
MLDesign Technologies, Inc. www.mldesigner.com

A Multi-Processor Computer Architecture
Model

This flexible model was developed to demonstrate techniques for modeling high-level be-
havior and performance of multi-processor computer architecture. The model uses inde-
pendent software and hardware models that interact through a shared memory virtual con-
nection. The software part models the Procedures, Queues, and Locks needed to model
execution of software instructions. The hardware part models the behaviors of various
hardware components and interactions between them. Parameters control key design ele-
ments such as Processor Speed, Instructions per time unit, Mean Memory Accesses Per
Instruction, Cache Hit Rate, Bus Cycle Time, Number of Processors, and Memory Ac-
cess Time. Embedded probes collect performance data and display it as raw data or
graphical summaries either dynamically during execution or as post simulation sum-
maries.

The diagram below shows the hardware/software structure.

1

Figure 1: Multi-processor model overview

Disk
Controller

Cache
Memory

Cache
Memory

Cache
Memory

Bus

Main
Memory

CPU 3CPU 2 CPU 4 Disk Network

Network
Controller

CPU 1

Cache
Memory

MLDesign Technologies, Inc. www.mldesigner.com

The AccessHardware block represents the software layer and the Hardware Enter and
HardwareExit blocks represent the hardware layer. Instructions flow from the software
module (not shown) into the AccessHardware module, which places them in the Memo-
ryIn block. HardwareEnter accesses the instructions and passes them to the hardware
module (not shown) for execution. The hardware module returns completed instructions
to HardwareExit which transfers them to MemoryOut, where they are read by the Access
Hardware block and passed back to the software module. The three figures below show
this in more detail.

2

Figure 4: HardwareEntry

Insert
Identity

MemoryActiveRead#1

SimpleCounter#1

M MemoryIn
Output

Figure 3: AccessHardware

Figure 5: HardwareExit

MemoryActiveRead#1MemoryWrite#1

M MemoryIn M MemoryOut
Input Output

MemoryWrite#1Select
Identity

M MemoryOut

Input

Figure 2: Hardware/software structure

Hardware
(detail,

4 proc.)

Software
(1 req/cpu)

M MemoryOutProcessor

M MemoryInProcessor

Figure3: Access Hardware

MemoryWrite#1 MemoryActiveRead#1

M MemoryIn M MemoryOut

Input Output

MLDesign Technologies, Inc. www.mldesigner.com

The software module abstracts the operating system and application as a series of proce-
dure requests that are scheduled to run on the CPUs (see below.) The software module
generates processor requests, one at a time, to the hardware. The processor request is
modeled using an efficient MLDesigner hierarchical data structure that specifies the num-
ber of instructions associated with the processor request as one of its fields. Another data
structure field holds a Timing Packet data structure to keep track of the timings in differ-
ent stages of processor execution.

The hardware model (see below) is comprised of four Central Processing Units (CPUs),
each with an associated Cache Memory, connected to a Bus-type interconnection net-
work. Each CPU can independently send requests to the bus for accessing the Main
Memory and can send/receive requests and responses to and from I/0 devices like disk
and network controllers. When the hardware model receives a processor request, Dis-
patch looks for an idle CPU. If there is an idle CPU, Dispatch sends the request to that
CPU and marks that CPU busy. Otherwise, Dispatch queues the request until a CPU be-
comes available and then dispatches it and marks the CPU as busy. At the completion of
request processing, the CPU returns the request to the Dispatch module where the Free
module releases the CPU and request is returned to the software layer.

3

Figure 6: Software module

AccessProcessor#1

PoissonPulseTrain_2_3#1

NewTimingPacket#1
$NumInstructions

M MemoryInProcessor

M MemoryOutProcessor

MLDesign Technologies, Inc. www.mldesigner.com

The CPU module decides which instructions require access to memory, requests that
number of memory accesses to the Cache module and waits for the response from the
Cache module. When the CPU module receives the response from the Cache module, it
inserts a delay to account for the CPU execution time for that instruction. When all the
instructions for a particular CPU have been executed, the Processor Request DS is re-
turned to the Dispatch module. If there are more queued processor requests, they will be
sent for processing.

4

Figure 7: Hardware Model

CPUTimeperInstruction
BatchProbe#1Dispatch

3

3

2

2

1

1

0

0

CPU 0 CPU 1 CPU 2 CPU 3

Cache Cache Cache Cache Memory

Bus

M MemoryInProcessor

M MemoryOutProcessor

M CPUStatMemory

Figure 8: CPU module

SimpleFIFO#1

BuildCPUInternalDS#1

Select
RequestEncapsulated

Delay
(1.0/$ProcessorSpeedInstsPerTimeunit)

GateTrigger#1

I<=0?
Geometric

RangenConst#1

Insert TNow
TimeStartedProcessing

MoreInstructions#1

N

Y

EIO

1

2

3

MemoryWrite#1

M CPUStatMemory

Output

FromCache

ToCache

Input

T

F

[If instruction is memory bound,
compute and send number of
memory accesses to Cache.]

[CPU delay per instruction.]

MLDesign Technologies, Inc. www.mldesigner.com

The Cache decides if the memory request can be filled or requires main memory access.
If main memory access is required, the request is passed to the bus; if not, the Cache adds
a delay to represent cache access and passes the memory request back to the CPU. CPU
picks the data. Otherwise, the CPU accesses main memory through the bus to pick the
data and to fill the cache.

The Bus module receives cache line fill request from the cache and if the bus is in use,
the cache line fill request is queued. If the bus is free, the Bus module grabs the bus and
sends the BusDS data structure to the main memory. The Bus module holds the bus until
it receives a response from the main memory and applies a delay to account for the bus
delay. Once the delay is over, the Bus module frees the bus and returns the BusDS to the
Cache module.

The Memory module receives cache line fill request BusDS from the Bus module, inserts
a delay to represent memory access time and then returns the BusDS data structure to the
bus.

5

Figure 9: Cache module

I<=0?

AcceptfromBus#1

0

Do0n_1LoopInt#1 BuildBusDS#1
VarAndDelay#1I-$CacheHitRate

Binomial
Rangen#1

$Input#1*$CacheHitTime

FromCPU ToCPU

FromBus

ToBus

T

F

[Compute the number
of Cache hits.]

[Delay for the Cache hits.]

[Loop as many as Cache misses.]

Figure 10: Bus module

VarAndDelay#1

I<$MemoryID?
Select

SourceID

Select
NumberofBusCycles

EIO

1
2

BusRequestType#1 $Input#1*
$BusCycleTime

Printer.input=1#1

Allocate
Param#1

Free
Param#1

BusMonitor#1

R BusResource

Input

Output

T

F

MLDesign Technologies, Inc. www.mldesigner.com

The model generates multiple reports, such as this one.

Note: A 20-page white paper describing this model is available. Model developed by Dr.
Keyvan Farhangian of KVON Technologies.

6

Figure 11: Memory module

TNow#1

AcceptfromBus#1

Select
DestinationID

Insert
DestinationID

Select
SourceID

Insert
SourceID

Delay
($MemAccessTime)Allocate

Param#1

Free
Param#1

EIO

1
2

Printer.input=1#1

R MemoryResource

FromBus

ToBus

Figure 12: Bus activity graph

Set 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bus Activity

SimulatedTime

C
P
U
i
d

