix data types are not supported yet.

Some of the demos use the Motorola 56000 assembler and simulator. You do not need to have a
56000 chip to run the simulator demos, the assembler and simulator are available for downloading
from Motorola at
http://www.mot.com/SPS/DSP/developers/clas.html.

27.4.2 An overview of CG56 primitives

For the CG56 domain, the primitive library is large enough that it has been divided into sub-
palettes as was done with the SDF main palette. The palettes are Signal Sources, I/O, Arithmetic,
Nonlinear Functions, Logic, Control, Conversion, Signal Processing, and Higher Order Functions.
The primitives on the Higher Order Functions (HOF) palette are used to help lay out schematics
graphically. The HOF primitives are in the HOF domain, and not the CG56 domain. The names
of the others palettes are modeled after the SDF primitive palettes of the same name, except the
I/O palette which contains target-specific I/O primitives for the Ariel S-56X DSP board and the
Motorola 56001 simulator. Each palette is summarized in more detail below.

At the top of each palette, for convenience, are instances of the delay icon, the bus icon, and the
following primitive:

27-35

27 Code Generation Domains - unsupported

BlackHole Discard all inputs. This primitive is useful for discarding signals that
are not useful.

27.4.2.1 Source primitives

Source primitives are primitives with only outputs. They generate signals, and may represent
external inputs to the system, constant data, or synthesized stimuli.

Impulse Generate a single impulse of size impulseSize (default ONE).

IIDGaussian Generate a white Gaussian pseudo-random process with mean 0 and
standard deviation 0.1. A Gaussian distribution is realized by summing
noUniforms (default 16) number of uniform random variables. Ac-
cording to the central limit theorem, the sum of N random variables
approaches a Gaussian distribution as N approaches infinity.

IIDUniform Generate an i.i.d. uniformly distributed pseudo-random process. Out-
put is uniformly distributed between -range and range (default ONE).

Tone Generate a sine or cosine wave using a second order oscillator. The
wave will be of amplitude (default 0.5), frequency (default 0.2),
and calcType (default ”sin”)

27.4.2.2 I/O Primitives

I/O primitives are target specific primitives that allow input and output of stimuli to a target archi-
tecture. Currently there are I/O primitives for both the Ariel S-56X DSP and the Motorola 56k
simulator which are divided hierarchically.

Motorola 56000 Simulator I/O Primitives

ReadFile Read fixed-point ASCII data from a file. The simulation can be halted
on end-of-file, or the file contents can be periodically repeated, or the
file contents can be padded with zeros.

IntReadFile Read integer ASCII data from a file. The simulation can be halted on
end-of-file, or the file contents can be periodically repeated, or the file
contents can be padded with zeros.

WriteFile Write data to a file. The simulator dumps the data presented at the
input of this primitive into a specified file.

Xgraph This primitive shares the same parameters as its SDF and CGC primi-
tive equivalents. However, with this primitive, you can only have one
input signal.

Ariel S-56X DSP Board I/O Primitives

To use the s56xio palette you will need access to an S-56X DSP board. These blocks are divided
into three sub-categories: generic S-56X, QDM S-56X and CGC-S56X. The QDM primitives

27-36 MLDesigner Version 2.8

27.4 CG56 Domain

requires installing qdm, a debugger for DSP systems which was developed by Phil Lapsley at
U.C. Berkeley. Qdm is currently available from Mike Peck1, the designer of the S-56X board.

Generic S-56X

adjustableGainGX Create an interactive adjustable gain using HostSliderGX.

da Send the input to both input ports of the SSI primitive.

HostAOut Output data from the DSP to host via host port asynchronously.

HostSldrGX Generate an athena widget slider for interactive asynchronous input
over the host port.

MagnavoxIn Read data from a Magnavox CD player.

Magnavox Read data from and write data to a Magnavox CD player.

MagnavoxOut Write data to a Magnavox CD player.

PrPrtAD Read from the A/D in Ariel ProPort.

PrPrtADDA Read from the A/D and write to the D/A on the Ariel ProPort.To use
both the A/D and D/A on a ProPort you must use this primitive and
not the separate A/D and D/A primitives.

PrPrtDA Write to the D/A on the Ariel ProPort.

SSI A generic input/output primitive for the DSP56001 SSI port.

SSISkew Interface to the 56001 SSI’s port with timing-skew capability.

QDM S-56X

To use these primitives you must have qdm installed and be using the uniprocessor s-56x target.
The target parameter monitor must be set to qdmterm s56x -run.

HostButton Graphical two-valued input source. There are two types of buttons:
push-buttons and check-buttons. Both present a single button to the
user that may be ”pressed” with the mouse. The buttons differ in the
semantics of the push. When the pushbutton is pressed, the onVal
parameter is output, otherwise offVal.

HostMButton Graphical one-of-many input source. The primitive always outputs
one of a finite number of values: the output is controlled by the user
selecting one of several buttons. Exactly one button in the group is on.

HostSldr Graphical host slider for asynchronous input source.

SwitchDelay This module synchronously switches between the input value and the
value of the input delayed by TotalDelay (default 8000) samples.

adjustableGain A user adjustable gain, uses HostSlider.

1Mike Beck, Berkeley Camera Engineering, http://www.bcam.com

27-37

27 Code Generation Domains - unsupported

CGC-S56X

checkButtonInt This module creates a Tk check button widget that produces the given
onValue (default 1) when pressed and offValue (default 0) other-
wise.

checkButton This module creates a Tk check button widget that produces the given
onValue (default 1.0) when pressed and offValue (default 0.0)
otherwise.

radioButtonInt This module creates a Tk radio button widget that allows the user to
select from among a set of possible output values given by pairs
(default ”One 1” ”Two 2”).

radioButton This module creates a Tk radio button widget that allows the user to
select from among a set of possible output values given by pairs
(default ”One 1” ”Two 2”)

slider This module creates a Tk slider widget that produces the given value
indicated by the slider position which is between low (default 0.0) and
high (default 1.0) and initially set to value (default 0.0).

adjustableGain This module multiplies the input by a gain value taken from a Tk slider
position between low (default 0.0) and high (default 1.0), which is
initially set to value (default 0.0).

SwitchDelay This module synchronously switches between the input value and the
value of the input delayed by TotalDelay (default 8000) samples.

s56XPlot This module plots the input interactively using TkPlot.

Xgraph This module simply contains a CGCXgraph primitive for use in a
CG56 module. The module parameters are identical to those of the
enclosed primitive.

PeekPoke Nondeterminate communication link that splices in a peek/poke pair.
In this context, it provides a link between the S-56X Motorola 56001
board and the workstation.

27.4.2.3 Arithmetic primitives

Add Output the sum of the inputs. If saturation is set to yes, the output
will saturate.

Sub Outputs the ”pos” input minus all of the ”neg” inputs.

Mpy Outputs the product of all of the inputs.

Gain The output is set the input multiplied by a gain term. The gain must
be in [-1,1).

AddCx Output the complex sum of the inputs. If saturation is set to yes,
the output will saturate.

SubCx Outputs the ”pos” input minus all of the ”neg” inputs.

27-38 MLDesigner Version 2.8

27.4 CG56 Domain

MpyCx Outputs the product of all of the inputs.

AddInt Output the sum of the inputs. If saturation is set to yes, the output
will saturate.

SubInt Outputs the ”pos” input minus all of the ”neg” inputs.

MpyInt Outputs the product of all of the inputs.

GainInt The output is set the input multiplied by an integer gain term.

DivByInt This is an amplifier. The integer output is the integer input divided by
the integer divisor (default 2). Truncated integer division is used.

MpyRx Multiply any number of rectangular complex inputs, producing an out-
put.

MpyShift Multiply and shift.

Neg Output the negation of the input.

Shifter Scale by shifting left leftShifts bits. Negative values of leftShifts
implies right shifting.

15.2.4 Nonlinear primitives The nonlinear palette in the CG56 domain includes transcendental
functions, quantizers, table lookup primitives, and miscellaneous nonlinear functions.

Abs Output the absolute value of the input.

ACos Output the inverse cosine of the input, which is in the range [−1.0, 1.0].
The output, in the principle range of 0 to π, is scaled down by π.

ASin Output the inverse sine of the input, which is in the range [−1.0, 1.0].
The output, in the principle range of [−π

2 , π
2] is scaled down by π.

Cos Output the cosine, calculated the table lookup. The input range is
[−1, 1] scaled by π.

expjx Output the complex exponential of the input.

Intgrtr An integrator with leakage set by feedbackGain. If there is an
overflow, the onOverflow parameter will designate a wrap around,
saturate or reset operation.

Limit Limits the input between the range of [bottom,top].

Log Outputs the base two logarithm.

MaxMin Output the maximal or minimal (MAX) sample out of the last N input
samples. This can either compareMagnitude or take into account
the sign. If outputMagnitude is YES the magnitude of the result
is written to the output, otherwise the result itself is written.

ModuloInt Output the remainder after dividing the integer input by the integer
modulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two integers.

Quant Quantizes the input to one of N + 1 possible output levels using N

27-39

27 Code Generation Domains - unsupported

thresholds.

QuantIdx The primitive quantizes the input to one of N+1 possible output levels
using N thresholds. It also outputs the index of the quantization
level used.

QuantRange Quantizes the input to one of N + 1 possible output levels using N
thresholds.

Reciprocal Outputs the reciprocal to Nf precision in terms of a fraction and some
left shifts.

Sgn Outputs the sign of the input.

SgnInt Outputs the sign of the integer input.

Sin Outputs the sine, calculated using a table lookup. The input range is
[-1,1) scaled by π.

Sinc Outputs the sinc functions calculated as sin(x)/x.

Sqrt Outputs the square root of the input.

Table Implements a real-valued lookup table. The values parameter con-
tains the values to output; its first element is element zero. An error
occurs if an out of bounds value is received.

TableInt Implements an integer-valued lookup table. The values parameter
contains the values to output; its first element is element zero. An error
occurs if an out of bounds value is received.

Expr General expression evaluation.

LookupTbl The input accesses a lookup table. The interpolation parameter
determines the output for input values between table-entry points. If
interpolation is ”linear” the primitive will interpolate between
table entries; if interpolation is set to ”none”, it will use the next
lowest entry.

Pulse Generates a variable length pulse. A pulse begins when a non-zero
trigger is received. The pulse duration varies between 1 and maxDuration
as the control varies between [-1,1).

QntBtsInt Outputs the two’s complement number given by the top noBits of
the input (for integer output).

QntBtsLin Outputs the two’s complement number given by the top noBits of
the input, but an optional offset can be added to shift the output levels
up or down.

Skew Generic skewing primitive.

Sqr Outputs the square of the input.

VarQuasar A sequence of values(data) is repeated at the output with period N
(integer input), zero-padding or truncating the sequence to N if neces-
sary. A value of O for N yields an aperiodic sequence.

27-40 MLDesigner Version 2.8

27.4 CG56 Domain

Xor Output the bit-wise exclusive-or of the inputs.

27.4.2.4 Logic primitives

Test Test to see if two inputs are equal, not equal, greater than, and greater
than or equal. For less than and less than or equal, switch the order of
the inputs.

And True if all inputs are non-zero.

Nand True if all inputs are not non-zero.

Or True if any input is non-zero.

Nor True if any input is zero.

Xor True if an odd number of inputs is non-zero.

Xnor True if an even number of inputs is not non-zero.

Not Logical inverter.

27.4.2.5 Control primitives

Control primitives manipulate the flow of tokens. All of these primitives are polymorphic; they op-
erate on any data type. The SDF equivalent primitives are: Fork, DownSample, Commutator,
Distributor, Mux, Repeat, Reverse, and UpSample.

ChopVarOffset This primitive has the same functionality as the Chop primitive ex-
cept now the offset parameter is determined at run time through a
control input.

Cut On each execution, this primitive reads a block of nread samples (de-
fault 128) and writes nwrite of these samples (default 64), skipping
the first offset samples (default 0). It is an error if nwrite+ offset >
nread. If nwrite > nread, then the output consists of overlapping
windows, and hence offset must be negative.

Delay A delay primitive of parameter totalDelay unit delays.

Pad On each execution, Pad reads a block of nread samples and writes a
block of nwrite samples. The first offset samples have value fill,
the next nread output samples have values taken from the inputs, and
the last nwrite− nread− offset samples have value fill again.

Rotate The primitive reads in an input block of a certain length and per-
forms a circular shift of the input. If the rotation is positive, the
input is shifted to the left so that output[0]=input[rotation]. If
the rotation is negative, the input is shifted to the right so that out-
put[rotation] = input[0].

sampleNholdModule This sample-and-hold module is more memory efficient than using
a downsample primitive for the same purpose.

27-41

27 Code Generation Domains - unsupported

VarDelay A variable delay that will vary between 0 and maxDelay as the con-
trol input varies between -1.0 and 1.0.

WasteCycles Stalls the flow of data for cyclesToWaste number of cycles.

27.4.2.6 Conversion primitives

This library contains primitives for format conversions from fixed point to complex fixed point.
The complex data type is only partially implemented in CG56. Complex ports can be connected
only to complex ports. Anytype ports can only be connected to fixed and integer ports.

CxToRect Output the real part and imaginary part of the input of separate output
ports.

RectToCx Output a complex signal with real and imaginary part inputs.

BitsToInt Convert a stream of bits to an integer.

IntToBits Convert an integer into a stream of bits.

FixToCx Convert fixed-point numbers to complex fixed-point numbers.

FixToInt Convert fixed-point numbers to complex fixed-point numbers.

CxToFix Convert fixed-point numbers to complex fixed-point numbers.

CxToInt Convert fixed-point numbers to complex fixed-point numbers.

IntToFix Convert fixed-point numbers to complex fixed-point numbers.

IntToCx Convert fixed-point numbers to complex fixed-point numbers.

27.4.2.7 Signal processing primitives

This library contains primitives which perform digital signal processing functions. Descriptions
of the filter primitives follow. The Goertzel and IIR primitives are identical to their SDF
counterparts.

Allpass An all-pass filter with one pole and one zero. The location of these is
given by the ”polezero” input.

Biquad A two-pole, two-zero IIR filter (a biquad).

H(z) =
1 + n1z

−1 + n2z
−2

1 + d1z−1 + d2z−2

Comb A comb filter with a one-pole low-pass filter in the delay loop.

BiquadDSPlay A two-pole, two zero IIR filter (a biquad). This biquad is tailored to use
the coefficients from the DSPlay filter design tool. If DSPlay gives
the coefficients: A B C D E then define the parameters as follows:
a = A, b = B, c = C, d = −(D + 1), e = −E. This Filter
only works if a, b, c, d, and e, are in the range [-1,1). The default
coefficients implement a low pass filter.

H(z) =
a + b · z−1 + c · z−2

1 + (d + 1)z−1 − e · z−2

27-42 MLDesigner Version 2.8

27.4 CG56 Domain

FIR A finite impulse response (FIR) filter. Coefficients are specified by the
taps parameter. The default coefficients give an 8th order, linear-phase,
low-pass filter. To read coefficients from a file, replace the default co-
efficients with < filename, preferably specifying a complete path.
Polyphase multirate filtering is also supported.

LMS An adaptive filter using the LMS adaptation algorithm. The initial
coefficients are given by the coef parameter. The default initial coef-
ficients give an 8th order, linear phase low-pass filter. To read default
coefficients from a file, replace the default coefficients with ¡ filename,
preferably specifying a complete path. This primitive supports deci-
mation, but not interpolation.

LMSGanged An LMS filter were the coefficients from the adaptive filter are used to
run an FIR filter in parallel. The initial coefficients default to a low-
pass filter of order 8.

LMSRx A Complex LMS filter

RaisedCos A FIR filter with a magnitude frequency response shaped like the
standard raised cosine used in digital communications. See the SDFRaisedCosine
primitive for more information,

The spectral estimation primitives follow. The GoertzelDetector, GoertzelPower,
and LMSOscDet are identical to their SDF counterparts.

FFTCx Compute the discrete-time Fourier transform of a complex input using
the fast Fourier transform (FFT) algorithm. The parameter order (de-
fault 8) is the transform size. The parameter direction (default 1)
is 1 for forward, -1 for the inverse FFT.

Window Generate standard window functions or periodic repetitions of stan-
dard window functions. The possible functions are Rectangle,
Bartlett, Hanning, Hamming, Blackman, Steep-Blackman,
and Kaiser. One period of samples is produced on each firing.

The communications primitives are exactly like their SDF counterparts.

27.4.3 An overview of CG56 Demos
A set of CG56 demonstration programs have been developed. The demos are grouped by the
CG56 target on which they are implemented. If you do not have the require compiler, simulator,
or DSP card, then you can still run the demos to see the generated code. To do this make sure
that the run and compile target parameters are to NO. By default, the generated code is written to
$HOME/MLD SYSTEMS directory.

NOTE: Since the CG56 domain is not supported, the demos mentioned here are not directly ac- �
cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the file view tree and look in
$MLD/MLD Experimentals/CG56/demo.

27-43

27 Code Generation Domains - unsupported

Please remember that the demos are not tested and most likely unable to run properly!

27.4.3.1 Basic/Test demos

The Basic/Test palette contains six demonstrations.

goertzelTest Test the Goertzel filters for computing the discrete Fourier transform.

iirTest Test the infinite impulse response

logicTest Test various comparison tests and Boolean functions.

miscIntOps Test integer arithmetic operations.

multiFork Test the AnyAsmFork primitive. An AnyAsmFork primitive is one
of a group of primitives that do produce any code at compile time.

testPostTest Test the DTMFPostTest primitive used in touch tone decoding.

27.4.3.2 Motorola Simulator Demos

The demos will generate stand alone applications. These applications will consist of: a shell
script to control the simulator and output display programs; a simulator command file; and the
assembled code to run on the simulator. The simulator can be run in either an interactive mode or
in the background by setting the interactive target parameter.

chirp This system uses two integrators and a cosine to generate a chirp sig-
nal.

DTMFCodec Demonstration of touch tone detection using the discrete Fourier trans-
form implemented by using Goertzel filters.

lms A noise source is connected to an eighth-order least-mean squares
(LMS) adaptive filter with initial taps specifying a low-pass filter. The
taps adapt to a null filter (the impulse response is an impulse) and the
error signal is displayed.

lmsDTMFCodec Demonstration of touch tone detection using Normalized Direct Fre-
quency Estimation implemented by using Least-Mean Squares (LMS)
adaptive filters.

phoneLine A telephone channel simulator. A tone is passed through some pro-
cessing which implements various distortions on a telephone channel.
The parameters that are controllable are: noise, channel filter, second
harmonic, third harmonic, frequency offset, phase jitter frequency, and
phase jitter amplitude.

sin A sine wave is generated by using two integrators in a feedback loop.

transmitter A simple 4-level PAM transmitter

tune A tune is generate using FM synthesis of notes stored in a table. The
sounds produced are not particularly musically appealing, partly be-
cause the modulation index is not variable and the attack and decay
profiles are too limited.

27-44 MLDesigner Version 2.8

27.4 CG56 Domain

varDelay This is a simple application demonstrating variable delay with linear
interpolation.

27.4.3.3 S-56X Demos

The demos require an Ariel S-56X DSP board to be installed in the workstation. In addition, all
but the first demo requires QDM. These demos generate a stand alone application consisting of: a
shell script to download and run the assembled code; a file specifying the asynchronous user I/O
interface; and the assembled code.

ADPCM This demo implements an ADPCM coder and decoder. The user at run
time can vary the number of quantization bits, the quantization range,
and a delay so that signal can be heard instantaneously or a second
later. Requires an Ariel Proport and a microphone.

amtx Amplitude Modulation Transmitter. The results of the transmitter are
displayed asynchronously at run time.

CD Volume A system implementing a volume control with CG56HostSliderGX
primitives. Requires a modified CD player.

echoCanceling A system implementing a pair of echo cancellation filters. The first
echo cancellation filter cancels an artificial echo introduced by an FIR
filter. The second echo cancellation filter is used to cancel the echoes
produced by have one microphone next to loud speaker. Another mi-
crophone is used for desired input, such as speech. Requires an Ariel
Proport and two microphones.

recv-2psk 2-PSK Bandpass filter.

reverb This system implements a reverberation system using Comb filters.
Requires an Ariel Proport and a microphone.

xmit-2psk 2-PSK transmitter.

27.4.3.4 CGC-S56X Demos

All of the demos in this palette use the CompileCGSubsystems target.

Stand alone Application Demos

The first set demos generate stand alone applications consisting of two parts: a program generate
in C that implements the sub-graph that runs on the host, and a program generated in Motorola
56k assembly that is to be run on the S-56X. The C program initializes and downloads the S-56X
program automatically. The first four of the demos, lms, phoneLine, DTMFCodec and
lmsDTMFCodec are identical to the simulator demos.

Modem The modem palette contain 3 phased shift keying modem demos. These
demos illustrate the use of peek/poke actors and hierarchical schedul-
ing. Requires an Ariel Proport and a microphone.

27-45

27 Code Generation Domains - unsupported

dtmfSpectrum This demos implements a DTMF tone generator and displays the re-
sultant frequency spectrum.

synth An FM music synthesis demonstration. Requires an Ariel Proport.

synthFFT An FM music synthesis demonstration showing the resultant frequency
spectrum. Requires an Ariel Proport.

PRfilterBank A perfect reconstruction filter bank.

ADPCM This demo implements an ADPCM coder and decoder. The user at run
time can vary the number of quantization bits, the quantization range,
and a delay so that signal can be heard instantaneously or a second
later. Requires an Ariel Proport and a microphone.

Simulation SDF-Wormhole Demos

The simulation SDF wormhole demos create simulation SDF primitives in ptlang and also a load
file for the S-56X card. Unlike the other CG56 demos, the applications produced here will not run
as stand alone applications. The wormhole allows the user to imbed a CG56 system running on an
Ariel S-56X DSP board into an MLDesigner simulation.

MultiTone Generates three sine waves on the S-56X which are at different rates
relative to one another.

DSPWorm Demonstrates multirate I/O between MLDesigner and the S-56X board.

PRfilterBank A perfect reconstruction filter bank.

27.4.4 Targets
Seven CG56 targets are included in the MLDesigner distribution.

27.4.4.1 Default CG56 (default-CG56) target

The default target is used only for code generation. It has the following set of options:

host (STRING) Default =
The default is the empty string. Host machine to compile or assemble
code on. All code is written to and compiled and run on the computer
specified by this parameter. If a remote computer is specified here then
rsh commands are used to place files on that computer and to invoke
the compiler. You should verify that your .rhosts file is properly
configured so that rsh will work.

directory (STRING) Default = $HOME/MLD SYSTEMS
This is the directory to which all generated files will be written to.

file (STRING) Default =
The default is the empty string. This represents the prefix for filenames
for all generated files.

Looping Level Specifies if the loop scheduler should be used.

27-46 MLDesigner Version 2.8

27.4 CG56 Domain

display? (INT) Default = YES
If this flag is set to YES, then the generated code will be displayed on
the screen.

compile? This is a dummy flag since the default target only generates code.

run? This is a dummy flag since the default target only generates code.

xMemMap (STRING) Default = 0-4095
Valid x memory address locations. Default is 0-4095, which means
x:0 through x:4095 are valid memory addresses. Disjoint segments
of memory can be specified by separating the contiguous ranges with
spaces, e.g. ”0-4095 5000-5500.”

yMemMap (STRING) Default = 0-4095
Valid y memory address locations. Default is 0-4095, which means
y:0 through y:4095 are valid memory addresses.

subroutines? (INT) Default = -1
Setting this parameter to N makes the target attempt to generate a sub-
routine instead of in-line code for a primitive if the number of repeti-
tions of that primitive is greater than N (use N = 0 to generate subrou-
tines even for primitives with just 1 repetition). Set subroutines?
to -1 (or any other negative integer) to disable the feature.

show memory usage? (INT) Default = NO
If YES, then the target will report the actual amount of program, X
data memory, and Y data memory used by the program in words.

27.4.4.2 CG56 Simulator (sim-CG56) target

This target is used for generating DSP56000 assembly code, assembling it, and running it on a Mo-
torola DSP56000 simulator. For this to work properly, the Motorola 56000 assembler (asm56000)
and the simulator (sim56000) must be in the user path. Otherwise a run on this target produces
code only, and an error message will appear indicating the absence of the required programs in the
user path. Input and output files specified in ReadFile and WriteFile primitives are passed
on to the simulator by an automatically generated system.cmd file, which is sourced by the
simulator.
The options for this target are mostly the same as the ones for default-CG56 above, except for
the following:

compile? (INT) Default = YES
If this option is set to YES, then generated code is assembled using the
asm56000 program.

run? (INT) Default = YES
If YES, then the assembled code is run on the Motorola simulator
sim56000.

Interactive Sim. (INT) Default = YES
If YES the simulator is run interactively (in which case one can add

27-47

27 Code Generation Domains - unsupported

breakpoints, single step through code, etc.)

27.4.4.3 Ariel S-56X (S-56X) target

This target generates stand alone applications that will run on the Ariel S-56X DSP board. An op-
tional graphical debugger, QDM, is available from the board designer, Mike Peck. This debugger
is needed for some of the user I/O primitives that are specific to this target.

The options for this target are mostly the same as the ones for default-CG56, except for the fol-
lowing:

monitor (STRING) Default =
The default is the empty string.This parameter specifies an optional
monitor of debugger for use with the S-56X target. If the application
has QDM primitives, this parameter should be set to qdmterm s56x
-run.

27.4.4.4 CG56 Subroutine (sub-CG56) target

This target is used to generate subroutines that can be called from hand-written 56000 code. The
options are identical to those of default-CG56 target.

27.5 C50 Domain

27.5.1 Introduction
The C50 domain generates assembly code for the Texas Instruments TMS320C5x series of digital
signal processors. The graphs that we can describe in this domain follow the synchronous data
flow (SDF) model of computation. SDF allows us to schedule the Blocks and allocate all the re-
sources at compile time.

The TMS320C5x series are fixed-point digital signal processors which have 16 bit data and in-
structions and operate at a maximum rate of 50MIPS.

Since the C5x processors are fixed point, the floating point data type has no meaning in the C50
domain. Fixed-point values can take on the range [−1, 1). The most positive value is 1 − 2−15.
The domain defines a new constant C50 ONE set to this maximum positive value. In this chapter,
whenever data types are not mentioned, fixed-point is meant. The complex data type means a
pair of fixed-point numbers. The complex data type is supported for primitives that have anytype
inputs or outputs. Integers are the same length as the fixed-point representation. Matrix data types
are not supported yet.

27.5.2 An overview of C50 primitives
For the C50 domain, the primitive library is large enough that it has been divided into sub-palettes
as was done with the SDF main palette.

27-48 MLDesigner Version 2.8

27.5 C50 Domain

The sub-palettes are Signal Sources, I/O, Arithmetic, Nonlinear Functions, Logic, Control, Con-
version, Signal Processing, and Higher Order Functions. The primitives on the Higher Order
Functions (HOF) palette are used to help lay out schematics graphically. The HOF primitives are
in the HOF domain, and not the C50 domain. Each palette is summarized in more detail below.

At the top of each palette, for convenience, are instances of the delay icon, the bus icon, and the
following primitive:

BlackHole Discard all inputs. This primitive is useful for discarding signals that
are not useful.

27.5.3 Source primitives
Source primitives are primitives with only outputs. They generate signals, and may represent
external inputs to the system, constant data, or synthesized stimuli. The primitives with SDF
equivalents are: Const, ConstCx, ConstInt, Ramp, RampInt, Rect, singen,
and WaveForm.

Impulse Generate a single impulse or an impulse train. The size is determined
by impulseSize (default ONE). If period (default is 0) is posi-
tive, an impulse train with this period is generated, otherwise a single
impulse is generated. If delay (default 0) is positive, the impulse (or
impulse train) is delayed by this amount.

IIDUniform Generate an IID uniformly distributed pseudo-random process. Output
is uniformly distributed between -range and range (default ONE).

IIDGaussian Generate a white Gaussian pseudo-random process with mean 0 and
standard deviation 0.1. A Gaussian distribution is realized by summing
noUniforms (default 16) number of uniform random variables. Ac-
cording to the central limit theorem, the sum of N random variables
approaches a Gaussian distribution as N approaches infinity.

Tone Generate a sine or cosine wave using a second order oscillator. The
wave will be of amplitude (default 0.5), frequency (default 0.2),
and calcType (default ”sin”)

27.5.3.1 I/O Primitives

I/O primitives are target specific primitives that allow input and output of stimuli to a target archi-
tecture. Currently there are I/O primitives only for the C50 DSK board so these primitives should
only be used with the DSKC50 target. These primitives are located on the TI 320C5x IO palette
inside the Input/Output palette (not shown here).

AIn This is an interrupt driven primitive to receive samples from the A/D
converter in the Analog Interface Chip. The sample rate is determined
by sampleRate. The actual conversion rate is 285.7KHz/N where
N is an integer from 4 to 64. This primitive supports an internal buffer

27-49

27 Code Generation Domains - unsupported

to hold the received samples. The size of this buffer can be set man-
ually by changing the interruptBufferSize parameter. Setting
interruptBufferSize to a negative value will set the size of the
buffer equal to the number of times the primitive is fired on each iter-
ation of the system.

AOut This is an interrupt driven primitive to send samples to the D/A con-
verter in the AIC chip. The parameters are identical to those of the
AIn primitive.

27.5.3.2 Arithmetic primitives

The arithmetic primitives that are available are:

Add Output the sum of the inputs. If saturation is set to yes, the output
will saturate.

Sub Outputs the ”pos” input minus all of the ”neg” inputs.

Mpy Outputs the product of all of the inputs.

Gain The output is set the input multiplied by a gain term. The gain must
be in [−1, 1).

AddCx Output the complex sum of the inputs. If saturation is set to yes,
the output will saturate.

SubCx Outputs the ”pos” input minus all of the ”neg” inputs.

MpyCx Outputs the product of all of the inputs.

AddInt Output the sum of the inputs. If saturation is set to yes, the output
will saturate.

SubInt Outputs the ”pos” input minus all of the ”neg” inputs.

MpyInt Outputs the product of all of the inputs.

GainInt The output is set the input multiplied by an integer gain term.

DivByInt This is an amplifier. The integer output is the integer input divided by
the integer divisor (default 2). Truncated integer division is used.

MpyShift Multiply and shift.

Neg Output the negation of the input.

Shifter Scale by shifting left leftShifts bits. Negative values of leftShifts
implies right shifting.

27.5.3.3 Nonlinear primitives

The nonlinear palette in the C50 domain includes transcendental functions, quantizers, table
lookup primitives, and miscellaneous nonlinear functions.

Abs Output the absolute value of the input.

27-50 MLDesigner Version 2.8

27.5 C50 Domain

ACos Output the inverse cosine of the input, which is in the range -1.0 to 1.0.
The output, in the principle range of 0 to π, is scaled down by π.

ASin Output the inverse sine of the input, which is in the range -1.0 to 1.0.
The output, in the principle range of [−π

2 , π
2 is scaled down by π.

Cos Output the cosine, calculated the table lookup. The input range is
[−1, 1] scaled by π.

expjx Output the complex exponential of the input.

Intgrtr An integrator with leakage set by feedbackGain. If there is an
overflow, the onOverflow parameter will designate a wrap around,
saturate or reset operation.

Limit Limits the input between the range of [bottom,top].

Log Outputs the base two logarithm.

MaxMin Output the maximal or minimal (MAX) sample out of the last N input
samples. This can either compareMagnitude or take into account
the sign. If outputMagnitude is YES the magnitude of the result
is written to the output, otherwise the result itself is written.

ModuloInt Output the remainder after dividing the integer input by the integer
modulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two integers.

Quant Quantizes the input to one of N + 1 possible output levels using N
thresholds.

QuantIdx The primitive quantizes the input to one of N+1 possible output levels
using N thresholds. It also outputs the index of the quantization
level used.

QuantRange Quantizes the input to one of N + 1 possible output levels using N
thresholds.

Reciprocal Outputs the reciprocal to Nf precision in terms of a fraction and some
left shifts.

Sgn Outputs the sign of the input.

SgnInt Outputs the sign of the integer input.

Sin Outputs the sine, calculated using a table lookup. The input range is
[−1, 1) scaled by π.

Sinc Outputs the sinc functions calculated as sin(x)/x.

Sqrt Outputs the square root of the input.

Table Implements a real-valued lookup table. The values parameter con-
tains the values to output; its first element is element zero. An error
occurs if an out of bounds value is received.

TableInt Implements an integer-valued lookup table. The values parameter

27-51

27 Code Generation Domains - unsupported

contains the values to output; its first element is element zero. An error
occurs if an out of bounds value is received.

Expr General expression evaluation.

LookupTbl The input accesses a lookup table. The interpolation parameter
determines the output for input values between table-entry points. If
interpolation is ”linear” the primitive will interpolate between
table entries; if interpolation is set to ”none”, it will use the next
lowest entry.

Pulse Generates a variable length pulse. A pulse begins when a nonzero trig-
ger is received. The pulse duration varies between 1 and maxDuration
as the control varies between [−1, 1).

QntBtsInt Outputs the two’s complement number given by the top noBits of
the input (for integer output).

QntBtsLin Outputs the two’s complement number given by the top noBits of
the input, but an optional offset can be added to shift the output
levels up or down.

Skew Generic skewing primitive.

Sqr Outputs the square of the input.

VarQuasar A sequence of values(data) is repeated at the output with period N
(integer input), zero-padding or truncating the sequence to N if neces-
sary. A value of O for N yields an aperiodic sequence.

Xor Output the bit-wise exclusive-or of the inputs.

27.5.3.4 Logic primitives

Test Test to see if two inputs are equal, not equal, greater than, and greater
than or equal. For less than and less than or equal, switch the order of
the inputs.

And True if all inputs are non-zero.

Nand True if all inputs are not non-zero.

Or True if any input is non-zero.

Nor True if any input is zero.

Xor True if its inputs differ in value.

Xnor True if its inputs coincide in value.

Not Logical inverter.

27.5.3.5 Control primitives

Control primitives manipulate the flow of tokens. All of these primitives are polymorphic; they op-
erate on any data type. The SDF equivalent primitives are: Fork, DownSample, Commutator,
Distributor, Mux, Repeat, Reverse, and UpSample.

27-52 MLDesigner Version 2.8

27.5 C50 Domain

ChopVarOffset This primitive has the same functionality as the Chop primitive ex-
cept now the offset parameter is determined at run time through a
control input.

Cut On each execution, this primitive reads a block of nread samples
(default 128) and writes nwrite of these samples (default 64), skipping
the first offset samples (default 0). It is an error if nwrite+ offset >
nread. If nwrite > nread, then the output consists of overlapping
windows, and hence offset must be negative.

Delay A delay primitive of parameter totalDelay unit delays.

Pad On each execution, Pad reads a block of nread samples and writes
a block of nwrite samples. The first offset samples have value
fill, the next nread output samples have values taken from the
inputs, and the last nwrite − nread − offset samples have value
fill again.

Rotate The primitive reads in an input block of a certain length and per-
forms a circular shift of the input. If rotation is positive, the in-
put is shifted to the left so that output[0] = input[rotation]. If
the rotation is negative, the input is shifted to the right so that out-
put[rotation] = input[0].

sampleNholdModule This sample-and-hold module is more memory efficient than using
a downsample primitive for the same purpose.

VarDelay A variable delay that will vary between 0 and maxDelay as the con-
trol input varies between -1.0 and 1.0.

WasteCycles Stalls the flow of data for cyclesToWaste number of cycles.

27.5.3.6 Conversion primitives

This library contains primitives which perform format conversions from fixed point to complex
fixed point.

CxToRect Output the real part and imaginary part of the input of separate output
ports.

RectToCx Output a complex signal with real and imaginary part inputs.

BitsToInt Convert a stream of bits to an integer.

IntToBits Convert an integer into a stream of bits.

FixToCx Convert fixed-point numbers to complex fixed-point numbers.

FixToInt Convert fixed-point numbers to integer numbers.

CxToFix Output the magnitude squared of the complex number.

CxToInt Output the magnitude squared of the complex number.

IntToFix Convert an integer input to a fixed point output.

IntToCx Convert an integer input to a complex output.

27-53

27 Code Generation Domains - unsupported

27.5.3.7 DSP (Digital Signal Processing)

The primitives in this library perform digital signal processing functions. The Goertzel and
IIR primitives are identical to their SDF counterparts.

Allpass An all-pass filter with one pole and one zero. The location of these is
given by the ”polezero” input.

Biquad A two-pole, two-zero IIR filter (a biquad).

H(z) =
1 + n1z

−1 + n2z
−2

1 + d1z−1 + d2z−2

Comb A comb filter with a one-pole low-pass filter in the delay loop.

BiquadDSPlay A two-pole, two zero IIR filter (a biquad). This biquad is tailored to
use the coefficients from the DSPlay filter design tool. If DSPlay gives
the coefficients: A B C D E then define the parameters as follows:
a = A, b = B, c = C, d = −(D + 1), e = −E. This only works
if a, b, c, d, and e, are in the range [−1, 1). The default coefficients
implement a low pass filter.

H(z) =
a + b · z−1 + c · z−2

1− (d + 1)z−1 − e · z−2

FIR A finite impulse response (FIR) filter. Coefficients are specified by the
taps parameter. The default coefficients give an 8th order, linear-
phase, low-pass filter. To read coefficients from a file, replace the
default coefficients with < filename, preferably specifying a com-
plete path. Polyphase multirate filtering is not yet supported.

LMS An adaptive filter using the LMS adaptation algorithm. The initial
coefficients are given by the coef parameter. The default initial co-
efficients give an 8th order, linear phase low-pass filter. To read de-
fault coefficients from a file, replace the default coefficients with <
filename, preferably specifying a complete path. This primitive
supports decimation, but not interpolation.

LMSGanged An LMS filter were the coefficients from the adaptive filter are used to
run an FIR filter in parallel. The initial coefficients default to a low-
pass filter of order 8.

RaisedCos An FIR filter with a magnitude frequency response shaped like the
standard raised cosine used in digital communications. See the SDFRaisedCosine
primitive for more information.

The spectral estimation primitives follow. The GoertzelDetector, GoertzelPower,
and LMSOscDet are identical to their SDF counterparts.

FFTCx Compute the discrete-time Fourier transform of a complex input using
the fast Fourier transform (FFT) algorithm. The parameter order
(default 8) is the transform size. The parameter direction (default
1) is 1 for forward, -1 for the inverse FFT.

27-54 MLDesigner Version 2.8

27.5 C50 Domain

Window Generate standard window functions or periodic repetitions of stan-
dard window functions. The possible functions are Rectangle,
Bartlett, Hanning, Hamming, Blackman, Steep-Blackman,
and Kaiser. One period of samples is produced on each firing.

The communications primitives are exactly like their SDF counterparts.

27.5.4 An overview of C50 Demos
A set of C50 demonstration programs have been developed. The demos are meant to be run on
the C50DSK board. If you do not have the required DSK tools, then you can still run the demos
to see the generated code. To do this make sure that the run and compile target parameters are to
NO. By default, the generated code is written to the
$HOME/MLD SYSTEMS/C50 directory.

NOTE: Since the C50 domain is not supported, the demos mentioned here are not directly ac- �
cessible through demo palettes, although they are included in the MLDesigner package
suite. To access the demos, use the file view tree and look in
$MLD/MLD Experimentals/C50/demo.
Please remember that the demos are not tested and most likely unable to run properly!

27.5.4.1 Basic/Test demos

The Basic/Test palette contains 7 demonstrations.

goertzelTest Test the Goertzel filters for computing the discrete Fourier transform.

firTest Test the finite impulse response (FIR) filters.

iirTest Test the infinite impulse response (IIR) filters.

logicTest Test various comparison tests and Boolean functions.

miscIntOps Test integer arithmetic operations.

multiFork Test the AnyAsmFork primitive. An AnyAsmFork primitive is one
of a group of primitives that do produce any code at compile time.

testPostTest Test the DTMFPostTest primitive used in touch tone decoding.

27.5.4.2 DSK 320C5x demos

The DSK 320C5x demo palette contains demonstrations meant to be run on the Texas Instruments
DSP Starter Kit board.

chirp This system uses two integrators and a cosine to generate a chirp sig-
nal.

DTMFCodec Demonstration of touch tone detection using the discrete Fourier trans-
form implemented by using Goertzel filters.

lms A noise source is connected to an eighth-order least-mean squares
(LMS) adaptive filter with initial taps specifying a low-pass filter. The

27-55

27 Code Generation Domains - unsupported

taps adapt to a null filter (the impulse response is an impulse) and the
error signal is displayed.

lmsDTMFCodec Demonstration of touch tone detection using Normalized Direct Fre-
quency Estimation implemented by using Least-Mean Squares (LMS)
adaptive filters.

phoneLine A telephone channel simulator. A tone is passed through some pro-
cessing which implements various distortions on a telephone channel.
The parameters that are controllable are: noise, channel filter, second
harmonic, third harmonic, frequency offset, phase jitter frequency, and
phase jitter amplitude.

sin A sine wave is generated by using two integrators in a feedback loop.

transmitter A simple 4-level PAM transmitter

27.5.5 Targets
Three C50 targets are included in the MLDesigner distribution.

27.5.5.1 Default C50 (default-C50) target

The default target is used only for code generation. It has the following set of options:

host (STRING) Default =
The default is the empty string. Host machine to compile or assemble
code on. All code is written to and compiled and run on the computer
specified by this parameter. If a remote computer is specified here then
rsh commands are used to place files on that computer and to invoke
the compiler. You should verify that your .rhosts file is properly
configured so that rsh will work.

directory (STRING) Default = $HOME/MLD SYSTEMS/C50
This is the directory to which all generated files will be written to.

file (STRING) Default =
The default is the empty string. This represents the prefix for filenames
for all generated files.

Looping Level Specifies if the loop scheduler should be used.

display? (INT) Default = YES
If this flag is set to YES, then the generated code will be displayed on
the screen.

compile? This is a dummy flag since the default target only generates code.

run? This is a dummy flag since the default target only generates code.

bMemMap (STRING) Default = 768-1279
Address range for C50 Dual Access RAM blocks. C50 Instructions
that operate on data run faster if the data is stored in one of the DARAM

27-56 MLDesigner Version 2.8

27.5 C50 Domain

blocks. Disjoint segments of memory can be specified by separating
the contiguous ranges with spaces, e.g. ”768-800 1200-1279.”

uMemMap (STRING) Default = 2432-6848
Data address range in the C50 Single Access RAM block. This can
also specify a valid address range in external memory.

subroutines? (INT) Default = -1
Setting this parameter to N makes the target attempt to generate a sub-
routine instead of in-line code for a primitive if the number of repeti-
tions of that primitive is greater than N (use N = 0 to generate subrou-
tines even for primitives with just 1 repetition). Set subroutines?
to -1 (or any other negative integer) to disable the feature.

27.5.5.2 C50 Subroutine (sub-C50) target

This target is used to generate subroutines that can be called from hand-written C50 code. The
options are identical to those of default-C50 target.

27.5.5.3 C50 DSP Starter Kit (DSKC50) target

This target is used to generate C50 code to be run on Texas Instruments’ DSP Starter Kit board.
In addition to the regular file.asm generated by the other targets, this target will produce a
second file (fileDSK.asm) which is the same as the original file but with all lines truncated to
80 characters. This is done because the TI DSK assembler will give false error messages if lines
in the input file exceed 80 characters. The options are identical to those of default-C50 target
with four exceptions:

compile? If this flag is set the target will issue the command asmc50 fileDSK.asm
where fileDSK.asm is the name of the file containing the gener-
ated code. This should run the DSK assembler and produce a file
fileDSK.dsk. Note that asmc50 can be a shell script that invokes
the user’s DSK assembler. Scripts to use the TI DSK assembler and
loader in Linux are presented at the end of this section.

run? If this flag is set the target will issue the command loadc50 fileDSK.dsk
which should load fileDSK.dsk to the DSK board. Note that loadc50
can be a shell script that invokes the user’s DSK loader.

bMemMap (STRING) Default = 768-1270
Valid addresses on the Dual Access RAM block 1. The last 9 words in
this (addresses 1271 - 1279) are reserved by the target to store config-
uration information for the Analog Interface Chip.

uMemMap (STRING) Default = 2432-6847
Valid addresses on the Single Access RAM memory. Locations 6848
- 11263 are reserved to store the user’s program and locations 2048-
2431 are reserved by the TI DSK debugger kernel.

27-57

27 Code Generation Domains - unsupported

The following scripts invoke the TI DSK assembler and loader from Linux through dosemu (a
DOS emulator). Note that before invoking the assembler and loader MLDesigner executes a cd
to the directory target parameter. Since you need to unmount the DOS partition to run dosemu
you can not have directory set to the DOS partition. One solution is to set directory to your home
directory and set file to include the path to the directory where you want the file written. For
example, if your home directory is /ptuser, the dos partition dosemu will use is /dos/c and you
want the output files written to /dos/c/dsk/src the you could set directory to /users/ptdesign
and file to /dos/c/dsk/filename where filename is the name of the output file. These scripts are also
included in
$MLD/src/domains/c50.

#!/bin/sh
Version: @(#)asmc501.604/07/97
Copyright (c) 1996-1997 The Regents of the University of California.
All Rights Reserved.
asmc50
script to assemble files with TI’s DSK assembler(dsk5a.exe)
Uses dosemu to run dsk5a.exe. The person running it must be root to
mount/unmount the dos partition.
This script was tested on a machine running linux (red-hat 3.0.3
distribution) with dosemu-0.63.1.33 installed.
Written by Luis Gutierrez.
Converted from csh to sh by Brian L. Evans

User’s home directory.
homedir=/root

User’s dos partition.
dospartition=/dos/c

The root path of DOS drive where DSK files and DOS binaries are stored.
dosroot=c:

The DOS directory(relative to dosroot)where the *.asm and *.dsk files
are stored. Replace the \ in the DOS path with \\.
dsksrc=dsk\\src

The DOS directory(relative to dosroot) where the DSK
executables(dsk5a.exe, dsk5l.exe) are stored.
Replace the \ in the DOS path with \\.
dskbin=dsk

The file used to temporarily save autoexec.emu.
autoexecsave=autoexec.bak

cd $dospartition

27-58 MLDesigner Version 2.8

27.5 C50 Domain

mv autoexec.emu $autoexecsave

The text between the first xxxx and the second xxxx will be
piped to unix2dos and will end up in autoexec.emu.

unix2dos > $dospartition/autoexec.emu << xxxx
path $dosroot\\$dskbin;$dosroot\\dos
cd $dosroot\\$dsksrc
dsk5a.exe $1:t
exitemu
xxxx
cd $homedir

Unmount DOS partition to run dosemu
umount $dospartition
dos > /dev/null

Mount DOS partition after running dosemu
mount -t msdos /dev/sda1 $dospartition

Restore autoexec.emu
cd $dospartition
mv -f $dospartition/$autoexecsave $dospartition/autoexec.emu

The following script is used to load files.

#!/bin/csh
Version: @(#)loadc501.5 03/29/97
Copyright (c) 1996-1997 The Regents of the University of California.
All Rights Reserved.
loadc50
script to load files with TI’s DSK loader(dsk5l.exe)
Uses xdos to run dsk5l.exe. The person running it must be root to
mount/unmount the dos partition.
This script was tested on a machine running linux(red-hat 3.0.3
diistribution) with dosemu-0.63.1.33 installed.
Written by Luis Gutierrez.
Converted from csh to sh by Brian L. Evans
User’s home directory.
homedir=/root

User’s dos partition.
dospartition=/dos/c

The root path of DOS drive where DSK files and DOS binaries are stored.
dosroot=c:

27-59

27 Code Generation Domains - unsupported

The DOS directory(relative to dosroot\)where the *.asm and *.dsk files
are stored. Replace the \ in the DOS path with \\.
dsksrc=dsk\\src

The DOS directory(relative to dosroot) where the DSK
executables(dsk5a.exe, dsk5l.exe) are stored.
Replace the \ in the DOS path with \\.
dskbin=dsk

The file used to temporarily save autoexec.emu
autoexecsave=autoexec.bak

cd $dospartition
mv autoexec.emu $autoexecsave

The text between the first xxxx and the second xxxx will be
piped to unix2dos and will end up in autoexec.emu.

unix2dos > $dospartition/autoexec.emu << xxxx
path $dosroot\\$dskbin;$dosroot\\dos
cd $dosroot\\$dsksrc
dsk5l.exe $1:t
exitemu
xxxx
cd $homedir

Unmount DOS partition to run xdos
umount $dospartition
xdos

After running xdos mount DOS partition
mount -t msdos /dev/sda1 $dospartition

Restore autoexec.emu
cd $dospartition
mv -f $dospartition/$autoexecsave $dospartition/autoexec.emu

27-60 MLDesigner Version 2.8

Part IV

Appendix

Appendix A

General

A.1 System Requirements
Following table lists general requirements which are independent on used operating system, dis-
tribution, or version.

Category Requirements

X Server running at 1024 X 768 pixels minimum

1280 X 1024 pixels or more recommended

Hard Drive Space 700 MB minimum

Physical memory 256 MB minimum

512MB recommended

Swap 256 MB minimum

1 GB recommended

GNU compiler gcc 3.2 or later (see table below)

GNU make 3.8 or later

GNU tar 1.13 or later

GNU gzip package 1.3 or later

PDF Viewer A PDF document viewer such as Acroread or GhostView for
reading online documentation

NS2 2.26 or later (only needed if you want to use the NS2 domain)

MySQL 4.0 or later (only needed for accessing MySQL databases)

Table A.1: General Requirements

NOTE: The X.org or XFree86 development package including header files is required for the �
compilation and loading of primitives that use Qt or OpenGL code as well as for external

A General

simulations using C++.

NOTE: GNU compiler version shown in the table above must be interpreted as common require-�
ments. The compiler version required for a certain operating system is listed in the table
below.

Dependent

Linux SuSE 9.3 (32 and 64 bit)

GNU compiler gcc 3.3.5

Linux openSuSE 10.2 (32 and 64 bit)

GNU compiler gcc 4.1.2

Linux openSuSE 10.3 (32 and 64 bit)

GNU compiler gcc 4.2.1

Linux openSUSE 11.0 (32 and 64 bit)

GNU compiler gcc 4.3.1

Linux openSuSE 11.1 (32 and 64 bit)

GNU compiler gcc 4.3.2

Linux openSuSE 11.2 (32 and 64 bit)

GNU compiler gcc 4.4.1

Linux RHEL 3 (32 bit and 64 bit)

GNU compiler gcc 3.2

Linux RHEL 4 (32 and 64 bit)

GNU compiler gcc 3.4.6

Table A.2: Platform Dependent Requirements

NOTE: Other Linux platforms not listed in the table above may work without problems. Because�
of the broad range of Linux distributions and versions, we are only able to support Linux
versions listed above.

NOTE: On Debian based Linux distributions packages xorg-dev, gcc, g++, libstdc++5, lib-�
stdc++6 and libc6-i386 (only on 64 bit architectures) have to be installed.

NOTE: On newer openSuSE systems package libstc++33 have to be installed in addition to�
standard development packages.

Gnu tools, including gmake 3.8 or later are normally part of a standard Linux installation.

A-2 MLDesigner Version 2.8

A.2 Environment Variables

A.2 Environment Variables
This section lists the standard environment variables for the MLDesigner environment.

$MLD MLDesigner installation directory

$MLD HOME = $MLD

$MLD USER directory where user defined models reside (default is $HOME/MLD)

$MLD EDITOR user preferred editor used for editing primitive source

$SIM NO current simulation number

$SIMNO = $SIM NO

$NO = $SIM NO

$SIM IT current iteration number

$SIMIT = $SIM IT

$IT = $SIM IT

$MLDARCH machine architecture, possible values are:
i386-linux-gcc3
i386-linux-gcc34
i386-linux-gcc4
x86 64-linux-gcc3
x86 64-linux-gcc34
x86 64-linux-gcc4
spar-sunos58

$HOME

$MLD SHARED Shared library for workgroups

$MLD RSH has to be set to ssh if you want to use ssh for distributed simulation

$MYSQL DEV HEADERS directory where the MySQL development headers reside

(default is /usr/include/mysql)

$MYSQL LIB PATH directory containing the MySQL shared library

(default is /usr/lib)

A.3 Valid File Names
If you have file naming conventions where you use the underscore, you need to define where the
separator is as MLDesigner interprets an underscore as an environment variable separator. To
ensure that the variables are properly interpreted you can use the dollar ($) sign and curly braces.
The following formats are supported by MLDesigner :

$XYZ/...

$XYZ_123/...

A-3

A General

$.../...${XYZ}...

$.../..._${XYZ}_...

$.../..._${XYZ_123}_...

A.4 Uninstall MLDesigner
NOTE: You do not need to uninstall MLDesigner in order to update to a later release. All files�

and folders in the $MLD directory are erased when you install the new version of the
program. All user directories and libraries are not erased.

In some cases it may be necessary to remove MLDesigner before updating to a newer version.
This is especially so where hard disk space is limited. In such cases proceed as follows:

• Log in as root.
• Execute the uninstall script by typing mld2uninstall.
• Confirm that you wish to remove all files by typing yes.
• License files are moved to the home directory of the root user (this is normally the /root

directory). All files stored in the MLDesigner program directory are completely erased.
This may take some time.

• Lastly the call scripts from /usr/bin or /usr/local/bin are removed.

You have successfully removed MLDesigner from your system.

Please remember that any locally created libraries, systems, modules, primitives and their sources
should reside in your home directory and were not erased by this procedure.

A.5 Version Update Warning
NOTE: Make a backup of all your libraries before starting a new MLDesigner version for�

the first time!

When you open an existing model or model library in MLDesigner version 2.7 or below for the
first time, a version update is executed. This is necessary because model libraries shipped with
MLDesigner as well as internal mechanisms may change from version to version. Extensive test-
ing has been done to ensure that existing models are not adversely effected after updating, but we
recommend you make a backup of all your existing libraries because there is no way to revert your
models back to the previous version if problems arise. If for any reason problems are experienced
after updating your models, contact support using the form at:

http://www.mldesigner.com/support.php

NOTE: The models and libraries to be updated must be writable.�

A-4 MLDesigner Version 2.8

http://www.mldesigner.com/support.php

A.5 Version Update Warning

When opening a library or model that needs a version update or contains models that need a
version update, a warning dialog displays to inform about the necessity of a version update and to
recommend that a backup be made before continuing.

Figure A.1: Version Update Warning

Upgrading to the latest version is FREE of charge and is recommended if you are to enjoy the new
features and improved performance of the latest release.

A-5

A General

A-6 MLDesigner Version 2.8

Appendix B

Support

B.1 How to Contact Us
For technical support use our online support form at:

http://www.mldesigner.com/support.php

NOTE: We are unable to respond to support requests unless they are sent via the support web �
interface.

B.2 Reporting Problems/Bugs
Please refer to app. E and the Frequently Asked Questions document before contacting the MLDe-
signer support group. The Help button in the top right corner has a menu option Search Index
which takes you directly to the MLDesigner manual index. Here you find hundreds of references
to topics that may help answer your question.

B.3 Viewing the Online Documentation
You need a PDF viewer to view the online documentation. The first time you try to open an online
document you are prompted to define a PDF viewer. This is done via the Settings option on the
main menu bar. Type in the name of the PDF viewer you wish to use if it is installed in your search
path. If not, use the file selection dialog to find the PDF viewer or type in the full path if you know
where it is located.
If your question remains unanswered send your query including the following:

• Which Linux or Solaris system do you use? (Vendor, version and kernel if available)
• Is your system connected to a network?

Please also specify where you experienced the problem. Was it:

• during the installation procedure or license installation

http://www.mldesigner.com/support.php

B Support

• on starting MLDesigner
• while working with MLDesigner

While compiling a primitive
Working with the standard libraries installed with the MLDesigner.
Working with custom made libraries or creating a custom library.
While running a simulation (extern, interactive, with animation)

• using external program systems such as SatLabTM

Report at which step the error occurs. Report your input and the reaction of MLDesigner , such as
error boxes or messages at the command prompt, as accurately as possible.

NOTE: These points are a guideline. You can add or omit points when reporting a problem.�

The more details we receive, the easier it is for us to reproduce the error. Only if we can reproduce
the error can we provide a valid workaround (if possible) or fix the bug in future versions and
alternately provide a patch for download via FTP.

B-2 MLDesigner Version 2.8

Appendix C

Frequently Asked Questions

This chapter is designed to help you find quick and short answers to your questions. All these
topics are covered in detail in the MLDesigner user manual which can be opened by clicking the
Help button in the top right corner of the GUI and selecting the option Search Index.

C.1 General Questions
Do I need to learn Ptolemy and BONeS to be able to design with MLDesigner? Go to Answer D.1.

C.2 Error Messages and Their Most Common Causes
1. Cannot create library ”xxx” to location ”file:/user/xxx/yyy/zzz/xxx.mml”. Maybe you have

no write permission. Cannot create model ”xxx”. You must create the library ”yyy” first.
Go to Answer 1.

2. Compilation error , unable to load the primitive Dynamic. Go to Answer 2.
3. ”make: fatal error in reader: /export/home/mldesigner/mk/ config-default.mk,line 59: Un-

expected end of line seen” Go to Answer 3.

C.3 Segmentation Faults
What are the most common causes of segmentation faults that cause MLDesigner to crash? Go to
Answer D.3.

C.4 Data Structures
1. When must a data structure be deleted and when is it a clone?
2. What is a memory leak?

Go to Answer D.4.

C Frequently Asked Questions

C.5 Load Mode
What is the difference between Load Mode Dynamic and Load Mode Permanent? Go to An-
swer D.5.

C.6 Plotting Systems
How do I make data available to, or save data for analysis using external programs? Go to An-
swer D.6.

C.7 Setting Environment Variables
1. How do I change the environment variables so I can use another Editor to debug or change

source code in my primitives? Go to Answer D.7.
2. How do I change the MLD USER environment variable. Go to Answer D.7.
3. How do I change the environment variables so I can use an external debugger? Go to

Answer D.7.
4. Is setting the Working Directory entry the same as setting the $MLD USER environ-

ment variable? Go to Answer D.7.

C.8 ddd debugger and Red Hat
I am running MLDesigner under Red Hat and I am unable to debug using the standard debugger
ddd. Go to Answer D.8.

C.9 Linked Objects
Why must I restart MLDesigner before changes made to Linked Object take effect? Go to An-
swer D.9.

C.10 Shared Libraries
What is the environment variable MLD SHARED used for and how do I set this variable? Why are
there invalid modules in my Shared Libraries? Go to Answer D.10.

C-2 MLDesigner Version 2.8

Appendix D

Answers to FAQ’s

D.1 Answers for the General Questions

No but it is necessary to bear in mind that the Ptolemy base type int is different to any data
structure type including those like Root.Integer. It is only possible to connect ports of the
same type. Back to Question C.1.

D.2 Error Messages and Their Causes

1. This error message normally occurs when you do not have permission to write to the target
directory or to one of the directories higher in the hierarchical structure. Another reason
could be caused by a file that is write protected in the target directory when you have checked
the option “Overwrite existing Files” in the appropriate Import dialog window. Back to
Question C.2.

2. There are a number of reasons for this error message.

• Firstly your primitive contains syntactical errors and can not be compiled by the C++
compiler. In that case you will get an error dialog (”Compilation failed.”), when you
compile the primitive in MLD. You should open the primitive editor, try to compile it
and correct the reported errors until successful compilation is confirmed.

• Secondly a primitive with the same name already exists in the same Domain.
• Another reason could be the primitive was already loaded with Load mode set to Per-

manent. If a Primitive is loaded permanent it is not possible to make any changes to its
source code and then recompile the primitive. You must shutdown MLDesigner and
restart before the changes take effect. You only need to load a primitive as permanent
if you want it to be inherited by another primitive. A primitive that is a child of another
primitive can only be recompiled if the parent is loaded as permanent.

Back to Question C.2.
3. This error is often caused by compiler incompatibility. What version of make do you use?

You need gmake 3.74 or later. Please look at the section on system requirements in the
app. A. Back to Question C.2.

D Answers to FAQ’s

D.3 Segmentation Faults / System Crashes
The most common reason for system crashes with MLDesigner is programmer error in user de-
fined primitives. When a segmentation fault occurs you should first check to see if your system
contains user defined primitives. Often the crash is caused by inconsistencies in memory allocated
to output datasets. The next step is to run the simulation extern possibly using an external debug-
ger to debug the system. External simulations occur outside of the MLDesigner environment. See
the MLDesigner manual index for more information on debugging. Back to Question C.3.

D.4 Data Structures
1. When to clone a particle Generally you don’t have to clone particles. In sending

particles over the ports you can use operators like << or =. For data structures the situation
is more complicated, because you have to take into account how it is instantiated as a data
structure and how it is used.

When to create a new particle When you instantiate a new data structure for direct us-
age (not to be used as parameter in a method that takes const Type* as parameter - meth-
ods of setType() kind), you have to use the method DsHandler::makeNewStructure().

When is a particle a clone? When you set a data structure to a Memory, Event or a
DataStructMember, the parameter is cloned inside the method so there is no need for a new
created object.

When to delete a data structure: When you get a data structure using the method
DsHandler::makeNewStructure() be sure to delete it to avoid overloading mem-
ory. Every new data structure created using the clone () method must be deleted. The
exception is when you place it on an output port. DataStructParticles take care to delete
the data structure when the last reference to it is deleted. Do not delete const pointers to
Type or class derivedfrom, returned by some methods. These are references to the class
members and the object takes care of deleting them. On the contrary, non const pointers
to Types must be deleted if you are not in the exceptional case previously mentioned.

Do not delete particles when As an exception, don’t delete the non const Type*
returned by DataStructMember’s methods getData () or fieldWithName () of the
DataStructure class, or every time when you write or read a Memory, using writeMemory()

2. A Memory Leak occurs when new memory is allocated dynamically and never deallocated.
In C++ new memory is created by the new operator and deallocated by the delete or the
delete []operator. Memory leaks accumulate over time and can crash the program.

Back to Question C.4.

D.5 Load Mode
While creating a new primitive model component, you can define its load mode. By selecting
the load mode Dynamic, a shared library containing the primitive code is created on loading.
This shared library is linked dynamically to MLDesigner so that you can reload the primitive any
time. All changes made to the primitive are effective immediately. Conversely, by selecting load
mode Permanent, the primitive is linked to MLDesigner on loading as it would be with a built-in

D-2 MLDesigner Version 2.8

D.6 Plotting Systems

primitive. All changes made to a primitive with load mode permanent only take effect after closing
and restarting MLDesigner. Back to Question C.5.

D.6 Plotting Systems
1. There are a number of ways to display or handle datasets and results of simulations.

• You may use SatLab to display data. (see Demos/DopplerIR, you need to start SatLab
before running the demo!). It uses a Tcl script $MLD/MLD Libraries/DE/Contrib/WiNeS.tcl.

• You may save your data to one or more files and postprocess/display it with another
tool of your choice. You could for example use a DEPrinter primitive to dump data to
a file, then use GnuPlot, Matlab or even a spreadsheet program like StarCalc (within
StarOffice) to display the information.

Back to Question C.6.

D.7 Setting Environment Variables

Change the Default Editor
To define the editor you prefer to use when working with source code it is no longer necessary
to set the environment variables. A dialog is available where a variety of setting can be changed.
To define which editor you prefer click the Settings option in the main menu. Expand the tree
by clicking the Primitive Source Editor item as shown in fig. D.1. The following options are
available:

1. Use external editors with xterm. Some editors open in a terminal and others not. Often the
terminal is not required and only gets in the way. To stop the xterm from opening with your
editor, click the check box to remove the tick. If the editor cannot open without a console,
you will get an error message in the MLDesigner console when attempting to open a source
file. In this case make sure you have a tick in the check box. Try open vi without a tick in
this check box or set the editor variable to emacs in the $EDITOR input field.

2. Internal. This points to the built-in editor installed with MLDesigner .
3. $EDITOR This radio button sets the default editor to the one you have defined by setting

your environment variable. i.e.,

For sh and bash command shells:
export EDITOR=emacs

For csh and tcsh command shells:
setenv EDITOR=emacs

You must close and restart MLDesigner before changes take effect.
4. User-defined Has the same effect as the $EDITOR radio button except you do not have to

close and reopen MLDesigner to get the new setting to work. You must only change the

D-3

D Answers to FAQ’s

editor name. The @$ are variables that instruct the editor you choose to open the source
code of the open primitive in your Model Editor Window.

Figure D.1: Generated hypertext documentation

NOTE: The built-in editor is used as default editor in cases where compile errors occur. The�
reason is that you can highlight errors in the built-in editor error console and the cursor
will be automatically placed in the correct line of the source code editor.

Back to Question C.7.

Set the MLD USER variable
It is possible to set your MLD USER environment variable to point to a project library or external
library. Lets assume you want to work on a project called MLD.project. This project is the
$MLD USER directory of another user. You want to access the systems and share libraries that
exist in the other user’s environment. Enter the following command where you would normally
open MLDesigner:

• for bash or sh shells

export MLD_USER=/home/user/MLD.project

• for tcsh and csh shells

D-4 MLDesigner Version 2.8

D.8 Using ddd Debugger under Red Hat

setenv MLD_USER /home/user/MLD.project

You could also do the same locally on your own computer if you wanted to separate libraries
and projects. You can create a new directory /MLDProject in your home directory. Set your
MLD USER environment variable to point to the new directory. When you open MLDesigner again
you will see the tree view with MLDesigner libraries and no user libraries. You could then create
a top level library with read and write rights for a workgroup on your network.
Back to Question C.7.

Use an External Debugger
Depending on the type of shell you are using, enter one of the following at the prompt:

export MLD_PREBIN=ddd (sh and bash)

or

setenv MLD_PREBIN ddd (csh and tcsh)

The ddd entry refers to the ddd debugger supplied with every Linux package and can be replaced
with a call referring to your favorite debugger.
You must now start MLDesigner as normal. The debugger you have chosen will start. If you are
using ddd proceed as follows:

• Click the View menu and choose Command Tool.
• Click Run to start MLDesigner . This can take longer than normal.
• You can now work as normal with MLDesigner .

Back to Question C.7.

Differences Between $MLD USER and Working Directory
$MLD USER and Working Directory are not related to each other at all. The variable $MLD USER
defines where MLDesigner looks for user defined models and libraries where the option Working
Directory defines which directory is the working directory for the command console window after
starting MLDesigner. Both these topics are explained in the MLDesigner manual which can be
opened by clicking on the Search Index option of the Help menu found in the top right corner of
the GUI. Find the index entries Command Console or Working Directory to get more detail on the
topic.
Back to Question C.7.

D.8 Using ddd Debugger under Red Hat
It is not possible to debug MLDesigner using ddd because Red Hat was developed completely
using GCC 2.96 contrary to the recommendations of the Free Software Foundation
(see http://www.fsf.org/software/gcc/gcc-2.96.html).

D-5

D Answers to FAQ’s

As a result ddd compiled under GCC 2.96 needs a symbol dynamic cast 2 defined in
libstdc++-libc6.2-2.so.3.

With a SuSE system compiled using GCC 2.95 running under Red Hat, the system crashes when
accessing the system internal libstdc++-libc6.2-2.so.3. This is apparently caused by a
change in the library interface.

At the moment there are no solutions to the problem and we can only suggest you to use gdb or
xxgdb as an alternative debugger.
Back to Question C.8.

D.9 Linked Objects
Files containing object code must be loaded before the primitive that calls the external functions
in the object file is compiled. All changes made to the external library will only be actualized
when MLDesigner is shutdown and restarted. The reason is that it is not possible to delete the
relevant primitive from memory without conflicts arising in the kernel’s reload mechanism. The
result would be a primitive containing a mixture of new and old code.
Back to Question C.9.

D.10 Shared Libraries
The Shared Libraries directory was introduced to make it easier for design teams to exchange
models and work on group projects.
It is possible to develop a library within the environment specified by the $MLD USER environment
variable and then move this library to the shared environment specified by the $MLD SHARED
environment variable. However, since the $MLD USER variable is dynamic (because it can be
different for every user) the following prerequisite applies.

• All modules and files needed by systems in the library must be located within this library,
or in a location that never changes, such as the directory to which $MLD SHARED and
$MLD point.

The reason for this is that the systemName.mml file contains references to all model elements
needed for the system to function. If these variables change then MLDesigner will not be able to
locate the missing model elements.
Back to Question C.10.

D-6 MLDesigner Version 2.8

Appendix E

Troubleshooting

E.1 Closing complex models becomes slower and
slower after simulations

Closing complex models becomes slower and slower after simulations. We see degradation be-
cause when a model completes execution, not all blocks are released. A second run on the same
model means that the available memory is fragmented because some blocks from the previous run
were not released. This makes memory allocations for successive runs more complex and makes
closing slower because MLDesigner hops around to release memory. One solution is to close and
start MLDesigner between simulations of complex models.

E.2 DHCP Client/License problem
Error: There are some reported errors while using a DHCP client with a non-permanent network
connection (e.g. notebooks). MLD needs a connected network card for authentication of the
license file. Some DHCP clients shut down the network connection if no valid DHCP server is
found resulting in a change of the host id used for validating the license file (as long as there is no
connection present).
Fix:We are working on this problem. In the meantime the only solution is to avoid changes in the
network system. If you run into the error of inconsistent Host Id’s, then you can manually start the
network card using the command ’ifconfig eth0 up’ (as root).

NOTE: This usually works after the DHCP client has shut down the network card and will only �
work till the next reboot. The best solution is to deactivate the DHCP client in the Linux
setup and to manually enter the network information so your computer will work both
with and without a network connection.

E.3 Waiting for Users Lock
Sometimes it may happen when you start MLDesigner that you get a couple of the following
messages:

E Troubleshooting

Waiting for user’s lock on map file /home/user/MLD/.url.map

The reason is that MLDesigner creates a lock file on URL mapping files when it saves the URL
map to the file. The message is thrown when another save operation tries to create a lock on the
same URL map for write operation while the lock file from the former write operation still exists.
This may for example happen when MLDesigner crashed during the save operation of the URL
map for any reason. Waiting for the lock file slows down the model base access a lot. To solve this
problem remove the file /home/user/MLD/.url.map.lock by hand.

E.4 Distributed Simulation Timeout
If you start an distributed C++ simulation, it may happen that the simulation process for an iteration
started on a remote machine does not start with a given timeout period. This can happen if the
remote host is very busy. In that case you get an error message as follows:

Iteration did not start within 10 seconds.

In that case, You try to increase the timeout value by changing the value in the Settings Dialog
using the Start timeout for iterations [sec] input field of the Distributed item in the Run Control
category.

E.5 ddd Debugger Problems
The following error message could display when attempting to run a simulation using ddd:

error loading shared library libDs.so: cannot open shared
object: No such file or directory

The reason for this error is that in ddd the variable MLD LIBRARY PATH is not correctly set. This
could be caused by the variable being set in ∼/.cshrc without taking into account an already
existing variable setting.

Check your .bashrc and/or .cshrc. The following would be incorrect:

.bashrc:
export LD_LIBRARY_PATH=<any_path>

.cshrc/.tcshrc:
setenv LD_LIBRARY_PATH <any_path>

Correct the files to look like:

.bashrc:
if ["$LD_LIBRARY_PATH" = ""]; then
export LD_LIBRARY_PATH=<any_path>

else

E-2 MLDesigner Version 2.8

E.6 Compile Errors

export LD_LIBRARY_PATH=<any_path>:$LD_LIBRARY_PATH
fi

.cshrc/.tcshrc:
if ($?LD_LIBRARY_PATH == 0) then
setenv LD_LIBRARY_PATH <any_path>

else
setenv LD_LIBRARY_PATH <any_path>:$LD_LIBRARY_PATH

endif

E.6 Compile Errors
If you have produced your own makefile and now are suddenly faced with a long list of errors and
warnings you need to check if you have the following entry:

-I$(MLD)/include/kernel/

The above line needs to be changed to look like:

-I$(MLD)/include/kernel/ -I$(MLD)/include/

E.7 Preserving the Order of Multiple Outputs in Pri-
ority Free Scheduler

If a DE primitive has two or more output ports and it outputs more than one particle in one exe-
cution, the only way to ensure that the particles are received at their connected input ports in the
same order is to fulfill the following conditions:

• Do not alternate the ports - output all the data for the first port, then send on the second port,
and so on;

• Call sendData() after each output.

The library MLD Examples/Tutorials/Multiple Outputs In DE contains an example that illustrates
all four possible cases (none of the conditions is fulfilled, only one or both conditions are fulfilled).
The correct order is obtained by setting the parameter Alternate to FALSE and SendData to TRUE.

E.8 MLDesigner Does Not Start After the Splash Screen
Disappears

If the main window of MLDesigner is not displayed after the splash screen disappears, proceed as
follows:

• Set the MLD variable to ‘mldpwdinf‘, e.g. for bash shell:

E-3

E Troubleshooting

export MLD=‘mldpwdinf‘

• Execute the mld-x script:

$MLD/mld-x

Check the output messages displayed in the command window to detect what the problem might
be. If you do not find a way to solve the problem after checking app. C and app. E, please read the
app. B on how to contact the MLDesigner support group for further assistance.

E.9 Red Hat Linux 9

Error message Reason Solution

Wrong version
during installa-
tion

Gcc 3.x is not properly detected
during installation of an old
MLDesigner version (2.4.r02
first build, or earlier). This ren-
ders the whole installation in-
valid!

Switch to a newer MLDesigner
version or manually change ’sys-
tem/probeversions’ from the in-
stallation archive.

No ’gunzip’
found during
installation

The MLDesigner installer uses
the ’gunzip’ program for extract-
ing the compressed archives.
For Linux, it does not supply its
own program, but uses the one
given with the distribution. In
one case, the ’gzip’ program was
not installed with Red Hat (or
was broken).

(Re-)Installation of the gzip/-
gunzip package from the distri-
bution CDs.

Account ’nobody’
is not active

This happens when you try to
start the MLDesigner license
daemon locally. The account
’nobody’, used for security rea-
sons, is not accessible.

Make the user valid by changing
the necessary line in /etc/passwd
from /sbin/nologin to /bin/bash
or modify the file ’lmgrd-mld’
to start license daemon not as
’nobody’ but as ’root’ (includes
a warning whenever the daemon
is started) or another appropriate
user.

E-4 MLDesigner Version 2.8

E.10 Red Hat Enterprise Linux 4 32 bit

Error message Reason Solution

License daemon
gives ”permission
denied” error

When starting the daemon,
either by ’mldlminst’, boot-
ing or ’mldlmgrd start’, the
”/root/.bashrc: Permission
denied” error occurs.

Either use a patch greater than or
equal to 2.4.r02.p11/2.4.r03.p01
or edit the file ’lmgrd-mld’ man-
ually and change ’su nobody[...]’
into ’su - nobody[...]’ on lines 84
and 91.

Permission denied
on ’/var/tmp’

If the directory ’/var/tmp’ is not
writable for everyone (including
’nobody’), the license daemon
cannot start.

Change the permission of
’/var/tmp’ manually to -m777.

Table E.1: Red Hat 9 Troubleshooting

E.10 Red Hat Enterprise Linux 4 32 bit
A possible solution to get MLDesigner running on a Red Hat Enterprise Linux 4 32 bit system
is to downgrade the GCC compiler to version 3.2 (GCC 3.2 is shipped with Red Hat Enterprise
Linux 4 as compatibility packages) following these steps:

• install packages in category ”Old development packages”
• rename /usr/bin/gcc to /usr/bin/gcc34
• rename /usr/bin/g++ to /usr/bin/g++34
• rename /usr/bin/gcc32 to /usr/bin/gcc
• rename /usr/bin/g++32 to /usr/bin/g++

We have tested MLDesigner after downgrading GCC without any problem. Please note that we
cannot guarantee that this compiler downgrade has no effect on other compilations like the instal-
lation of software that is downloaded from network and has to be compiled from source code.

E.11 Security-Enhanced Linux (SELinux)
When installing or running MLDesigner on an operating system with SELinux enabled, you may
get the message:

error while loading shared libraries: <library_name>: cannot
restore segment prot after reloc: Permission denied

There are two ways to solve this problem:

1. Change the security context for the MLDesigner’s shared libraries by issuing the command
(as super user):

E-5

E Troubleshooting

find $INSTALL/lib -name "*.so" \
-exec chcon -t texrel_shlib_t {} \;

where $INSTALL points to the directory where MLDesigner installation files reside. If you
install from a CD-ROM, copy the installation files to a local directory and run the command
mentioned above. Then run the installation from that directory.
The same problem could appear with the installed MLDesigner libraries. If so, run the above
command with $INSTALL pointing to the MLDesigner installation directory.
While simulating a model, MLDesigner may create temporary shared libraries and load
them to the running process. If the same problem appears with those shared libraries, you
probably have to disable SELinux.

2. Disable SELinux by replacing ’enforcing’ with ’disable’ in the SELinux’s config
file:

#SELINUX=enforcing
SELINUX=disable

E.12 VMWare Player

It may happen that during an MLDesigner session under VMWare Player the mouse cursor dis-
appears if a mouse click is followed by a second one in less than 30s and reappears after a short
period of inactivity. Once unleashed, this problem is present also when other applications are used
(for example, mail client, Internet browser) and only a restart of the X-Server can fix it.
A workaround is to edit the file /etc/X11/xorg.conf in the virtual machine’s operating
system by adding the lines

Option "SWcursor" "true"
Option "HWcursor" "off"

to Section ”Device” and the line

InputDevice "Mouse[1]" "CorePointer"

to Section ”ServerLayout”.

E.13 QClipboard::Unknown SelectionNotify

Sometimes the message ”QClipboard::Unknown SelectionNotify” appears when KDE clipboard
tool ’klipper’ is running. ’klipper’ has to be closed to avoid this messages.

E-6 MLDesigner Version 2.8

E.14 Value of MLD USER variable is lost

E.14 Value of MLD USER variable is lost
The value for the MLD USER is read from the corresponding environment variable during MLDe-
signer start-up time. This value can be changed using the Settings dialog, but it is available only
for the current MLDesigner session. To have it persistent for several MLDesigner sessions, the
MLD USER environment variable must be set in the console from which MLDesigner is started.

E.15 The license manager fails on a system with
multiple NICs

During system startup, there exists a race condition in initialization of the network interface cards
on a system with multiple NICs. If eth0 is not assigned to the card whose MAC address is in the
license file, the license manager complains that there is no available license.
To ensure that eth0 is always assigned to the network interface card whose MAC address has been
used to obtain the license, the line

PERSISTENT_NAME=’eth0’

must be added to the configuration file of that network card. In a similar way, different names
must be specified for the other network interface cards.

E.16 MySQL
Check the app. A.2 to find out what environment variables are required in case MLDesigner does
not find the MySQL development headers or the shared library ’libmysqlclient.so’.

E-7

Appendix F

Abbreviations

ATM Asynchronous Transfer Mode network protocol
EPS Encapsulated PostScript
FSM Finite State Machine
GNU GNU is Not Unix
MDI multiple Document Interface
MLD Mission Level Design
PS PostScript
PTCL Ptolemy Tcl
ptlang Ptolemy language
Tcl Tool command language
UTR Utah Raster Toolkit

Appendix G

Glossary

$MLD The directory in which the MLD software is installed.

$MLD USER The directory where the user libraries are stored, usually ˜/MLD.

actor An atomic (indivisible) function in a data flow model of computation.

ATM A sub-domain of the synchronous data flow and discrete-event domains to
provide the infrastructure for simulating ATM networks.

auto-fork A fork primitive that is automatically inserted when a single output is con-
nected to more than one input.

base class A C++ object that is used to define common interfaces and common code for
a set of derived classes. An object may be a base class and a derived class
simultaneously.

BDF A domain using the Boolean-controlled data flow model of computation. This
domain attempts to use compile-time scheduling, but will fall back to run-time
scheduling if necessary.

behavioralmodeling
System modeling consisting of functional specification plus modeling of the
timing of an implementation (cf. functional modeling).

block A graphical representation of a model instance.

block diagram A graphical representation of a functional model that embeds a number of
model components using model instances (blocks) which are connected by
net objects.

Block The base class defined in the kernel for primitives, modules, systems, and
targets.

G Glossary

block A primitive or a module.

boolean-controlled data flow
A model of computation that includes synchronous data flow, but adds actors
that may or may not produce or consume tokens on any given input or output.
Whether these actors produce or consume tokens depends on a Boolean signal.

code generation The synthesis of a standalone implementation in some target language from a
network of MLDesigner blocks.

code generation domain
A domain that supports code generation, but not simulation.

CG A domain that defines many of the base classes and schedulers used in code
generation domains. It has no direct application by itself.

CG56 A domain that synthesizes assembly code for the family of Motorola DSP56000
digital signal processors. It uses the synchronous data flow model of compu-
tation.

CG96 A domain that synthesizes assembly code for the family of Motorola DSP96000
digital signal processors. It uses the synchronous data flow model of compu-
tation.

CGC A domain that synthesizes C code. It uses the synchronous data flow or
Boolean-controlled data flow model of computation.

CG-DDF A code generation domain that uses the dynamic data flow model of compu-
tation. This has not been maintained beyond version 0.4.1 of Ptolemy.

codesign The simultaneous design of the software and hardware composing a system.

communicating processes
A model of computation in which multiple processes execute concurrently and
communicate with one another by passing messages.

compile-time scheduling
A scheduling policy in which the order of execution of blocks is precomputed
when the execution is started. The execution of the blocks thus involves only
sequencing through this precomputed order one or more times (cf. run-time
scheduling).

CP A simulation domain using the communicating processes model of compu-
tation. Each primitive forms a process that runs under the Sun lightweight

G-2 MLDesigner Version 2.8

Glossary

process library.

derived class A C++ object that is derived from some base class. It inherits all of the mem-
bers and methods of the base class.

data flow A model of computation in which actors process streams of tokens. Each actor
has one or more firing rules. Actors that are enabled by a firing rule may fire
in any order.

DDF A simulation domain that uses the dynamic data flow model of computation.

DE A simulation domain that uses the discrete-event model of computation. In the
DE domain, particles transmitted between blocks represent events that trigger
changes in system state. Events carry an associated timestamp, and are pro-
cessed in chronological order.

discrete event A model of computation used to model systems that change state abruptly at
arbitrary points in time, such as queuing networks, communication networks,
and computer architectures. A block is enabled when an event at one of its
inputs is the ”oldest” event in the system, in that its timestamp has the smallest
value. Once enabled, the block may be executed, and in the process may
produce more events.

domain A specific implementation of a model of computation.

Domain The base class in the MLDesigner kernel from which all domains are derived.

drag The action of holding a mouse button while moving the mouse.

dynamic data flow A model of computation supporting any computable firing rule for actors.
This model of computation requires run-time scheduling.

event A particle generated by a block in a discrete-event model of computation. This
particle carries a timestamp.

event horizon The interface between domains that manages the flow of particles from one
domain to another.

FFT The Fast Fourier Transform is an efficient way to implement the discrete
Fourier transform in digital hardware.

firing A unit invocation of an actor in a data flow model of computation.

firing rule A rule that specifies how many tokens are required on each input of a data
flow actor for that actor to be enabled for firing.

G-3

G Glossary

fork primitive A primitive that reads one input particle and replicates it on any number of
outputs.

FSM Finite State Machine. A system of states, controlled by conditions. Often used
to describe and analyze sequential control problems

FSM model The functional model of an FSM primitive component defined by states and
transitions.

FSM primitive A primitive model component that models an FSM.

functional modeling
System modeling that specifies input/output behavior without specifying tim-
ing (cf. behavioral modeling).

galaxy A synonym for module components.

Galaxy The class (derived from Block) in the MLDesigner kernel that represents a
network of other blocks.

Gantt chart A graphical display of a parallel schedule of tasks. In MLD, the tasks are the
firings of primitives and modules.

higher-order functions
Functional programming constructs that apply a function a determined num-
ber of times to one or more streams of inputs. Examples of higher-order func-
tions from Lisp include mapcar and apply.

HOF A domain implementing higher-order functions that are expanded at compile-
time and incur no run-time overhead. HOF primitives are typically embedded
in other domains, and provide graphical expression of parameterized parallel,
cascaded, and recursive structures.

homogeneous synchronous data flow
A particular case of the synchronous data flow model of computation, where
actors produce and consume exactly one token on each input and output.

icon A graphical object that represents a single block or library.

iteration A set of executions of blocks that constitutes one pass through the precom-
puted order of a compile-time schedule.

kernel The set of classes defined in the directory $MLD/src/kernel.

library A model component that contains a number of model instances that refer to

G-4 MLDesigner Version 2.8

Glossary

model components that belong to a library.

master In MLDesigner , the directory that contains all model related files.

MDSDF A simulation domain that uses a multidimensional extension to the synchronous
data flow model of computation. Actors in MDSDF consume data defined on
rectangular grids, e.g. a sub-block in an image.

member A C++ object that forms a portion of another object.

method A function defined to be part of an object in C++.

model component A part of a system model that consists of a functional model and an icon
representation.

model instance A reference to a model component that is embedded into another model

model of computation
A set of semantic rules defining the behavior of a network of blocks.

module A model component that contains a network of embedded other model com-
ponents.

net A graphical connection between ports in MLDesigner .

node An edge point of a net object that can be used as connector for a number of
connections.

object A data type in C++ consisting of members and methods. These members and
methods may be private, protected, or public. If they are private, they can only
be accessed by methods defined in the object. If they are protected, then they
can also be accessed by methods in derived classes. If they are public, then
they can be accessed by any C++ code.

OCT A design database developed by the CAD Group at U. C. Berkeley. Oct is
used to store graphical representations of MLDesigner models.

palette A synonym for library models.

parameter A member of a block that stores data values from one invocation of the block
to the next.

particle A datum (e.g. a floating-point value) communicated between blocks.

G-5

G Glossary

Plasma A class in the MLDesigner kernel that serves as a repository for used parti-
cles of any particular types. When new particles of the appropriate type are
needed, they are taken from the Plasma, if possible, thus avoiding memory
allocation.

PN A simulation domain based on the process networks computational model.
Each primitive forms a process under this domain.

port An input or output of a primitive or module.

PortHole The base class in the MLDesigner kernel for all ports.

primitive An atomic (indivisible) unit of computation in an MLDesigner application.
Every MLDesigner simulation ultimately consists of executing the methods
of the primitives used to define the simulation.

primitive source The functional model of primitive model components written in the Ptolemy
language.

PTCL The built-in textual, interactive command interpreter of MLDesigner . As the
name implies, PTCL is based on Tcl.

ptlang A schema language used to define primitives in MLDesigner .

MLD An environment variable with value equal to the name of the directory in
which the MLDesigner system is installed.

real time The actual time (cf. simulated time).

run-time scheduling
A scheduling policy in which the order of execution of the blocks is deter-
mined ”on-the-fly,” as they are executed (cf. compile-time scheduling).

Scheduler An object associated with a domain that determines the order of execution of
blocks within the domain. Domains may have multiple schedulers.

schematic A block diagram.

SDF A simulation domain using the synchronous data flow model of computation.

Silage (1) A functional language developed by Paul Hilfinger at U. C. Berkeley for
specifying signal processing systems. It is used primarily as input for VLSI
synthesis tools.
(2) A code generation domain in MLDesigner that synthesizes Silage code

G-6 MLDesigner Version 2.8

Glossary

and uses the synchronous data flow model of computation.

simulated time In a simulation domain, the real number representing time in the simulated
system (cf. real time).

simulation The execution of a system specification (an MLDesigner block diagram) from
within the MLDesigner process (i.e., without generating code and spawning a
new process to execute that code).

simulation domain
A domain that supports simulation, but not code generation.

snap In MLDesigner , an invisible grid defining the points at which graphical ob-
jects can have endpoints or corners.

star A synonym for primitive model components.

Star The base class in the MLDesigner kernel for all primitives.

State The base class in the MLDesigner kernel for all parameters.

stop time Within a timed domain, the time at which a simulation halts.

synchronous data flow
A data flow model of computation where the firing rules are particularly sim-
ple. Every input of every actor requires a fixed, pre-specified number of to-
kens for the actor to fire. Moreover, when the actor fires, a fixed, pre-specified
number of tokens is produced on each output. This model of computation is
particularly well-suited to compile-time scheduling.

system An entire MLDesigner system model, that is, the top-level model.

target An object that manages the execution of a simulation or code generation pro-
cess. Thus, for example, in code generation, the target would be responsible
for compiling the generated code and spawning the process to execute that
code, if desired.

Target The base class in the kernel for all targets.

Tcl Tool command language, a textual, interpreted language developed by John
Ousterhout at U.C. Berkeley. Tcl is embedded in PTCL.

timestamp A real number associated with a particle in timed domains that indicates the
point in simulated time at which the particle is valid.

G-7

G Glossary

timed domain A domain that models the evolution of a system in time.

Tk An X windows toolkit for Tcl. Tk is embedded in MLDesigner , which uses
it extensively. The interactive sliders, buttons, and plotting capabilities of pigi
are implemented in Tcl/Tk.

token A unit of data in a data flow model of computation. Tokens are implemented
as particles in MLDesigner .

universe A synonym for system models.

URT The Utah Raster Toolkit for image and video processing. It is used by the
image processing primitives in the synchronous data flow domain. The multi-
dimensional synchronous data flow domain treats images as matrices and does
not use the Utah Raster Toolkit.

VHDL The VHSIC hardware description language, a standardized language for spec-
ifying hardware designs at multiple levels of abstraction.

VHDLF A code generation domain for functional modeling of hardware. This domain
synthesizes a system description in VHDL.

VHDLB A code generation domain for behavioral modeling of hardware. This domain
synthesizes a system description in VHDL.

wormhole A primitive in a particular domain that internally contains a module in another
domain.

G-8 MLDesigner Version 2.8

Appendix H

Bibliography

[BBHL93] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, and Edward A. Lee. A
Scheduling Frameork for Minimizing Memory Requirements of Multirate DSP Sys-
tems Represented as Dataflow Graphs. In L. Eggermont, P. Dewilde, E. Deprettre, and
J. van Meerbergen, editors, VLSI Signal Processing VI. IEEE Special Publications,
New York, NY, 1993. 5.3, 6.5.0.2, 18.7.2

[BBHL95] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, and Edward A. Lee. Gen-
erating Compact Code from Dataflow Specifications of Multirate Signal Processing
Algorithms. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Ap-
plications, 42(3):138–150, March 1995. Updated from Technical Report UCB/ERL
M93/36, EECS Dept., University of California, Berkeley, CA, May 21, 1993. 5.3,
6.5.0.2, 18.7.2

[BGH+90] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih, and E.A. Lee. Gabriel: A
Design Environment for DSP. IEEE Micro Magazine, 10(5):28–45, October 1990.
6.3.5

[BH97] Joseph T. Buck and Soonhai Ha. Ptolemy 0.7 Kernel Manual. University of California,
Berkeley, 1997. 5, 13.6, 14.5

[BHLM91] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmidt. Multirate
Signal Processing in Ptolemy. In Proc. of Int. Conf. on Acoustics, Speech, and Signal
Processing, volume 2, pages 1245–1248, Toronto, Canada, April 1991. 5.3

[BL93a] Shuvra S. Bhattacharyya and Edward A. Lee. Scheduling Synchronous Dataflow
Graphs for Efficient Looping. J of VLSI Signal Processing, December 1993. 5.3,
18.7.2

[BL93b] Joseph T. Buck and Edward A. Lee. Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model. In Proc. of Int. Conf. on Acoustics,
Speech, and Signal Processing, volume I, pages 429–432, Minneapolis, MN, April
1993. 5.3, 20.1

[BL93c] Joseph T. Buck and Edward A. Lee. The Token Flow Model. In L. Bic, G. Gao,
and J. Gaudiot, editors, Advanced Topics in Dataflow Computing and Multithreading.
IEEE Computer Society Press, 1993. 5.3

H Bibliography

[BL94a] Shuvra S. Bhattacharyya and Edward A. Lee. Looped Schedules for Dataflow De-
scriptions of Multirate Signal Processing Algorithms. Formal Methods in System
Design, 5(3), December 1994. Updated from Technical Report UCB/ERL M93/37,
EECS Dept., University of California, Berkeley, CA, May 21, 1993. 5.3, 6.5.0.2

[BL94b] Shuvra S. Bhattacharyya and Edward A. Lee. Memory Management for Dataflow
Programming of Multirate Signal Processing Algorithms. IEEE Trans. on Signal
Processing, 42(5), May 1994. Updated from Technical Report UCB/ERL M92/128,
EECS Dept., University of California, Berkeley, CA, November 28, 1992. 5.3

[BML96] S.S. Bhattacharyya, P.K. Murthy, and Edward A. Lee. Software Synthe-
sis from Dataflow Graphs. Kluwer Academic Publishers, Norwell MA, 1996.
http://ptolemy.eecs.berkeley.edu/papers/96/softSynthBook/. 6.5.0.1, 27.2.3.1

[Buc93] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model. PhD thesis, University of California, Berkeley, CA, Septem-
ber 1993. 5.3, 6.2.4, 20.1, 20.2, 27.2.1

[Cel79] François E. Cellier. Combined Continuous/Discrete System Simulation by Use of
Digital Computers: Techniques and Tools. PhD thesis, ETH Zürich, Zürich, 1979.
23.4

[Den75] J.B. Dennis. First version of data flow procedure languange. Technical Report MAC
TM61, MIT Laboratory for Computer Science, May 1975. 6.2.1, 6.1, 18.2

[DP93] J. Dongarra and R. D. Pozo. LAPACK++: A Design Overview of Object-Oriented Ex-
tensions for High Performance Linear Algebra. In Proc. Supercomputing ‘93, pages
162–171, 1993. 14.3.5

[Edw92] S. A. Edwards. The Specification and Execution of Heterogeneous Synchronous Re-
active Systems. PhD thesis, University of California, Berkeley, CA, 1992. 5.3, 6.3.1

[EGKL95] B. L. Evans, S. X. Gu, A. Kalavade, and E. A. Lee. Symbolic Computation in System
Simulation and Design. In Proc. SPIE Int. Sym. on Advanced Signal Processing
Algorithms, Architectures, and Implementations, pages 396–407, San Diego, CA,
July 1995. 3.7.8

[Ha92] Soonhoi Ha. Compile-Time Scheduling of Dataflow Program Graphs with Dynamic
Constructs. PhD thesis, University of California, Berkeley, CA, April 1992. 5.3,
27.2.2.3, 27.2.5.2

[HL91] Soonhoi Ha and Edward A. Lee. Compile-Time Scheduling and Assignment of
Dataflow Program Graphs with Data-Dependent Iteration. IEEE Trans. Computers,
40(11):1225–1238, November 1991. 5.3

[HL96] Duane Hanselmann and Bruce Littlefield. Mastering MATLAB. Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1996. 3.7.8, 9.9

[Hu61] T.C. Hu. Parallal Sequencing and Assembly Line Problems. Operations Research,
9(6):841–848, 1961. 27.2.2.3

H-2 MLDesigner Version 2.8

Bibliography

[KL93] Asawareeand Kalavade and Edward A. Lee. A Hardware/Software Codesign Method-
ology for DSP Applications. IEEE Design and Test of Computers, 10(3):16–28,
September 1993. 5.3

[Lee91a] Edward A. Lee. Architectures for Statically Scheduled Dataflow. In M. A. Bayoumi,
editor, Parallel Algorithms and Architectures for DSP Applications, pages 159–190.
Kluwer Academic Publishers, Boston, MA, 1991. 5.3

[Lee91b] Edward A. Lee. Consistency in Dataflow Graphs. IEEE Trans. Parallel and Ditributed
Systems, 2(2):223–235, April 1991. 5.3, 19.3, 20.1, 20.2

[Lee94] Edward A. Lee. Computing and Signal Processing: An Experimental Multidisci-
plinary Course. In Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, vol. VI, pages 45–48, April 1994. 21.5, 21.8.1

[LM87a] Edward A. Lee and David G. Messerschmidt. Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing. IEEE Trans. Computers, 36(1):24–35,
January 1987. 5.3, 6.5.0.1, 18.1, 18.3, 18.7.1

[LM87b] Edward A. Lee and David G. Messerschmidt. Synchronous Data Flow. Proc. of the
IEEE, 75(9):1235–1245, September 1987. 5.3, 18.1

[LP95] Edward A. Lee and T. M. Parks. Dataflow Process Networks. In
Proc. of the IEEE, vol. 83, no. 5, pages 773–801, May 1995.
http://ptolemy.eecs.berkeley.edu/papers/processNets. 21.1

[Mur93] Praveen K. Murthy. Multiprocessor DSP Code Synthesis in Ptolemy. University of
California, Berkeley, CA, 1993. Memorandum No. UCB/ERL M93/66. 5.3

[Mur96] P.K. Murthy. Scheduling Techniques for Synchronous and Multidimen-
sional Synchronous Dataflow. Technical Report UCB/ERL M96/79,
Dept. of EECS, Electronics Research Laboratory, Berkeley, Ca, 1996.
http://ptolemy.eecs.berkeley.edu/papers/96/murthyThesis/. 6.5.0.1, 27.2.3.1

[nam] Network Animator. http://www.isi.edu/nsnam/nam/. 25.3.2.3, 25.3.2.4

[NS2a] Network Simulator Documentation. http://www.isi.edu/nsnam/ns/
ns-documentation.html. 25.2.2.1, 25.2.2.2, 25.2.2.3, 25.2.2.4, 25.3.3.1,
25.3.3.5

[NS2b] Network Simulator Tutorial. http://www.isi.edu/nsnam/ns/tutorial/
index.html. 25.2.2.3

[OTc] Object Tool Command Language. http://cvs.sourceforge.net/
viewcvs.py/otcl-tclcl/otcl/doc/tutorial.html?rev=HEAD.
25.2.2.1, 25.2.2.3

[Ous94] John K. Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley Publishing
Company Inc., Reading, MA, 1994. 9.1

H-3

http://www.isi.edu/nsnam/nam/
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://cvs.sourceforge.net/viewcvs.py/otcl-tclcl/otcl/doc/tutorial.html?rev=HEAD
http://cvs.sourceforge.net/viewcvs.py/otcl-tclcl/otcl/doc/tutorial.html?rev=HEAD

H Bibliography

[PBL95] J.L. Pino, S.S. Bhattacharyya, and E.A. Lee. A Hierarchical Multiprocessor Schedul-
ing Framework for Synchronous Dataflow Graphs. In Proc. of the IEEE Asilomar
Conference on Signals, Systems, and Computers, October 29 - November 1 1995.
27.2.2.3, 27.2.3.2

[PHLB93] Jos Luis Pino, Soonhoi Ha, Edward A. Lee, and Joseph T. Buck. Software Synthesis
for DSP Using Ptolemy. J. on VLSI Signal Processing, 9(1):7–21, January 1993. 5.3,
6.3.5

[PL95] J.L. Pino, , and Edward A. Lee. Hierarchical Static Scheduling of Dataflow Graphs
onto Multiple Processors. In Proc. of Int. Conf. on Acoustics, Speech, and Signal
Processing, pages 2643–2646, May 1995. 27.2.3.2

[PPL96] J.L. Pino, T. Parks, and E.A. Lee. Interface Synthesis in Heterogeneous System-Level
DSP Design Tools. In Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing,
May 1996. 27.2.4

[Rat03] Holger Rath. ANSI C Code Synthesis of MLDesigner Finite State Machines. Diploma
thesis, Ilmenau Technical University, 2003. 24.14.1

[SL93a] Gilbert C. Sih and Edward A. Lee. A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures. IEEE Trans.
Parallel and Ditributed Systems, 4(2), February 1993. 5.3, 27.2.2.3, 27.2.3.2

[SL93b] Gilbert C. Sih and Edward A. Lee. Declustering: A New Multiprocessor Scheduling
Technique. IEEE Trans. Parallel and Ditributed Systems, 4(6):625–637, June 1993.
5.3, 27.2.2.3, 27.2.3.2

[SL93c] S. Sriram and Edward A. Lee. Design and Implementation of an Ordered Memory Ac-
cess Architecture. In Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing,
volume I, pages 345–348, Minneapolis, MN, April 1993. 5.3

[Ste] Enrico Steiger. Detailed model for IEEE802.11 WLAN; Add-on for MLDesigner.
Technical report, MLDesign Technologies, Inc. 25.2.1

[tcl] Tcl with Classes. http://otcl-tclcl.sourceforge.net/tclcl/.
25.2.2.4

[Wel97] Brent Welch. Practical Programming with Tcl and Tk. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1997. 9.1

[Wol91] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-
Wesley Publishing Company Inc., Reading, MA, 1991. 3.7.8, 9.9

[Won92] Anthony Wong. A Library of DSP Blocks and Applications for the Motorola
DSP96000 Family. EECS Dept., University of California, Berkeley, CA, May 1992.
M.S. Report, Plan II. 5.3

[Zina] Daniel Zinn. Abstract WLAN library in MLDesigner; Add-on for MLDesigner. Tech-
nical report, MLDesign Technologies, Inc. 25.2.1

H-4 MLDesigner Version 2.8

http://otcl-tclcl.sourceforge.net/tclcl/

Bibliography

[Zinb] Daniel Zinn. Network Building System; Add-on for MLDesigner. Technical report,
MLDesign Technologies, Inc. 25.2.1

[ZPK00] Bernhard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and
Simulation. Academic Press, second edition, 2000. 23.4

H-5

Appendix I

Index

Index

abortRun function, 13-39
accessMessage function, 14-20
acknowledge item, 13-11
actor, G-1
actual parameter, 3-11
Add Member dialog, 12-3
Add Text Label dialog, 3-34
Add Transition, 2-29
addPoint function, 13-41
alias command, 9-2, 9-8
animation command, 9-2, 9-14
Argument, 1-1
ArrayState class, 13-28, 13-29
arrivalTime, 17-8
author item, 13-11
auto-fork, G-1
Auto-Forking, 3-29

bar function, 13-48
BarGraph class, 13-42, 13-43
BaseImage class, 14-44, 14-44
BDF domain, 5-3, 6-3, 17-6, 20-1, G-1
BDFPortHole class, 17-6
begin item, 13-17, 13-18, 13-18, 13-22
block, G-2
Block class, 5-2, G-1
block diagram, 3-1

editor, 3-1
body item, 13-21
BONeS

Primitive Categories, 11-16
Primitives Alphabetically, 11-37

BONeS Conversion
Convert Project Libraries., 11-5
Error Messages after Conversion, 11-8
Troubleshooting, 11-7

Boolean Data Flow, 6-3
boolean-controlled data flow, G-2

Breakpoints
Dynamic Instance Breakpoints, 4-4
Module breakpoint example, 4-3
Module Breakpoints, 4-3
Place a breakpoint, 4-1
The Breakpoint Console, 4-1
Unconditional Breakpoints, 4-2

Bus, 3-32
busconnect command, 9-2, 9-8
Buses and Delays, 3-32

calloc function, 13-37
cancelAction command, 9-2, 9-19
canGetFired, 17-15
cascade mode, 2-11
ccinclude item, 13-20
cd command, 9-2, 9-17
CG domain, 6-6, G-2
CG56 domain, 6-6, G-2
CG96 domain, G-2
CGC domain, 6-6, G-2
Class

Target, 5-2
cleanup function, 13-37
cleanup item, 13-18
Cloning Data Structures, 15-8
code generation domain, 5-1, G-2
Code Generation Domains, 27-1
code item, 13-20, 13-22
codeblocks item, 13-21
codesign, G-2
communicating processes, G-2
Compile

with Debug, 4-10
Compile Primitive, 13-6
compile-time scheduling, G-2
completionTime, 17-8
Complex class, 13-27, 13-28, 14-1, 14-24

Index

Complex type, 14-2, 14-2
ComplexArrayState class, 13-27, 13-28
ComplexParticle class, 13-26
ComplexState class, 13-27
ComplexSubMatrix class, 14-40
ComplexMatrix B = A.hermitian(); class, 14-

30
ComplexMatrix class, 14-23, 14-24, 14-30
ComplexMatrixParticle class, 14-43
ComplexState class, 13-27, 13-28
Composite Data Structures, 12-13
connect command, 9-2, 9-7
conscalls item, 13-17, 13-20
console window, 2-20
const char* key() function, 13-52
ConstTypeRef class, 15-2
constructor function, 13-37
constructor item, 13-17, 13-22
ConstTypeRef class, 15-3
cont command, 9-2, 9-13
copyright item, 13-11
COSSAP

Model Definition File(.mdef), 11-59
Conversion Process, 11-57
Troubleshooting, 11-67

COSSAP Model Conversion
Conversion Limitations, 11-64
Model Conversion, 11-53

CP domain, G-3
Create Model from Source, 2-44
Create New Model dialog, 2-37
CTDE Domain, 23-1

Introduction, 6-4
CTDE domain, 23-1
cursystem command, 9-2, 9-6
curuniverse command, 16-9

data flow, G-3
boolean-controlled, G-2
dynamic, G-3
homogeneous synchronous, G-4
synchronous, G-7

Data structure, 1-3
Data Structure Editor dialog, 12-2
Data Structure Libraries, 12-13
Data Structures

Base types, 12-11
Clone, 15-1
Composite, 12-13
Create New DS, 12-2
Delete, 15-1
Known Problems, 15-10
Overview, 12-5
String, 12-10
Using Data Structures, 12-1
Vectors, 12-11

DataStructState class, 13-27
dataNew, 17-13
DataStructClass class, 15-11
DataStructMember class, 15-6, 15-8, 15-10,

15-11
DataStructParticle class, 13-26
DataStructure class, 15-8, 15-11
DataTypeException class, 15-7
DCTImage class, 14-44
DDF

Backward Scheduler, 19-3
DDF domain, 5-3, 6-2, 17-2, 19-1, G-3
DDFStar class, 17-3
DE Delay Primitive, 17-8
DE Domain

Introduction, 6-3
DE domain, 5-5, 17-7, 22-1, G-3
Debug Mode, 4-1, 7-8
Debugging

External Debugger, 4-11
Using Probes, 4-6

defevent item, 13-13
definition of parameters, 3-11
defmemory item, 13-14
defmodule command, 9-2, 9-10
defparameter item, 13-12, 13-27
defprimitive item, 13-7, 13-8, 13-22
defresource item, 13-14
defstate item, 13-12
Delay

DE Delay Primitives, 17-8
Delays, 3-33

SDF, 18-4
When to use, 3-29

Delays and Buses, 3-32
delayType, 17-8

I-3

Index

delds command, 9-2, 9-26
delete [] function, 13-37
delete function, 13-37, 13-38
delnode command, 9-2, 9-15
delprimitive command, 9-2, 9-14
delsystem command, 9-2, 9-6
Demos

Digital Signal Processing, 18-46
Image processing, 18-48
Sound, 18-47

DEPortHole
dataNew, 17-13

DERepeatStar
canGetFired, 17-15
refireAtTime, 17-15

DERepeatStar class, 17-15, 17-17
Derive, 3-4
derived item, 13-10, 13-10
Derived Primitive

go , 13-18
derivedfrom item, 13-10
desc item, 13-10
descriptor command, 9-3, 9-12
descriptor item, 13-10, 13-13
Designing Primitives

BDF Domain, 17-6
DDF Domain, 17-2
DE Domain, 17-7
Introduction, 13-1
SDF Domain, 17-1

DEStar
arrivalTime, 17-8
completionTime, 17-8
delayType, 17-8
setMode, 17-8

DEStar class, 17-8, 17-15
destructor item, 13-17, 13-17, 13-22
dialog

Add Member dialog, 12-3
Add Text Label dialog, 3-34
Create New Model dialog, 2-37
Data Structure Editor dialog, 12-2
Print dialog, 2-47
Printer Setup, 2-48
Save As New Model dialog, 2-40
Select color dialog, 3-35

Select Model dialog, 2-28, 3-15
disconnect command, 9-3, 9-15
Discrete event, 6-3
discrete event, G-3
Distributed External Simulations, 7-15
domain, 5-1, 6-7, G-3

BDF domain, 5-3, 6-3, G-1
CG domain, 6-6, G-2
CG56 domain, 6-6, G-2
CG96 domain, G-2
CGC domain, 6-6, G-2
code generation domain, 5-1, G-2
CP domain, G-3
DDF domain, 5-3, 6-2, G-3
DE domain, 5-5, G-3
HOF domain, 6-2, G-4
MDSDF domain, 6-5, G-5
PN domain, G-6
SDF domain, 5-3, 6-2, G-6
simulation domain, 5-1, G-7
SR domain, 6-5
supported domains, 6-2
unsupported domains, 6-5
VHDL domain, 6-6
VHDLB domain, 6-6, G-8
VHDLF domain, G-8

domain command, 9-3, 9-7
domain concept, 6-1
domain item, 13-9
domains

BDF, 17-6, 20-1
CTDE, 23-1
DDF, 17-2, 19-1
DE, 17-7, 22-1
HOF, 21-1
NS2, 25-1
SDF, 17-1, 18-1

domains command, 9-3, 9-7
drag, G-3
DSFieldIter class, 15-11
DsHandler class, 15-10
DSMemberIter class, 15-11
Dynamic

Instances, 3-38
Linking libraries, 3-39

Dynamic Data Flow, 6-2

I-4 MLDesigner Version 2.8

Index

dynamic data flow, G-3
Dynamic Referencing, 2-53
DynDFStar class, 17-3

edit menu, 2-23
Add Default Entrance, 2-29
Add Event, 2-28
Add History, 2-29
Add Input Port, 2-28
Add Memory, 2-28
Add Model Instance, 2-28
Add Output Port, 2-28
Add Resource, 2-28
Add State, 2-29
Add Text Label, 2-29
Background Color, 2-28
Compile Source, 2-26
Copy, 2-25
Cut, 2-25, 2-26
Delete, 2-25
Disconnect Connected, 2-27
Dynamic Instance, 2-27
Hide Port Labels, 2-27
Mirror Ports, 2-27
Online Documentation, 2-26
Open Base Primitive, 2-26
Open FSM, 2-26
Open Model, 2-26
Open Source, 2-26
Redo, 2-25
Replace Instance, 2-27
Rotate Ports, 2-27
Select All, 2-26
Select Icon, 2-27
Show Port Labels, 2-27
Swap Ports, 2-27
Terminate Unconnected, 2-28
Undo, 2-25
Unterminate Terminated, 2-28

Editor
Built-in, 3-45
External, 3-45

Envelope class, 14-20
EnumState class, 13-27
EnumType class, 15-5

Envelope class, 13-24, 14-16, 14-18, 14-18,
14-19, 14-21, 14-22, 14-33, 14-37

Environment Variables
$MLD USER, 2-54
MLDesigner , A-3
Dynamic Referencing, 2-53
Source Code Editor, 3-45

EPS
Vector Graphic Export, 2-50

ErrAdd function, 13-38
Error class, 13-39, 13-39
Error::abortRun function, 13-39
ErrorHandle parameter, 22-19
event, G-3
event horizon, G-3
Events, 3-36, 10-3
Examples

FSM Model, 24-28
exectime item, 13-21, 13-21, 13-22
execute command, 9-3, 9-12, 9-16
exit command, 9-3, 9-18
expandPathName function, 13-37, 13-38, 13-

41
explanation item, 13-11
Export

Parameters, 3-12
Export Libraries, 2-51

Precompiled Objects, 2-51
External Editor, 3-45

File
Naming conventions, A-3

file menu, 2-21
Close, 2-22
Convert BONeS, 2-23
Export EPS, 2-23, 2-50
Import COSSAP, 2-23
New, 2-22
New Model, 2-37
Open, 2-22
Print, 2-23, 2-47
Quit, 2-23
Reload, 2-22
Save, 2-22
Save All, 2-23
Save As, 2-23

I-5

Index

File Names, A-3
File View, 2-12
FileMessage class, 14-36
FileParticle class, 14-36
firing, G-3
firing rule, G-3
Fix class, 14-1, 14-4–14-7, 14-10–14-15, 14-

24
Fix type, 14-4, 14-4, 14-5
FixArrayState class, 13-27, 13-28
FixParticle class, 13-26
FixState class, 13-27
FixSubMatrix class, 14-40
FixArray class, 14-5
FixMatrix class, 14-23, 14-24, 14-26, 14-27
FixMatrixParticle class, 14-43
FloatArrayState class, 13-27, 13-28–13-30
FloatParticle class, 14-16
FloatState class, 13-27, 13-29
FloatSubMatrix class, 14-40
FloatArrayState class, 13-31
FloatMatrix class, 14-23, 14-24, 14-27, 14-

32, 14-33, 17-20
FloatMatrixParticle class, 14-43
FloatParticle class, 13-26, 14-32
FloatState class, 13-27, 13-28
FloatVector class, 15-5
Fork

Auto, 3-29
fork primitive, G-4
formal parameter, 3-11
Formal Ports, 5-6
free function, 13-37
FSM, 13-1, G-4

primitive, 1-2
FSM Domain

Concurrent Models, 24-26
Creating an FSM, 24-28
Design Check, 24-25
Design Objects, 24-22
Elevator Example, 24-17
Execution Semantics, 24-15
Introduction, 6-4, 24-1
Model Editor, 24-21
Model Interface, 24-18
Reverting Converted Models, 24-35

Semantics, 24-2
States, 24-3
Transitions, 24-4

full mode, 2-11

Gantt chart, G-4
getData function, 13-44
getMessage function, 14-16, 14-20
getSimulEvent, 17-14
Global Memory

Read, 10-3
Write, 10-3

go item, 13-18, 13-19, 13-22, 13-24, 13-27,
13-30

GrayImage class, 14-44
GUI, 1-3

cascade mode, 2-11
console window, 2-20
File View, 2-12, 2-15
full mode, 2-11
Library View, 2-14, 2-15
Logical View, 2-14
Physical View, 2-13
tile mode, 2-11
Tree View, 2-11
Tree View filter, 2-16
workspace, 2-11

halt command, 9-3, 9-13
HashEntry class, 13-52
hashstring function, 13-39
HashTable class, 13-51, 13-51, 13-52
HashTableIter class, 13-52
header item, 13-20, 13-22
help command, 9-3, 9-18
hierarchical, 13-1
Higher Order Functions, 21-1
Higher-order functions, 6-2
higher-order functions, G-4
hinclude item, 13-20
Histogram class, 13-44, 13-44
histogram class, 13-40
HOF Demos, 21-15
HOF Domain, 21-1
HOF domain, 6-2, 21-1, G-4
homogeneous synchronous data flow, G-4

I-6 MLDesigner Version 2.8

Index

htmldoc item, 13-10, 13-11, 13-11

ifstream class, 13-41
Image processing

SDF Demos, 18-48
Import Libraries item, 12-9
Import Libraries Parameter, 12-9
InDEPort

getSimulEvent, 17-14
numSimulEvents, 17-14

InDEPort class, 17-13
IndexOutOfRangeException class, 15-4
InfString class, 13-48, 14-37, 14-37
InfString class, 13-38, 13-46, 13-47, 13-48
Init Primitive, 17-17
inline item, 13-17–13-19, 13-21
inmulti item, 13-15
inout item, 13-15
inoutmulti item, 13-15
input item, 13-15, 13-23
InSDFMPHIter class, 13-26
InSDFPort class, 13-22
InSDFPorts class, 13-25
IntArrayState class, 13-27, 13-28
IntParticle class, 14-16
IntState class, 13-27
IntSubMatrix class, 14-40
IntMatrix class, 14-23, 14-24, 14-27
IntMatrixParticle class, 14-43
IntParticle class, 13-26
IntState class, 13-27, 13-28
IntVecData class, 14-19, 14-21
IntVector class, 15-5
InXXXPort class, 13-22
isA, 14-17
ISA INLINE, 14-17
Iteration, 1-18
iteration, G-4
Iterations

SDF Domain, 18-3

kernel, 5-1, G-4
kernel class

Block class, 5-2, G-1
Scheduler class, 5-2
Wormhole class, 5-3

knownlist command, 9-3, 9-11

Libraries
DSHandling, 12-13
Multi-valued Logic, 22-19
Shared Libraries, 2-50

Library, 1-2
create a, 1-6
independent, 1-3
top-level, 1-3

Library View, 2-14
link command, 9-3, 9-17
Linked Objects, 3-39
Linking

Dynamic, 3-39
linking parameter, 3-20

direct, 3-20
indirect, 3-20

ListIter class, 13-49
listobjs command, 9-3, 9-12
Load Mode

Permanent/Dynamic, 13-3
location item, 13-11
Logical View, 2-14

makeLower function, 13-37
malloc function, 13-37
master, G-5
mathematica command, 9-3, 9-19
Matlab

Interface primitives, 18-24
matlab command, 9-3, 9-19
matrix classes

ComplexMatrix, 14-23
FixMatrix, 14-23
FloatMatrix, 14-23
IntMatrix, 14-23

MatrixEnvParticle class, 14-24
MatrixEnvParticle class, 14-24, 14-34
MDI, 2-3
MDSDF domain, 6-5, G-5
Memories, 3-36, 10-1
memory leak, 15-9
menu

edit menu, 2-23
file menu, 2-21

I-7

Index

view menu, 2-29
window menu, 2-30

menu bar, 2-21
Merge

Auto, 3-29
Message class, 13-24, 14-1, 14-16, 14-16–

14-20, 14-22–14-24, 14-33, 14-36,
14-37, 14-39, 17-19

message type, 14-16
MessageParticle class, 14-24
MessageParticle class, 13-26, 14-16, 14-19,

14-19, 14-20, 14-24, 14-33, 14-34
method item, 13-20, 13-20–13-22
Model, 1-1

Delete, 2-46
Update, 2-46

model
block, G-2
class, 3-15
Compile Options, 3-5
component, G-5
computation, G-5
Copyright, 3-4
Description, 3-5
Documentation, 3-5
Domain, 3-4
FSM, 13-1
hierarchical, 13-1
Import Libraries, 3-4
instance, G-5
Load Mode, 2-39, 3-4
Logical Name, 3-3
Model Type, 3-4
primitive, 13-1
Target, 3-4
Version, 3-4

Model base, 1-3, 2-1
Model instance, 1-1

add a, 1-13, 1-16
connecting, 1-14, 1-17

model instance
class, 3-15
label, 3-15
name, 3-15

model of computation, G-5
modeling

behavioral, G-1
functional, G-4

Module, 1-2
create a, 1-11

module, 13-1
Multi-valued Logic, 22-19
Multidimensional synchronous data flow, 6-

5
MultiInSDFPort class, 13-24
multilink command, 9-3, 9-17
MultiOutSDFPort class, 13-25
multiple porthole, 3-6
MultiPortHole class, 13-24, 13-25, 13-26
MVImage class, 14-44

name
model instance, 3-15

name item, 13-9
net, G-5
Network Building Set, 25-2
new function, 13-37, 13-38, 13-40
newds command, 9-3, 9-24
newdsmember command, 9-3, 9-24
newenum command, 9-4, 9-25
newenummember command, 9-4, 9-25
newevent command, 9-4, 9-23
newmemory command, 9-4, 9-22
newparam command, 9-4, 9-9
newquantity command, 9-4, 9-23
newserver command, 9-4, 9-23
newsystem command, 9-4, 9-6
newTrace function, 13-41
next function, 13-49, 13-52
node, G-5
node command, 9-4, 9-8
nodeconnect command, 9-4, 9-8
NOP primitive, 21-12
NotFoundDataTypeException class, 15-2
NS2 domain, 25-1
numberPorts function, 13-26
numports command, 9-4, 9-10
numSimulEvents, 17-14

OCT, G-5
ofstream class, 13-41
OutDEPort class, 17-14

I-8 MLDesigner Version 2.8

Index

outmulti item, 13-15
output item, 13-15, 13-23
OutSDFMPHIter class, 13-25
OutSDFPort class, 13-22
OutSDFPorts class, 13-25
OutXXXPort class, 13-22
OverflowHandler, 14-10

Parameter, 1-1
actual, 1-2
add a, 1-15
create a, 1-21
export a, 1-18
formal, 1-1
link a, 1-15
Parameter Expressions, 3-18

parameter, 3-11
actual parameter, 3-11
definition of parameters, 3-11
direct linking, 3-20
ErrorHandle, 22-19
External parameters, 7-7
formal parameter, 3-11
indirect linking, 3-20
parameter linking, 3-20
Reading from File, 3-27
set, 7-11
system parameter, 3-11
target parameter, 3-11

Parameter set, 1-18
paramvalue command, 9-4, 9-18
particle, 3-7, 3-7

anytype, 3-7
numeric, 3-7
type conversion, 3-7

Particle class, 13-22, 13-23, 13-24, 13-26,
14-1, 14-5, 14-16, 14-19, 14-36, 14-
37, 14-43

permlink command, 9-4, 9-17
Physical View, 2-13
PN domain, G-6
Pointer class, 13-49, 13-51, 13-52
Pointer value() function, 13-52
Port, 1-1

actual, 1-1
add a, 1-12

create a, 1-21
formal, 1-1

port, 3-6, G-6
actual, 3-7
changing properties, 3-8
creation of, 3-8
formal, 3-7
multiple porthole, 3-6
particle, 3-7
single porthole, 3-6
terminal, 3-7
token, 3-7

porthole, 3-6
PortHole class, 13-22, 13-22
PortHoles class, 13-24
pragma command, 9-4, 9-16
pragmaDefaults command, 9-5, 9-16
Primitive, 1-2

Convert Ptolemy Stars, 2-44
create a, 1-20
source code, 1-1, 1-22
special, 1-13

primitive, 13-1
dynamic, 2-39, 3-4
source code, 13-1

primitive class
ArrayState, 13-28, 13-29
BarGraph, 13-42, 13-43
BaseImage, 14-44, 14-44
BDFPortHole, 17-6
Complex, 13-27, 13-28, 14-1, 14-24
ComplexArrayState, 13-27, 13-28
ComplexParticle, 13-26
ComplexState, 13-27
ComplexSubMatrix, 14-40
ComplexMatrix, 14-23, 14-24, 14-30
ComplexMatrix B = A.hermitian();, 14-

30
ComplexMatrixParticle, 14-43
ComplexState, 13-27, 13-28
ConstTypeRef, 15-2
ConstTypeRef, 15-3
DataStructState, 13-27
DataStructClass, 15-11
DataStructMember, 15-6, 15-8, 15-10,

15-11

I-9

Index

DataStructParticle, 13-26
DataStructure, 15-8, 15-11
DataTypeException, 15-7
DCTImage, 14-44
DDFStar, 17-3
DERepeatStar, 17-15, 17-17
DEStar, 17-8, 17-15
DSFieldIter, 15-11
DsHandler, 15-10
DSMemberIter, 15-11
DynDFStar, 17-3
Envelope, 14-20
EnumState, 13-27
EnumType, 15-5
Envelope, 13-24, 14-16, 14-18, 14-18,

14-19, 14-21, 14-22, 14-33, 14-37
Error, 13-39, 13-39
FileMessage, 14-36
FileParticle, 14-36
Fix, 14-1, 14-4–14-7, 14-10–14-15, 14-

24
FixArrayState, 13-27, 13-28
FixParticle, 13-26
FixState, 13-27
FixSubMatrix, 14-40
FixArray, 14-5
FixMatrix, 14-23, 14-24, 14-26, 14-27
FixMatrixParticle, 14-43
FloatArrayState, 13-27, 13-28–13-30
FloatParticle, 14-16
FloatState, 13-27, 13-29
FloatSubMatrix, 14-40
FloatArrayState, 13-31
FloatMatrix, 14-23, 14-24, 14-27, 14-32,

14-33, 17-20
FloatMatrixParticle, 14-43
FloatParticle, 13-26, 14-32
FloatState, 13-27, 13-28
FloatVector, 15-5
GrayImage, 14-44
HashEntry, 13-52
HashTable, 13-51, 13-51, 13-52
HashTableIter, 13-52
Histogram, 13-44, 13-44
histogram, 13-40
ifstream, 13-41

InDEPort, 17-13
IndexOutOfRangeException, 15-4
InfString, 13-48, 14-37, 14-37
InfString, 13-38, 13-46, 13-47, 13-48
InSDFMPHIter, 13-26
InSDFPort, 13-22
InSDFPorts, 13-25
IntArrayState, 13-27, 13-28
IntParticle, 14-16
IntState, 13-27
IntSubMatrix, 14-40
IntMatrix, 14-23, 14-24, 14-27
IntMatrixParticle, 14-43
IntParticle, 13-26
IntState, 13-27, 13-28
IntVecData, 14-19, 14-21
IntVector, 15-5
InXXXPort, 13-22
ListIter, 13-49
MatrixEnvParticle, 14-24
MatrixEnvParticle, 14-24, 14-34
Message, 13-24, 14-1, 14-16, 14-16–14-

20, 14-22–14-24, 14-33, 14-36, 14-
37, 14-39, 17-19

MessageParticle, 14-24
MessageParticle, 13-26, 14-16, 14-19, 14-

19, 14-20, 14-24, 14-33, 14-34
MultiInSDFPort, 13-24
MultiOutSDFPort, 13-25
MultiPortHole, 13-24, 13-25, 13-26
MVImage, 14-44
NotFoundDataTypeException, 15-2
ofstream, 13-41
OutDEPort, 17-14
OutSDFMPHIter, 13-25
OutSDFPort, 13-22
OutSDFPorts, 13-25
OutXXXPort, 13-22
Particle, 13-22, 13-23, 13-24, 13-26, 14-

1, 14-5, 14-16, 14-19, 14-36, 14-37,
14-43

Pointer, 13-49, 13-51, 13-52
PortHole, 13-22, 13-22
PortHoles, 13-24
pt ifstream, 13-40, 13-41
pt ofstream, 13-37, 13-40, 13-40, 13-41

I-10 MLDesigner Version 2.8

Index

PtMatrix, 14-23, 14-23, 14-24, 14-24,
14-32, 14-34, 14-40, 14-44

Queue, 13-49
SDFFix, 14-10
SequentialList, 13-49, 13-49
Stack, 13-49
State, 13-27, 17-19
StringArrayState, 13-27, 13-28
StringState, 13-27
StringList, 13-38, 13-46, 13-47–13-49,

14-18, 14-31, 14-37, 14-38
StringListIter, 13-48
StringMessage, 14-37, 14-37
StringParticle, 14-37
StringState, 13-28
Stringstate, 13-27
TextTable, 13-51, 13-52
TextTableIter, 13-52
TypeRef, 15-2, 15-3, 15-8
Wormhole, 9-11
XGraph, 13-40, 13-41, 13-41
XHistogram, 13-44

primitive command, 9-5, 9-7
primitive item

acknowledge, 13-11
author, 13-11
begin, 13-17, 13-18, 13-18, 13-22
body, 13-21
ccinclude, 13-20
cleanup, 13-18
code, 13-20, 13-22
codeblocks, 13-21
conscalls, 13-17, 13-20
constructor, 13-17, 13-22
copyright, 13-11
defevent, 13-13
defmemory, 13-14
defparameter, 13-12, 13-27
defprimitive, 13-7, 13-8, 13-22
defresource, 13-14
defstate, 13-12
derived, 13-10, 13-10
derivedfrom, 13-10, 13-10
desc, 13-10
descriptor, 13-10
destructor, 13-17, 13-17, 13-22

domain, 13-9
exectime, 13-21, 13-21, 13-22
explanation, 13-11
go, 13-18, 13-19, 13-22, 13-24, 13-27,

13-30
header, 13-20, 13-22
hinclude, 13-20
htmldoc, 13-10, 13-11, 13-11
Import Libraries, 12-9
inline, 13-17–13-19, 13-21
inmulti, 13-15
inout, 13-15
input, 13-15, 13-23
location, 13-11
method, 13-20, 13-20–13-22
name, 13-9
outmulti, 13-15
output, 13-15, 13-23
private, 13-17, 13-19, 13-21, 13-22, 13-

27
protected, 13-17, 13-19, 13-21, 13-22,

13-27
public, 13-17, 13-19, 13-21, 13-22, 13-

27
public,, 13-17
pure, 13-21
pure virtual, 13-21
setup, 13-15, 13-17, 13-18, 13-18, 13-

22, 13-24, 13-28, 13-30
state, 13-12, 13-13
static, 13-21
version, 13-10
virtual, 13-21
wrapup, 13-17, 13-19, 13-19, 13-22

primitive item
descriptor, 13-13

primitive type
Complex, 14-2, 14-2
Fix, 14-4, 14-4, 14-5
message, 14-16

Primitives
WrapUp and Init, 17-17

print command, 9-5, 9-12
Print dialog, 2-47
printds command, 9-5, 9-26
printdsnames command, 9-5, 9-26

I-11

Index

private item, 13-17, 13-19, 13-21, 13-22, 13-
27

protected item, 13-17, 13-19, 13-21, 13-22,
13-27

pt ifstream class, 13-40, 13-41
pt ofstream class, 13-37, 13-40, 13-40, 13-

41
PTCL, 9-1
ptcl, 9-1, 16-1
ptcl command

alias, 9-2, 9-8
animation, 9-2, 9-14
busconnect, 9-2, 9-8
cancelAction, 9-2, 9-19
cd, 9-2, 9-17
connect, 9-2, 9-7
cont, 9-2, 9-13
cursystem, 9-2, 9-6
curuniverse, 16-9
defmodule, 9-2, 9-10
delds, 9-2, 9-26
delnode, 9-2, 9-15
delprimitive, 9-2, 9-14
delsystem, 9-2, 9-6
descriptor, 9-3, 9-12
disconnect, 9-3, 9-15
domain, 9-3, 9-7
domains, 9-3, 9-7
execute, 9-3, 9-12, 9-16
exit, 9-3, 9-18
halt, 9-3, 9-13
help, 9-3, 9-18
knownlist, 9-3, 9-11
link, 9-3, 9-17
listobjs, 9-3, 9-12
mathematica, 9-3, 9-19
matlab, 9-3, 9-19
multilink, 9-3, 9-17
newds, 9-3, 9-24
newdsmember, 9-3, 9-24
newenum, 9-4, 9-25
newenummember, 9-4, 9-25
newevent, 9-4, 9-23
newmemory, 9-4, 9-22
newparam, 9-4, 9-9
newquantity, 9-4, 9-23

newserver, 9-4, 9-23
newsystem, 9-4, 9-6
node, 9-4, 9-8
nodeconnect, 9-4, 9-8
numports, 9-4, 9-10
paramvalue, 9-4, 9-18
permlink, 9-4, 9-17
pragma, 9-4, 9-16
pragmaDefaults, 9-5, 9-16
primitive, 9-5, 9-7
print, 9-5, 9-12
printds, 9-5, 9-26
printdsnames, 9-5, 9-26
pwd, 9-17
registerAction, 9-5, 9-19
renamesystem, 9-5, 9-7
reset, 9-5, 9-14
run, 9-5, 9-13
schedtime, 9-5, 9-14
schedule, 9-5, 9-12
seed, 9-5, 9-16
setevent, 9-5, 9-23
setmemory, 9-5, 9-22
setparam, 9-5, 9-9, 13-31
setquantity, 9-5, 9-23
setserver, 9-6, 9-24
source, 9-6
stoptime, 9-6, 9-13
systemlist, 9-6, 9-6
target, 9-6, 9-15
targetparam, 9-6, 9-15
targets, 9-6, 9-15
topblocks, 9-6, 9-18
wrapup, 9-6, 9-13

PtMatrix class, 14-23, 14-23, 14-24, 14-24,
14-32, 14-34, 14-40, 14-44

Ptolemy
language, 1-1

Ptolemy interpreter, 9-1
public item, 13-17, 13-19, 13-21, 13-22, 13-

27
public, item, 13-17
pure item, 13-21
pure virtual item, 13-21
pwd command, 9-17
pxgraph, 7-14

I-12 MLDesigner Version 2.8

Index

PXgraph Configuration, 8-4

Quantity Resources, 10-4
quantity resources, 10-8
Queue class, 13-49

Random Number Generation, 13-53
real time, G-6
refireAtTime, 17-15
registerAction command, 9-5, 9-19
Relation, 1-1
renamesystem command, 9-5, 9-7
ReportOverflow, 14-10
reset command, 9-5, 9-14
Resources

CPU Demo, 10-5
Quantity, 10-4
Server, 10-4

run command, 9-5, 9-13
run-time scheduling, G-6

Save
EPS, 8-6

Save As New Model dialog, 2-40
Save Simulation Results, 7-14
savestring function, 13-37
scalar classes

Complex, 14-2
Fix, 14-4

schedtime command, 9-5, 9-14
schedule command, 9-5, 9-12
Scheduler

DE Performance, 22-7
Scheduler class, 5-2
scheduling

compile-time, G-2
run-time, G-6

SDF Demos
Fixed-point, 18-49

SDF Domain
Channel Models, 18-33
Filters, 18-26
Image Processing, 18-37
Iterations., 18-3
Signal Processing, 18-26
Sources, 18-32
Spectral Analysis, 18-30

Targets, 18-4
Telecomm, 18-34
Transmitter Functions, 18-32
Vector Quantization, 18-29

SDF domain, 5-3, 6-2, 17-1, 18-1, G-6
end condition, 1-19

SDFFix class, 14-10
seed command, 9-5, 9-16
Segmentation Fault, C-1
Select color dialog, 3-35
Select Model dialog, 2-28, 3-15
Select Tool, 2-29, 3-15, 3-28, 3-34
SequentialList class, 13-49, 13-49
Server Resources, 10-4
setBDFParams function, 17-6
setevent command, 9-5, 9-23
setmemory command, 9-5, 9-22
setMode, 17-8
setparam command, 9-5, 9-9, 13-31
setquantity command, 9-5, 9-23
setSDFParams, 17-6
setSDFParams function, 13-15, 13-24, 17-1
setserver command, 9-6, 9-24
Settings

Console View, 2-9
conversion, 2-10
FSM Action Editor, 2-7
MLD, 2-3
Model Editor, 2-5
Primitive Source Editor, 2-6
Run Control, 2-8
Tree View, 2-3

Settings Dialog, 2-2
setup function, 13-40, 13-41
setup item, 13-15, 13-17, 13-18, 13-18, 13-

22, 13-24, 13-28, 13-30
shared

events, 10-11
Shared Libraries, 2-50
Shared Model Elements, 3-36, 10-1

Memories, 10-1
Shared model elements, 1-2
Signal Processing

in SDF Domain, 18-26
simulated time, G-7
Simulation, 1-3, 7-1

I-13

Index

Command line, 7-11
Generate C++, 7-3
Generate Extern, 7-2
Generate PTcl, 7-3
run a, 1-6
Statistics, 7-16
Tk primitives, 8-1

simulation, G-7
parameter sets, 7-11

simulation domain, 5-1, G-7
Simulation Results

Save, 7-14
Write to Console, 7-14
Write to File, 7-14

single porthole, 3-6
sinMod Example

Step 1., 3-2
Step 2., 3-10
Step 3., 3-13
Step 4., 3-16
Step 5., 3-21
Step 6., 3-28
Step 7., 3-35

size function, 13-29
Sound

SDF Demos, 18-47
Source Code Editor, 3-45
source command, 9-6
Special Primitives

Creation, 2-41
SR Domain, 26-1
SR domain, 6-5
Stack class, 13-49
State class, 13-27, 17-19
state item, 13-12, 13-13
static item, 13-21
stop time, G-7
stoptime command, 9-6, 9-13
StringArrayState class, 13-27, 13-28
StringState class, 13-27
StringList class, 13-38, 13-46, 13-47–13-49,

14-18, 14-31, 14-37, 14-38
StringListIter class, 13-48
StringMessage class, 14-37, 14-37
StringParticle class, 14-37
StringState class, 13-28

Stringstate class, 13-27
sub-matrix classes

ComplexSubMatrix, 14-40
FixSubMatrix, 14-40
FloatSubMatrix, 14-40
IntSubMatrix, 14-40

supported domains, 6-2
Synchronous Data Flow, 6-2
synchronous data flow, G-7
Synchronous reactive domain, 6-5
System, 1-2

create a, 1-16
system parameter, 3-11
systemlist command, 9-6, 9-6

Target, 1-3
target, 9-15
target command, 9-6, 9-15
target parameter, 3-11
targetparam command, 9-6, 9-15
Targets, 6-11

default-SDF, 6-11
loop-SDF, 6-12
SDF Domain Targets, 6-11
SDF-to-PTcl, 6-13

targets command, 9-6, 9-15
Targets in SDF Domain, 18-4
Tcl, 16-1
tcl file., 16-1
TclScript

Derived From, 16-1
tempFileName function, 13-37
terminal, 3-7
terminate function, 13-41
TextTable class, 13-51, 13-52
TextTableIter class, 13-52
tile mode, 2-11
timed domain, G-8
Timed Domains, 6-1
timestamp, G-7
Tk, 16-1
Tk primitives

Animation, 8-1
token, 3-7, G-8
tool button

Add Arc, 2-36

I-14 MLDesigner Version 2.8

Index

Add Bus, 2-36, 3-32
Add Connection, 3-28
Add Event, 2-36
Add Initializable Delay, 2-36, 3-34
Add Input Port, 2-36, 3-8
Add Memory, 2-36
Add Model Instance, 2-36, 3-15, 3-15
Add Non-Initializable Delay, 2-36, 3-34
Add Output Port, 2-36, 3-8
Add Resource, 2-36
Add State, 2-36
Add Text Label, 2-36, 3-34
Cascade, 2-34
Compile Source, 2-37
Console Window On/Off, 2-33
Copy, 2-32
Cut, 2-32
Data Type View On/Off, 2-33
Delete, 2-32
Full, 2-34
New Model, 2-31, 2-37
Next, 2-34
Online Documentation, 2-32, 3-43
Open FSM, 2-37
Open Model, 2-32, 2-37
Open Source, 2-37
Pan Tool, 2-35
Paste, 2-32
Previous, 2-33
Print Model, 2-32
Property Editor On/Off, 2-33
Redo, 2-33
Reload Model, 2-32
Save All Models, 2-32
Save Model, 2-32
Select Tool, 2-29, 2-35, 3-15, 3-28, 3-34
Show FSM Models, 2-35
Show HTML Files, 2-35
Show Libraries, 2-34
Show Modules, 2-34
Show Primitives, 2-35
Show Probes, 2-35
Show Systems, 2-34
Switch to Simulation Mode, 2-37
Tile, 2-34
Tree View On/Off, 2-33

Undo, 2-33
Zoom In, 2-33
Zoom Out, 2-33
Zoom To Fit, 2-33
Zoom Tool, 2-35

toolbar
editor, 2-35
standard, 2-31
Tree View, 2-34

topblocks command, 9-6, 9-18
Tree View, 2-11

context menu, 2-16
filter, 2-34

Tree view
file, 1-5
library, 1-3

Tutorials
DynamicInstance, 3-38
DynamicLinking, 3-39

typeCheck, 14-19
typeError, 14-19
TypeRef class, 15-2, 15-3, 15-8

Unsupported Domains
Code Generation, 27-1
SR Domain, 26-1

unsupported domains, 6-5
Update model dialog, 2-46
Used Computers, 7-15

version item, 13-10
VHDL, 6-6
VHDL domain, 6-6
VHDLB, 6-6
VHDLB domain, 6-6, G-8
VHDLF domain, G-8
view menu, 2-29

Refresh, 2-30
Zoom In, 2-29
Zoom Out, 2-30
Zoom To Fit, 2-30

virtual item, 13-21

window menu, 2-30
Cascade, 2-31
Close, 2-30
Close All, 2-30

I-15

Index

Full, 2-31
Next, 2-30
Previous, 2-31
Tile, 2-31

wormhole, 5-3, G-8
Wormhole class, 5-3, 9-11
Wormholes

DE in SDF, 22-5
SDF in DE, 22-4

wrapup command, 9-6, 9-13
wrapup function, 13-34
wrapup item, 13-17, 13-19, 13-19, 13-22
WrapUp Primitive, 17-17
writableCopy, 14-19

Xgraph
end condition, 1-19
example, 1-19

XGraph class, 13-40, 13-41, 13-41
Xgraph Configuration, 8-4
XHistogram class, 13-44

I-16 MLDesigner Version 2.8

	Contents
	I Modeling Guide
	1 First Steps with MLDesigner
	1.1 Basic Terms
	1.2 Graphical User Interface
	1.3 Run a Demo Simulation
	1.3.1 Choose a System
	1.3.2 Create a Library
	1.3.3 Save Demo in the Created Library
	1.3.4 Explore and Run the Demo

	1.4 Build a Simple Model
	1.4.1 Create a Sub-library
	1.4.2 Build a Module
	1.4.3 Build a System
	1.4.4 Multiple Iterations and Parameter Sets
	1.4.5 Xgraph Configuration
	1.4.6 Build a Primitive

	2 Modeling with MLDesigner
	2.1 Understanding Environment Variables
	2.2 Graphical User Interface
	2.2.1 User Interface Structure
	2.2.2 Settings
	2.2.3 Graphical User Interface Filters
	2.2.4 Workspace
	2.2.5 Tree View
	2.2.6 Property Editor
	2.2.7 Console Window
	2.2.8 Using Menu Bar
	2.2.9 Using Toolbars

	2.3 Handling Models
	2.3.1 Creating New Models
	2.3.2 Copying Existing Models
	2.3.3 Creating Special Primitives
	2.3.4 Create Model from Source
	2.3.5 Open Existing Models
	2.3.6 Model Update
	2.3.7 Deleting Models
	2.3.8 Printing Models
	2.3.9 Exporting EPS

	2.4 Shared Libraries
	2.4.1 Exporting a Top Level Library to Shared Libraries
	2.4.2 Export Libraries
	2.4.3 Import Libraries
	2.4.4 Environment Variables and Dynamic Referencing Mechanism
	2.4.5 Set User Environment Variables

	3 Developing Models
	3.1 Introduction
	3.2 Steps to Develop Models
	3.3 Modifying Model Properties
	3.4 Modeling Input/Output Ports
	3.4.1 Introduction
	3.4.2 Creating Ports
	3.4.3 Changing Port Properties

	3.5 Definition of Parameters
	3.5.1 Introduction
	3.5.2 Creating Parameters
	3.5.3 Deleting Parameters

	3.6 Adding Model Component Instances
	3.6.1 Add Model Instance
	3.6.2 Setting Text Label
	3.6.3 Placement of model instances

	3.7 Setting Parameters
	3.7.1 Changing Parameter Values
	3.7.2 Parameter Expressions
	3.7.3 Complex-valued parameters
	3.7.4 Fixed-point parameters
	3.7.5 Linking Parameters
	3.7.6 Inserting Comments in Parameters
	3.7.7 Using Tcl Expressions in Parameters
	3.7.8 Using MATLAB and MATHEMATICA to Compute Parameters
	3.7.9 Array parameters
	3.7.10 String Parameters

	3.8 Connecting Blocks
	3.9 Auto-Forking
	3.9.1 Relations without formal ports

	3.10 Using Buses and Delays
	3.10.1 Buses
	3.10.2 Delays

	3.11 Using Labels for Annotation
	3.12 Color Settings
	3.13 Using Shared Elements
	3.13.1 Creating Shared Elements
	3.13.2 Setting Shared Model Elements
	3.13.3 Exporting Shared Model Elements

	3.14 Dynamic Instances
	3.14.1 Create a Dynamic Instance
	3.14.2 Example Tutorial

	3.15 Dynamic Linking
	3.15.1 Linked Objects and External Simulations
	3.15.2 Permanently Linking Objects to MLDesigner at Startup.

	3.16 Model Documentation
	3.16.1 Creating Documentation
	3.16.2 Browsing Documentation

	3.17 Source Code Editors

	4 Debugging and Analyzing Systems
	4.1 Breakpoints
	4.1.1 The Breakpoints Console
	4.1.2 Unconditional Breakpoints
	4.1.3 Module Breakpoints
	4.1.4 Breakpoints in Dynamic Instances
	4.1.5 FSM Breakpoints

	4.2 Probes
	4.2.1 Probe Properties
	4.2.2 Probe Primitives
	4.2.3 Port Probes
	4.2.4 Probes on Memories and Events
	4.2.5 Creating User Defined Probes
	4.2.6 The DataNew Flag
	4.2.7 Probes on Dynamic Instances

	4.3 Argument Dependency Highlighting
	4.4 Compile with Debug Option
	4.5 Debugging With External Debugger

	5 MLDesigner Kernel
	5.1 Models of Computation
	5.2 Mixing Models of Computation
	5.3 Simulation Domains
	5.4 Code Generation Domains

	6 Introduction to MLDesigner Domains
	6.1 Foreword to the domain concept
	6.2 Supported domains
	6.2.1 Synchronous Data Flow (SDF)
	6.2.2 Higher-Order Functions (HOF)
	6.2.3 Dynamic Data Flow (DDF)
	6.2.4 Boolean Data Flow (BDF)
	6.2.5 Discrete Event (DE)
	6.2.6 FSM Domain
	6.2.7 CTDE Domain

	6.3 Unsupported domains
	6.3.1 Synchronous Reactive (SR)
	6.3.2 Multidimensional Synchronous Data Flow (MDSDF)
	6.3.3 Code generation (CG)
	6.3.4 Code generation in C (CGC)
	6.3.5 Code generation for the Motorola DSP56000 (CG56)
	6.3.6 Code generation in VHDL (VHDL, VHDLB)

	6.4 Summary of various domains
	6.5 Targets

	7 Simulation with MLDesigner
	7.1 Generate Extern
	7.1.1 Generate C++
	7.1.2 Generate PTcl Extern
	7.1.3 Execute on other Platforms
	7.1.4 Environment Variables

	7.2 Generate & Run Extern
	7.2.1 External Parameters
	7.2.2 Example

	7.3 Debug Mode
	7.3.1 Place a Breakpoint
	7.3.2 Unconditional Breakpoints
	7.3.3 Module Breakpoints

	7.4 Simulation with Parameter Sets
	7.5 Saving Simulation Results
	7.5.1 Write Simulation Results to the Console
	7.5.2 Write Simulation Results to File

	7.6 Distributed External Simulations
	7.7 Simulation Statistics

	8 Plots, Graphs and Animation
	8.1 Animation Using Tk Primitives
	8.2 Visualization Using 2D Plotting System
	8.3 Xgraph Configuration

	9 Modeling Using PTCL - The Ptolemy TCL Interpreter
	9.1 Introduction
	9.2 Global information
	9.3 Commands for Defining Simulation
	9.3.1 Creating and deleting Systems
	9.3.2 Setting the domain
	9.3.3 Creating instances of primitives and modules
	9.3.4 Connecting primitives and modules
	9.3.5 Connecting internal primitives and modules to the outside
	9.3.6 Setting the value of parameters
	9.3.7 Setting the number of ports in a primitive
	9.3.8 Defining new modules

	9.4 Showing the Current Status
	9.4.1 Displaying the known classes
	9.4.2 Displaying information on a the current module or other class

	9.5 Running the Simulation
	9.5.1 Creating a schedule
	9.5.2 Run Length
	9.5.3 Continuing a simulation

	9.6 Undo Commands
	9.6.1 Resetting the interpreter
	9.6.2 Removing a primitive
	9.6.3 Removing a connection
	9.6.4 Removing a node

	9.7 Targets
	9.7.1 Available targets
	9.7.2 Changing the target
	9.7.3 Changing target parameters
	9.7.4 Pragmas

	9.8 Miscellaneous Commands
	9.8.1 Loading commands from a file
	9.8.2 Changing the seed of random number generation
	9.8.3 Changing the current directory
	9.8.4 Dynamically linking new primitives
	9.8.5 Top-level blocks
	9.8.6 Examining parameters
	9.8.7 Quitting the Interpreter
	9.8.8 Getting help
	9.8.9 Registering actions

	9.9 The Interface to MATLAB and MATHEMATICA
	9.10 Definition of Shared Elements
	9.10.1 Defining Memories
	9.10.2 Defining Events
	9.10.3 Defining Resources

	9.11 Definition of Data Structure Types
	9.11.1 Defining Composite Data Structures
	9.11.2 Defining Enumerations
	9.11.3 Handling Data Structures

	9.12 A Wormhole Example
	9.13 PTCL as Simulation Control Language
	9.13.1 Creation of PTCL Scripts
	9.13.2 Execute the Simulation

	10 Shared Model Elements
	10.1 Introduction
	10.2 Memories
	10.2.1 Memory Modules
	10.2.2 Local Memory
	10.2.3 Shared Memory
	10.2.4 Global Memory

	10.3 Events
	10.4 Resources
	10.4.1 Introduction
	10.4.2 Quantity Resources
	10.4.3 Server Resources

	11 Import/Conversion of Models
	11.1 Converting OCT Models
	11.1.1 Supported Oct types
	11.1.2 How to start conversion
	11.1.3 Estimated time vs. estimated number of models
	11.1.4 Models that will be converted
	11.1.5 Converting or not
	11.1.6 Layout of converted models
	11.1.7 Changes
	11.1.8 Parameter list
	11.1.9 Inconsistencies in Oct
	11.1.10 Missing interface facets of modules
	11.1.11 New library structure in MLDesigner

	11.2 Converting BONeS Models
	11.2.1 Conversion Conventions
	11.2.2 Conversion Conventions For Models
	11.2.3 Conversion Conventions For Data Structures
	11.2.4 BONeS Conversion Assistant
	11.2.5 Troubleshooting
	11.2.6 Error Messages
	11.2.7 BONeS Categories
	11.2.8 BONeS Primitives

	11.3 COSSAP Conversion Tool
	11.3.1 Prerequisites and Limitations
	11.3.2 How to Convert COSSAP Project Libraries
	11.3.3 The User Mapper File
	11.3.4 Prefer User Mapper Entries and Overwrite Existing Files
	11.3.5 Reading Process
	11.3.6 Conversion Process
	11.3.7 Conversion of Schematics.
	11.3.8 Model Definition File
	11.3.9 History
	11.3.10 Declarations
	11.3.11 Functional code
	11.3.12 Dataset Handling Library
	11.3.13 Dataset Parameters
	11.3.14 EXIT_FLAG
	11.3.15 Unsupported Features
	11.3.16 Parsing Model Definition File
	11.3.17 Conversion of Primitive Models
	11.3.18 Limitations with COSSAP Project Conversion
	11.3.19 Input Dataset File Formats
	11.3.20 Troubleshooting Guide for Cossap Model Converter

	12 Data Structure Management
	12.1 Managing Data Structures
	12.1.1 Creating Data Structures
	12.1.2 Adding Composite Members
	12.1.3 Editing Composite Members
	12.1.4 Deleting Composite Members

	12.2 Managing Enumeration Elements
	12.2.1 Adding Enumeration Elements
	12.2.2 Editing Enumeration Elements
	12.2.3 Deleting Enumeration Elements

	12.3 Data Structure Handling Mechanism
	12.3.1 Overview of Data Structures
	12.3.2 Creating an Enumeration
	12.3.3 Creating a Vector
	12.3.4 Editing Existing Data Structures
	12.3.5 Import Libraries
	12.3.6 Data Structure string representation
	12.3.7 Data Structure Types

	12.4 Data Structure Libraries
	12.4.1 DSHandling Library
	12.4.2 EnumOperations Library
	12.4.3 VectorOperations Library

	II Programming Guide
	13 Designing Primitives
	13.1 Introduction
	13.2 Definition of Primitive Interfaces
	13.2.1 Model Property Definitions
	13.2.2 Load Mode
	13.2.3 Input/Output Port Definitions
	13.2.4 Parameter Definitions
	13.2.5 Annotations

	13.3 Primitive Functionality Definition
	13.4 Ptolemy Language Description
	13.4.1 Compiling Primitives
	13.4.2 Example

	13.5 Primitive Language Constructs
	13.5.1 Keywords in detail
	13.5.2 Writing C++ Code for Primitives
	13.5.3 Reading Inputs and Writing Outputs
	13.5.4 Parameters
	13.5.5 Array Parameter
	13.5.6 Programming Examples
	13.5.7 Preventing Memory Leaks in C++ Code

	13.6 Infrastructure for Primitive Definition
	13.6.1 Handling Errors
	13.6.2 I/O Classes
	13.6.3 String Functions and Classes
	13.6.4 List Classes
	13.6.5 Hash Tables
	13.6.6 Using Random Numbers

	14 Using Data Types
	14.1 Scalar Numeric Types
	14.1.1 Complex Data Type
	14.1.2 Fixed-point Data Type

	14.2 Defining New Data Types
	14.2.1 Defining a New Message Class
	14.2.2 Use of the Envelope Class
	14.2.3 Use of the MessageParticle Class
	14.2.4 Use of Messages in Primitives

	14.3 Matrix Data Types
	14.3.1 Design philosophy
	14.3.2 PtMatrix Class
	14.3.3 Public Functions and Operators for the PtMatrix Class
	14.3.4 Writing Primitives Using the PtMatrix Class
	14.3.5 Future Extensions

	14.4 File and String Types
	14.4.1 File Type
	14.4.2 String Type

	14.5 Manipulating Particles of Type anytype
	14.6 Unsupported Types
	14.6.1 Sub-Matrices
	14.6.2 Image Particles

	15 Programming Using Data Structures
	15.1 Initializing Data Structures
	15.2 Using Data Structures
	15.2.1 Generic Type Operations
	15.2.2 Type Specific Interfaces

	15.3 When to Clone/Release Data Structures.
	15.4 When is a data structure released?
	15.5 Compatibility Problems
	15.6 Known problems

	16 Using Tcl/Tk in Primitives
	16.1 Writing Tcl/Tk Scripts for the TclScript Primitive
	16.1.1 Create a New TclScript Special Primitive
	16.1.2 The Tcl Script Explained

	16.2 Tcl Utilities Available to the Programmer
	16.3 Creating Primitives Derived from TclScript
	16.4 Writing Tcl Primitives for DE Domain

	17 Domain Related Issues
	17.1 SDF Domain
	17.2 DDF Domain
	17.3 BDF Domain
	17.4 DE Domain
	17.4.1 Programming Primitives in the DE Domain
	17.4.2 Programming Examples

	III Domains
	18 SDF Domain
	18.1 Introduction
	18.2 Basic Data Flow Terminology
	18.3 Balancing production and consumption of tokens
	18.4 Iterations in SDF
	18.5 Inconsistency
	18.6 Delays
	18.7 Targets
	18.7.1 Default SDF target
	18.7.2 The loop-SDF target
	18.7.3 SDF to PTCL target

	18.8 An overview of SDF Primitives
	18.9 Source primitives
	18.9.1 Floating Point Sources
	18.9.2 Fixed-point sources
	18.9.3 Complex sources
	18.9.4 Matrix Sources

	18.10 Sink primitives
	18.10.1 Batch Plotting Facilities

	18.11 Arithmetic primitives
	18.12 Nonlinear primitives
	18.12.1 Quantizers
	18.12.2 Math Functions
	18.12.3 Other Nonlinear Functions

	18.13 Logic primitives
	18.14 Control primitives
	18.14.1 Single-Rate Operations
	18.14.2 Multirate Operations
	18.14.3 Other Operations

	18.15 Conversion primitives
	18.15.1 Complex data type formats
	18.15.2 Other data type formats
	18.15.3 Matrix Conversion Primitives

	18.16 Matrix primitives
	18.16.1 Matrix-Vector Conversion
	18.16.2 Matrix operations
	18.16.3 Miscellaneous

	18.17 Matlab primitives
	18.18 Signal processing (DSP) primitives
	18.18.1 Filters
	18.18.2 Adaptive Filters
	18.18.3 Block Filters
	18.18.4 Vector Quantization

	18.19 Spectral analysis
	18.19.1 Miscellaneous signal processing blocks

	18.20 Communication primitives
	18.20.1 Sources and Pulse Shapers
	18.20.2 Transmitter Functions
	18.20.3 Receiver functions
	18.20.4 Channel Models

	18.21 Telecomm
	18.21.1 Conversion, Signal Sources, and Signal Tests
	18.21.2 Touch tone Decoders
	18.21.3 Channel Models
	18.21.4 PCM and ADPCM

	18.22 Spatial Array Processing
	18.22.1 Data Models
	18.22.2 Sensor and Antenna Models
	18.22.3 Doppler Effects
	18.22.4 Beamforming Methods

	18.23 Image Processing Primitives
	18.23.1 Displaying images
	18.23.2 Reading images
	18.23.3 Color conversions
	18.23.4 Image and video coding
	18.23.5 Miscellaneous image blocks

	18.24 Neural Networks
	18.25 Tcl primitives
	18.25.1 Interactive Graphics Facilities

	18.26 Overview of SDF Demos
	18.27 Basic demos
	18.28 Multirate demos
	18.29 Communications demos
	18.29.1 Older communications demos

	18.30 Digital signal processing demos
	18.31 Sound demos
	18.32 Image processing demos
	18.33 Vector Quantization demonstrations
	18.34 Fix demos
	18.35 Tcl/Tk demos
	18.36 Matrix demos
	18.37 MATLAB Demos

	19 DDF Domain
	19.1 Introduction
	19.2 The DDF Schedulers
	19.2.1 DDF Backward Scheduler
	19.2.2 The default scheduler
	19.2.3 The clustering scheduler
	19.2.4 The fast scheduler
	19.2.5 Lazy evaluation

	19.3 Inconsistency in DDF
	19.4 The default-DDF target
	19.5 An overview of DDF primitives
	19.6 An overview of DDF demos
	19.7 Mixing DDF with other domains

	20 BDF Domain
	20.1 Introduction
	20.2 The default-BDF target
	20.3 An overview of BDF primitives
	20.4 An overview of BDF demos

	21 HOF Domain
	21.1 Introduction
	21.2 Using the HOF domain
	21.3 The Map primitive and its variants
	21.3.1 Example
	21.3.2 MapGR and SrcGR primitive
	21.3.3 Setting parameter values
	21.3.4 Number of replacement blocks
	21.3.5 How the inputs and outputs are connected
	21.3.6 A note about data types

	21.4 Other higher-order control structures
	21.5 Statically evaluated recursion
	21.6 Bus manipulation primitives
	21.6.1 NOP Primitives

	21.7 An overview of the HOF primitives
	21.7.1 Bus manipulation primitives
	21.7.2 Map-like primitives

	21.8 An overview of HOF demos
	21.8.1 HOF demos in the SDF domain
	21.8.2 HOF demos in the DE domain
	21.8.3 HOF demos in the CGC domain

	22 DE Domain
	22.1 Introduction
	22.2 The DE target and its schedulers
	22.3 Events and chronology
	22.4 Event generators
	22.5 Simultaneous events
	22.6 Delay-free loops
	22.7 Wormholes
	22.7.1 SDF within DE
	22.7.2 DE within SDF
	22.7.3 Timed domains within timed domains

	22.8 DE Performance Issues
	22.9 DE Libraries
	22.10 Source primitives
	22.11 Sink primitives
	22.12 Control primitives
	22.13 Conversion primitives
	22.14 Queues, servers, and delays
	22.15 Timing primitives
	22.16 Logic primitives
	22.17 Networking primitives
	22.17.1 Cell creation and access
	22.17.2 Cell routing, control, and service
	22.17.3 Lost cell recovery
	22.17.4 Wireless network simulation

	22.18 Miscellaneous primitives
	22.18.1 Hardware modeling
	22.18.2 Statistics and monitoring

	22.19 Multi-Valued Logic in DE Domain
	22.20 An overview of DE demos
	22.21 Basic demos
	22.22 Queues, servers, and delays
	22.23 Networking demos
	22.24 Miscellaneous demos
	22.25 Wormhole demos
	22.26 Tcl/Tk Demos

	23 CTDE Domain
	23.1 Purpose of the domain
	23.2 Introduction to the CTDE domain
	23.3 Continuous-Time Computation Models
	23.3.1 Computation model
	23.3.2 Signal Form
	23.3.3 Example: Spring-Mass system
	23.3.4 Modeling
	23.3.5 Simulation
	23.3.6 Limitations of purely continuous-time models

	23.4 The Combined Continuous Time/Discrete Event Model of Computation
	23.4.1 The CTDE Computational Model
	23.4.2 Model Structure

	23.5 Modeling in the CTDE domain
	23.5.1 Vectorial continuous signals
	23.5.2 Simulation Algorithm

	23.6 Example: Bouncing Ball-Model
	23.7 User-adjustable parameters
	23.8 The ODE solver
	23.8.1 Solver parameters

	23.9 The CTDE domain in mixed-signal simulations
	23.10 Current limitations

	24 FSM Domain
	24.1 What is a Finite State Machine?
	24.2 The MLDesigner FSM Domain
	24.3 MLDesigner FSM Semantic
	24.3.1 Basic FSM Elements
	24.3.2 FSM Action Language

	24.4 FSM Execution Semantics
	24.4.1 Initialization
	24.4.2 Execution Steps

	24.5 Elevator Example
	24.5.1 Interface
	24.5.2 Execution

	24.6 The FSM Model
	24.6.1 FSM Model Interface
	24.6.2 FSM Model Design
	24.6.3 Current State Data Structure
	24.6.4 Current State Memory
	24.6.5 CurrentStateDS Property
	24.6.6 Internal Event Property
	24.6.7 Additional Code Property

	24.7 FSM Model Editor
	24.8 FSM Design Objects
	24.8.1 States
	24.8.2 Transitions
	24.8.3 Default Entrance Transitions
	24.8.4 Transition Labels
	24.8.5 Default Entrances
	24.8.6 Histories

	24.9 FSM Dialogs
	24.9.1 Action Dialog
	24.9.2 Event Expression Dialog
	24.9.3 Slave Model Dialog

	24.10 FSM Design Check
	24.10.1 States
	24.10.2 Default Entrances
	24.10.3 Histories

	24.11 FSM and Concurrency Domains
	24.11.1 FSM and DE
	24.11.2 FSM inside DE
	24.11.3 FSM outside DE
	24.11.4 FSM and SDF
	24.11.5 FSM inside SDF
	24.11.6 FSM outside SDF
	24.11.7 FSM inside FSM

	24.12 Creating an FSM
	24.12.1 System Description
	24.12.2 Example

	24.13 Backward Compatibility
	24.14 ANSI C Code Synthesis
	24.14.1 Overview
	24.14.2 Generator Input
	24.14.3 Generator Output
	24.14.4 Limitations
	24.14.5 Code Generation Process
	24.14.6 Run-Time Environment
	24.14.7 Output Source Files
	24.14.8 Code Customization
	24.14.9 Code Debugging
	24.14.10 Example

	25 NS2 Domain
	25.1 Introduction
	25.2 MLDesigner and NS2
	25.2.1 Modeling Networks with MLDesigner
	25.2.2 About NS2
	25.2.3 Linking MLDesigner and NS2

	25.3 Working with the MLDesigner NS2 Domain
	25.3.1 Getting Started
	25.3.2 Assembling NS2 Models to Build Simulations
	25.3.3 Writing New NS2 Primitives

	26 Unsupported Domains
	26.1 SR Domain
	26.1.1 Introduction
	26.1.2 SR concepts
	26.1.3 SR compared to other domains
	26.1.4 The semantics of SR
	26.1.5 Overview of SR primitives

	27 Code Generation Domains - unsupported
	27.1 VHDL Domain
	27.1.1 Introduction
	27.1.2 VHDL Targets
	27.1.3 An Overview of VHDL Primitives
	27.1.4 An Overview of VHDL Demos

	27.2 CG Domain
	27.2.1 Introduction
	27.2.2 Targets
	27.2.3 Schedulers
	27.2.4 Interfacing Issues
	27.2.5 Dynamic constructs in CG domain
	27.2.6 Primitives
	27.2.7 Demos

	27.3 CGC Domain
	27.3.1 Introduction
	27.3.2 CGC Targets
	27.3.3 An Overview of CGC Primitives
	27.3.4 An Overview of CGC Demos

	27.4 CG56 Domain
	27.4.1 Introduction
	27.4.2 An overview of CG56 primitives
	27.4.3 An overview of CG56 Demos
	27.4.4 Targets

	27.5 C50 Domain
	27.5.1 Introduction
	27.5.2 An overview of C50 primitives
	27.5.3 Source primitives
	27.5.4 An overview of C50 Demos
	27.5.5 Targets

	IV Appendix
	A General
	A.1 System Requirements
	A.2 Environment Variables
	A.3 Valid File Names
	A.4 Uninstall MLDesigner
	A.5 Version Update Warning

	B Support
	B.1 How to Contact Us
	B.2 Reporting Problems/Bugs
	B.3 Viewing the Online Documentation

	C Frequently Asked Questions
	C.1 General Questions
	C.2 Error Messages and Their Most Common Causes
	C.3 Segmentation Faults
	C.4 Data Structures
	C.5 Load Mode
	C.6 Plotting Systems
	C.7 Setting Environment Variables
	C.8 ddd debugger and Red Hat
	C.9 Linked Objects
	C.10 Shared Libraries

	D Answers to FAQ's
	D.1 Answers for the General Questions
	D.2 Error Messages and Their Causes
	D.3 Segmentation Faults / System Crashes
	D.4 Data Structures
	D.5 Load Mode
	D.6 Plotting Systems
	D.7 Setting Environment Variables
	D.8 Using ddd Debugger under Red Hat
	D.9 Linked Objects
	D.10 Shared Libraries

	E Troubleshooting
	E.1 Closing complex models becomes slower and slower after simulations
	E.2 DHCP Client/License problem
	E.3 Waiting for Users Lock
	E.4 Distributed Simulation Timeout
	E.5 ddd Debugger Problems
	E.6 Compile Errors
	E.7 Preserving the Order of Multiple Outputs in Priority Free Scheduler
	E.8 MLDesigner Does Not Start After the Splash Screen Disappears
	E.9 Red Hat Linux 9
	E.10 Red Hat Enterprise Linux 4 32 bit
	E.11 Security-Enhanced Linux (SELinux)
	E.12 VMWare Player
	E.13 QClipboard::Unknown SelectionNotify
	E.14 Value of MLD_USER variable is lost
	E.15 The license manager fails on a system with multiple NICs
	E.16 MySQL

	F Abbreviations
	G Glossary
	H Bibliography
	I Index

